
High Speed Implementation of Authenticated
Encryption for the MSP430X Microcontroller

Conrado P. L. Gouvêa?, Julio López

University of Campinas (Unicamp),
{conradoplg,jlopez}@ic.unicamp.br

Abstract. Authenticated encryption is a symmetric cryptography
scheme that provides both confidentiality and authentication. In this
work we describe an optimized implementation of authenticated encryp-
tion for the MSP430X family of microcontrollers. The CCM, GCM,
SGCM, OCB3, Hummingbird-2 and MASHA authenticated encryption
schemes were implemented at the 128-bit level of security and their per-
formance was compared. The AES accelerator included in some models
of the MSP430X family is also studied and we explore its characteristics
to improve the performance of the implemented modes, achieving up to
10 times of speedup. The CCM and OCB3 schemes were the fastest when
using the AES accelerator while MASHA and Hummingbird-2 were the
fastest when using only software.

Keywords: authenticated encryption, MSP430, AES, software imple-
mentation

1 Introduction

Constrained platforms such as sensor nodes, smart cards and radio-frequency
identification (RFID) devices have a great number of applications, many of which
with security requirements that require cryptographic schemes. The implemen-
tation of such schemes in these devices is very challenging since it must provide
high speed while consuming a small amount of resources (energy, code size and
RAM). In this scenario, symmetric cryptography becomes an essential tool in
the development of security solutions, since it can provide both confidentiality
and authenticity after being bootstrapped by some protocol for key agreement or
distribution. Encryption and authentication can be done through generic compo-
sition of separate methods; however, the study of an alternative approach named
authenticated encryption (AE) has gained popularity.

Authenticated encryption provides both confidentiality and authenticity
within a single scheme. It is often more efficient than using separate methods and
usually consumes a smaller amount of resources. It also prevents common crit-
ical mistakes when combining encryption and authentication such as not using
separate keys for each task. There are many AE schemes; see e.g. [10] for a non-
exhaustive list. Some AE schemes are built using a block cipher, in this case, they

? Supported by FAPESP, grant 2010/15340-3.

are also called AE modes. In this work, we follow the approach from [10] and
compare the Counter with CBC-MAC (CCM) mode [18], the Galois/Counter
Mode (GCM) [13] and the Offset Codebook (OCB3) mode [10]. We have also
implemented the Sophie Germain Counter Mode [14], the Hummingbird-2 ci-
pher [5] and the MASHA cipher [9]. The CCM mode and GCM have been stan-
dardized by the National Institute of Standards and Technology (NIST); CCM
is used for Wi-Fi WPA2 security (IEEE 802.11i) while GCM is used in TLS,
IPSec and NSA Suite B, for example. The recently proposed OCB3 mode is the
third iteration of the OCB mode and appears to be very efficient in multiple
platforms. The SGCM is a variant of GCM and was proposed to be resistant
against some existing attacks against GCM while being equally or more efficient;
we have implemented it in order to check this claim and compare it to GCM.
The Hummingbird-2 cipher (which may be referred to as HB2 in this work) is
specially suited for 16-bit platforms and was implemented in order to compare
it to the other non-specially suited modes. The MASHA cipher is based on a
stream cipher and claims to fill the gap for authenticated encryption algorithms
based on stream ciphers which achieve a good balance between security and
performance.

The goal of this work is to provide an efficient implementation and com-
parison of the aforementioned AE schemes (CCM, GCM, SGCM, OCB3,
Hummingbird-2, and MASHA) for the MSP430X microcontroller family from
Texas Instruments. This family is an extension of the MSP430 which have been
used in multiple scenarios such as wireless sensor networks; furthermore, some
microcontrollers of this family feature an AES accelerator module which can
encrypt and decrypt using 128-bit keys. Our main contributions are: (i) to study
(for the first time, to the best of our knowledge) the efficient usage and impact
of this AES accelerator module in the implemented AE schemes; (ii) to describe
a high speed implementation of those AE schemes for the MSP430X, achiev-
ing performance 10 times faster for CCM using the AES accelerator instead of
AES in software; (iii) to describe an efficient implementation of AES for 16-bit
platforms; (iv) to show that CCM is the fastest of those schemes whenever a
non-parallel AES accelerator is available; and (v) and to provide a comparison
of the six AE schemes, with and without the AES accelerator. We remark that
the results regarding the efficient usage of the AES accelerator can be applied
to other devices featuring analogue accelerators, such as the AVR XMEGA.

This paper is organized as follows. In Section 2, the MSP430X microcontroller
family is described. Section 3 offers an introduction to AE. Our implementation
is described in Section 4, and the obtained results are detailed in Section 5.
Section 6 provides concluding remarks.

2 The MSP430X Family

The MSP430X family is composed by many microcontrollers which share the
same instruction set and 12 general purpose registers. Although it is essentially a

16-bit architecture, its registers have 20 bits, supporting up to 1 MB of addressing
space. Each microcontroller has distinct clock frequency, RAM and flash sizes.

Some MSP430X microcontrollers (namely the CC430 series) have an inte-
grated radio frequency transceiver, making them very suitable for wireless sen-
sors. These models also feature an AES accelerator module that supports en-
cryption and decryption with 128-bit keys only. The study of this accelerator is
one key aspect of this study and for this reason we describe its basic usage as
follows. In order to encrypt a block of 16 bytes, a flag must be set in a control
register to specify encryption and the key must be written sequentially (in bytes
or words) in a specific memory address. The input block must then be written,
also sequentially, in another memory address. After 167 clock cycles, the result
is ready and must be read sequentially from a third address. It is possible to poll
a control register to check if the result is ready. Further blocks can be encrypted
with the same key without writing the key again. The decryption follows the
same procedure, but it requires 214 clock cycles of processing. It is worth noting
that these memory read and writes are just like regular reads and writes to the
RAM, and therefore the cost of communicating with the accelerator is included
in our timings.

3 Authenticated Encryption

An authenticated encryption scheme is composed of two algorithms: authenti-
cated encryption and decryption-verification (of integrity). The authenticated
encryption algorithm is denoted by the function EK(N,M,A) that returns
(C, T), where K ∈ {0, 1}k is the k-bit key, N ∈ {0, 1}n is the n-bit nonce,
M ∈ {0, 1}∗ is the message, A ∈ {0, 1}∗ is the associated data, C ∈ {0, 1}∗ is the
ciphertext and T ∈ {0, 1}t is the authentication tag. The decryption-verification
algorithm is denoted by the function DK(N,C,A, T) that returns (M,V) where
K,N,C,A, T,M are as above and V is a boolean value indicating if the given
tag is valid (i.e. if the decrypted message and associated data are authentic).

Many AE schemes are built using a block cipher such as AES. Let EK(B)
denote the block cipher, where the key K is usually the same used in the AE
mode and B ∈ {0, 1}b is a b-bit message (a block). The inverse (decryption) func-
tion is denoted DK(B′) where B′ is also a block (usually from the ciphertext).
The CCM, GCM, SGCM and OCB3 are based on block ciphers, while HB2 and
MASHA are not.

It is possible to identify several properties of AE schemes; we offer a non-
exhaustive list. The number of block cipher calls used in the scheme is an im-
portant metric related to performance. A scheme is considered online if it is
able to encrypt a message with unknown length using constant memory (this is
useful, for example, if the end of the data is indicated by a null terminator or a
special packet). Some schemes only use the forward function of the underlying
block cipher (EK), which reduces the size of software and hardware implemen-
tations. A scheme supports preprocessing of static associated data (AD) if the
authentication of the AD depends only on the key and can be cached between

Table 1. Comparison of implemented AE schemes

Property CCM (S)GCM OCB3 HB2 MASHA

Block cipher callsa 2m+ a+ 2b m m+ a+ 1b — —
. . . in key setup 0 1 1 — —
Online No Yes Yes Yesc Yes
Uses only EK Yes Yes No — —
Prepr. of static AD No Yes Yes No N/A
Patent-free Yes Yes No No No
Parallelizable No Yes Yes No No
Standardized Yes (No) Yes No No No
Input order AD first AD first Any AD last N/A
a m,a are the number of message and AD blocks, respectively
b May have an additional block cipher call
c AD size must be fixed

different messages being sent (this is useful for a header that does not change).
Some schemes are covered by patents, which usually discourages its use. A scheme
is parallelizable if it is possible to process multiple blocks (or partially process
them) in a parallel manner. Some schemes support processing regular messages
and AD in any order, while some schemes require the processing of AD before
the message, for example. The properties of the AE schemes implemented in this
work are compared in Table 1.

Remarks about security. The weak key attack against GCM, pointed out by the
author of SGCM [14], has probability n/2128 of working, where n is the number
of blocks in the message; this is negligible unless the message is large. There
are related key attacks against Hummingbird-2 [2,19] which, while undesirable,
can be hard to apply in practice since keys are (ideally) random. Finally, there
is a key-recovery attack in the multi-user setting [3] that can be applied to all
schemes in this paper; however, they can be avoided by using random nonces.

4 Efficient Implementation

We have written a fast software implementation of the AE schemes in the C
language, with critical functions written in assembly. The target chip was a
CC430F6137 with 20 MHz clock, 32 KB flash for code and 4 KB RAM. The
compiler used was the IAR Embedded Workbench version 5.30. For the AE
modes based on block ciphers, we have used the AES with 128-bit keys both in
software and using the AES accelerator. Our source code is available1 to allow
reproduction of our results.

The interface to the AES accelerator was written in assembly, along with a
function to xor two blocks and another to increment a block.
1 http://conradoplg.cryptoland.net/software/authenticated-encryption-for-

the-msp430/

http://conradoplg.cryptoland.net/software/authenticated-encryption-for-the-msp430/
http://conradoplg.cryptoland.net/software/authenticated-encryption-for-the-msp430/

4.1 CCM

The CCM (Counter with CBC-MAC) mode [18] essentially combines the CTR
mode of encryption with the CBC-MAC authentication scheme. For each mes-
sage block, a counter is encrypted with the block cipher and the result xored
to the message to produce the ciphertext; the counter is then incremented. The
message is also xored to an “accumulator” which is then encrypted; this accu-
mulator will become the authentication tag after all blocks are processed.

Its implementation was fairly straightforward, employing the assembly rou-
tines to xor blocks and increment the counter.

4.2 GCM

The GCM (Galois/Counter Mode) [13] employs the arithmetic of the finite field
F2128 for authentication and the CTR mode for encryption. For each message
block, GCM encrypts the counter and xors the result into the message to produce
the ciphertext; the counter is then incremented. The ciphertext is xored into an
accumulator, which is then multiplied in the finite field by a key-dependent
constant H. The accumulator is used to generated the authentication tag.

In order to speed up the GCM mode, polynomial multiplication was imple-
mented in unrolled assembly with the López-Dahab (LD) [12] algorithm using
4-bit window and two lookup tables; it is described for reference in Appendix A,
Algorithm 3. The first precomputation lookup table holds the product of H and
all 4-bit polynomials. Each of the 16 lines of the table has 132 bits, which take 9
words. This leads to a table with 288 bytes. The additional lookup table (which
can be computed from the first one, shifting each line 4 bits to the left) allows
the switch from three 4-bit shifts of 256-bit blocks to a single 8-bit shift of a
256-bit block, which can be computed efficiently with the swpb (swap bytes)
instruction of the MSP430.

4.3 SGCM

The SGCM (Sophie Germain Counter Mode) [14] is a variant of GCM that is
not susceptible to weak key attacks that exist against GCM. While these attacks
are of limited nature, the author claims that they should be avoided. It has the
same structure as GCM, but instead of the F2128 arithmetic, it uses the prime
field Fp with p = 2128 + 12451.

Arithmetic in Fp can be carried out with known algorithms such as Comba
multiplication. We follow the approach in [7] which takes advantage of the
multiply-and-accumulate operation present in the hardware multiplier of the
MSP430 family, also taking advantage of the 32-bit multiplier present in some
MSP430X devices, including the CC430 series.

4.4 OCB3

The OCB3 (Offset Codebook) mode [10] also employs the F2128 arithmetic (using
the same reduction polynomial from GCM), but in a simplified manner: it does

not require full multiplication, but only multiplication by powers of z (the vari-
able used in the polynomial representation of the field elements). For each i-th
message block, OCB3 computes the finite field multiplication of a nonce/key-
dependent constant L0 by the polynomial zj , where j is the number of trailing
zeros in the binary representation of the block index i; the result is xored into
an accumulator ∆. This accumulator is xored to the message, encrypted, and
the result is xored back with ∆ to generate the ciphertext. The message block
is xored into another accumulator Y , which is used to generate the tag.

A lookup table with 8 entries (128 bytes) was used to hold the some precom-
puted values of L0 · zj . Two functions were implemented in assembly: multipli-
cation by z (using left shifts) and the function used to compute the number of
trailing zeros (using right shifts).

4.5 Hummingbird-2 (HB2)

The Hummingbird-2 [5] is an authenticated encryption algorithm which is not
built upon a block cipher. It processes 16-bit blocks and was specially designed
for resource-constrained platforms. The small block size is achieved by main-
taining an 128-bit internal state that is updated with each block processed.
Authenticated data is processed after the confidential data by simply processing
the blocks and discarding the ciphertext generated. The algorithm is built upon
the following functions for encryption:

S(x) = S4(x[0..3]) | (S3(x[4..7])� 4)

| (S2(x[8..11])� 8) | (S1(x[12..15])� 12)

L(x) = x⊕ (x≪ 6)⊕ (x≪ 10)

f(x) = L(S(x))

WD16(x, a, b, c, d) = f(f(f(f(x⊕ a)⊕ b)⊕ c)⊕ d) ;

where S1, S2, S3, S4 are S-boxes and ≪ denotes the circular left shift of a 16-bit
word. For each 16-bit message block, HB2 calls WD16 four times, using as inputs
different combinations of the message, state and key.

We have unrolled the WD16 function. The function f is critical since it is
called 16 times per block and must be very efficient; our approach is to use
two precomputed lookup tables fL, fH each one with 256 2-byte elements, such
that f(x) = fL[x & 0xFF] ⊕ fH [(x & 0xFF00) � 8]. These tables are generated
by computing fL[x] ← L(S4(x[0..3]) | (S3(x[4..7]) � 4)) for every byte x and
fH [x]← L((S2(x[8..11])� 8) | (S1(x[12..15])� 12)) also for every byte x. This
optimization does not apply for f−1(x) since the inverse S-boxes are applied
after the shifts in L−1(x) . In this case, we have used precomputed lookup tables
LL, LH such that L(x) = LL[x & 0xFF] ⊕ LH [(x & 0xFF00) � 8]. These are
computed as fL[x] ← L(x[0..7]), fH [x] ← L(x[8..15] � 8) for every byte x.
The four 4-bit inverse S-boxes have been merged in two 8-bit inverse S-boxes
S−1L , S−1H such that S−1(x) = S−1L (x[0..7]) | (S−1H (x[8..15])� 8).

4.6 MASHA

MASHA [9] is an authenticated encryption algorithm based on a stream cipher.
Stream ciphers are interesting since they are often more efficient than block
ciphers. However, many stream ciphers which also provide authentication either
have security issues (e.g. Phelix) or performance issues. The MASHA authors
propose the algorithm in order to attempt to fill this gap.

Our implementation was based on C source provided by the designers. We
have changed it to reduce code size and memory footprint. The code stores
the linear shift registers in circular buffers in order to avoid the actual shifts.
The scheme requires multiplication, in F28 , by four distinct constants. These are
precomputed in a 256-element table which stores the multiplication of all bytes
by these constants. Two such tables are required for each of the two distinct fields
used by MASHA, totaling 2 KB. Since this is already large, we chose to use a
byte-oriented approach for the MixColumns step instead of the 16-bit tailored
code we will describe below. Therefore, the total space for the precomputed
values becomes 2.75 KB.

4.7 Improving AES for 16-bit

We have used a software implementation of AES in order to perform compar-
isons with the hardware accelerator. Our implementation was based on the byte-
oriented version from [6], but we have modified it to take advantage of the 16-bit
platform. The first change was to improve the AddRoundKey function (which sim-
ply computes the xor of 128-bit blocks) in order to xor 16-bit words at a time.
The second change was to improve the use of lookup tables as follows.

As it is well known, the input and output blocks of the AES can be viewed
as 4 × 4 matrices in column-major order whose elements are in F28 ; and the
AES function SubBytes, ShiftRows and MixColumns steps can be combined in
a single one. In this step, the column j of the result matrix can be computed as
e0,j
e1,j
e2,j
e3,j

 = S[a0,j]


02
01
01
03

⊕S[a1,j−1]


03
02
01
01

⊕S[a2,j−2]


01
03
02
01

⊕S[a3,j−3]


01
01
03
02

⊕

k0,j
k1,j
k2,j
k3,j

 ,
where e is the output matrix, a is the input matrix, S is the forward S-box, k is
the round key matrix, and matrix indices are computed modulo four. Inspired
by the 32-bit optimization of using four precomputed tables with 256 elements
of with 4-byte each (totaling 4 KB), we employ the following tables:

T0[a] =

[
S[a] · 02
S[a]

]
, T1[a] =

[
S[a]

S[a] · 03

]
, T2[a] =

[
S[a] · 03
S[a] · 02

]
, T3[a] =

[
S[a]
S[a]

]
.

They consume 2 KB, half the size of the 32-bit version, providing a good compro-
mise between the 8-bit and 32-bit oriented implementations. These tables allow

the computation of column ej as[
e0,j
e1,j

]
= T0[a0,j]⊕ T2[a1,j−1]⊕ T1[a2,j−2]⊕ T3[a3,j−3] ,[

e2,j
e3,j

]
= T1[a0,j]⊕ T3[a1,j−1]⊕ T0[a2,j−2]⊕ T2[a3,j−3] .

4.8 Using the AES accelerator

As previously mentioned, the AES encryption and decryption using the AES
hardware accelerator requires waiting for 167 and 214 cycles, respectively, before
reading the results. The key to an efficient implementation using the module is
to use this “delay slot” to carry out other operations that do not depend on the
result of the encryption/decryption.

For example, in the CCM mode, the counter incrementation and the xor
between the message and the accumulator can be carried out while the counter
is being encrypted: the counter is written to the AES accelerator, the counter
is incremented, we then wait for the result of the encryption and xor the result
to the message when it is ready. In CCM it is also possible to generate the
ciphertext (xor the encrypted result and the message) while the accumulator
is being encrypted. In the GCM mode, it is possible to increment the counter
while the counter is being encrypted. In the OCB3 mode, the xor between the
message and the accumulator Y can be carried out while the message, xored to
∆, is being encrypted. For reference, these computations which can be carried
out in the delay slot are marked in the algorithms of Appendix A.

5 Results

The performance of the implemented AE schemes was measured for the authen-
ticated encryption and decryption-verification of messages with 16 bytes and
4 KB, along with the Internet Performance Index (IPI) [13], which is a weighted
timing for messages with 44 bytes (5%), 552 bytes (15%), 576 bytes (20%), and
1500 bytes (60%). For each message size, we have measured the time to compute
all nonce-dependent values along with time for authenticated encryption and
decryption-verification with 128-bit tags (except MASHA, which uses 256-bit
tags). The derivation of key-dependent values is not included. For OCB3, it was
assumed that the block cipher call in init ctr was cached.

The timings were obtained using a development board with a CC430F6137
chip and are reported on Table 2; this data can also be viewed as throughput in
Figures 1 and 2, considering a 20 MHz clock. The number of cycles taken by the
algorithms was measured using the built-in cycle counter present in the CC430
models, which can be read in the IAR debugger. Stack usage was also measured
using the debugger. Code size was determined from the reports produced by the
compiler, adding the size for text (code) and constants.

Table 2. Timings of implemented AE schemes for different mes-
sage lengths, in cycles per byte

Using AES accelerator Using AES in software

Scheme 16 bytes IPI 4 KB 16 bytes IPI 4 KB

Encryption
CTRa 26 23 23 195 194 193
CCM 116 38 36 778 381 375
GCM 426 183 180 696 320 314
SGCM 242 89 87 567 254 250
OCB3 144 39 38 469 209 205

HB2b 569 200 196

MASHAb 3 014 182 152

Decryption
CTRa 26 23 23 195 194 193
CCM 129 47 46 781 380 375
GCM 429 183 180 699 319 314
SGCM 243 89 87 571 254 250
OCB3 217 48 46 510 245 242

HB2b 669 297 292

MASHAb 3 016 182 151
a Non-authenticated encryption scheme included for

comparison
b Does not use AES

Using the AES accelerator. First, we analyze the results using the AES acceler-
ator, for IPI and 4 KB messages. The GCM performance is more than 5 times
slower than the other schemes; this is due to the complexity of the full binary field
multiplication. The SGCM is more than 50% faster than GCM, since the prime
field arithmetic is much faster on this platform, specially using the 32-bit hard-
ware multiplier. Still, it is slower than the other schemes. Both CCM and OCB3
have almost the same speed, with CCM being around 4% faster. This is sur-
prising, since that OCB3 essentially outperforms CCM in many platforms [10].
The result is explained by the combination of two facts: the hardware support
for AES, which reduces the overhead of an extra block cipher call in CCM; and
the fact that the AES accelerator does not support parallelism, which prevents
OCB3 from taking advantage of its support for it. We have measured that the de-
lay slot optimization improves the encryption speed of GCM, SGCM and OCB3
by around 12% and CCM by around 24%.

Using the AES in software. We now consider the performance using the software
AES implementation, for large messages. For reference, the block cipher takes
180 cycles per byte to encrypt and 216 cycles per byte to decrypt. The CCM
mode becomes slower due to the larger overhead of the extra block cipher call.
The GCM is still slower than OCB3 due to its expensive field multiplication. The

Fig. 1. Encryption throughput in Kbps of CTR and AE schemes for 4 KB messages at
20 MHz

Fig. 2. Encryption throughput in Kbps of CTR and AE schemes for 16-byte messages
at 20 MHz

SGCM is also faster than GCM, but the improvement is diluted to 20% with the
software AES. The MASHA cipher is the fastest, followed by Hummingbird-2,
which is 22% slower. Interestingly, Hummingbird-2 fails to outperform AES in
CTR mode, which is surprising since it is specially tailored for the platform (of
course, it must be considered that it provides authentication while AES-CTR
by itself does not).

AES accelerator vs. AES in software. Using the AES accelerator, it is possible
to encrypt in the CTR mode approximately 8 times faster than using AES in
software; and it is possible to encrypt with CCM approximately 10 times faster
for encryption and 8 times faster for decryption. The AES accelerator speedup
for GCM, SGCM and OCB3 is smaller (around 1.7, 2.8, and 5.4, respectively),
due to the larger software overhead.

Encryption vs. decryption. When considering the usage of the AES accelerator,
GCM has roughly the same performance in encryption and decryption, since
the algorithm for both is almost equal; the same applies for SGCM. For both
CCM and OCB3, decryption is around 25% and 20% slower, respectively. This
is explained by the differences in the data dependencies of the decryption, which
prevents the useful use of the delay slot, and that DK (used by OCB3) is slower
than EK in the AES accelerator. Considering now the usage of the AES in soft-
ware, encryption and decryption have the same performance in CCM and GCM
(since there is no delay slot now) as well as in MASHA. However, decryption
is almost 18% slower for OCB3, since the underlying block cipher decryption
is also slower than the encryption. The decryption in Hummingbird-2 is almost
50% slower due to the f−1(x) function not being able to be fully precomputed,
in contrast to f(x). It is interesting to note that the decryption timings are often
omitted in the literature, even though they may be substantially different from
the encryption timings.

Performance for small messages. The timings for 16-byte messages are usu-
ally dominated by the computation of nonce-dependent values. The CCM using
software AES has the second worst performance since all of its initialization is
nonce-dependent (almost nothing is exclusively key-dependent) and it includes
two block cipher calls. When using the AES accelerator, this overhead mostly
vanishes, and CCM becomes the faster scheme. The nonce setup of GCM is very
cheap (just a padding of the nonce) while the nonce setup of OCB3 requires
the left shift of an 192-bit block by 0–63 bits. Still, the GCM performance for
16-byte messages is worse than OCB3 since it is still dominated by the block
processing. Hummingbird-2 loses to OCB3 due to its larger nonce setup and tag
generation. The greatest surprise is the MASHA performance which is almost
four times slower than CCM, making it the slowest scheme for small messages.
This result is explained by the fact that its nonce setup and tag generation are
very expensive, requiring more than 20 state updates each (which take roughly
the same time as encrypting ten 128-bit blocks).

Further analysis. In order to evaluate our AES software implementation, con-
sider the timings from [4] (also based on [6]) which achieved 286 Kbps at 8 MHz
in the ECB mode. Scaling this to 20 MHz we get 716 Kbps, while our ECB im-
plementation achieved 889 Kbps. We conclude that our 16-bit implementation is
24% faster then the byte-oriented implementation.

Table 3 lists the ROM and RAM usage for programs implementing AE
schemes for both encryption and decryption, using the AES accelerator. The
reported sizes refer only to the code related to the algorithms and excludes the
benchmark code. We recall that the MSP430X model we have used features
32 KB of flash for code and 4 KB RAM. The code for GCM is large due to the
unrolled F2128 multiplier, while the code for CCM is the smallest since it mostly
relies on the block cipher. The RAM usage follows the same pattern: GCM
has the second largest usage, since it has the largest precomputation table; the
Hummingbird-2 cipher (followed by CCM) has the smallest RAM usage since

it requires no runtime precomputation at all. The MASHA cipher requires the
largest code space, due to the many precomputed tables used; this can be re-
duced by sacrificing speed. When using the software AES implementation, 2 904
additional ROM bytes are required for CCM, GCM and SGCM (which use EK

only) and 5 860 additional ROM bytes are required for OCB3.

Table 3. ROM and RAM (stack) usage of AE schemes, in bytes. When using software
AES, 2 904 additional ROM bytes are required for CCM, GCM and SGCM and 5 860
bytes for OCB3

CTR CCM GCM SGCM OCB3 HB2 MASHA

ROM 130 1 094 4 680 2 172 1 724 3 674 5 602
RAM 100 258 886 322 538 196 499

5.1 Related work

A commercial 128-bit AES implementation for the MSP430 [8] achieves
340 cycles per byte for encryption and 550 cpb for decryption, in ECB mode,
using 2536 bytes. Our implementation provides 180 cpb and 216 cpb, respec-
tively, but uses 5860 bytes. With space-time tradeoffs, it should be feasible to
achieve similar results, but we have not explored them.

Simplicio Jr. et al. [16] have implemented EAX, GCM, LetterSoup, OCB2
and CCFB+H for the MSP430, using Curupira as the underlying block cipher.
The EAX mode is [1] is described as an “cleaned-up” CCM and has similar
performance. The authors report the results in milliseconds, but do not state the
clock used. Assuming a 8 MHz clock, their timings (in cycles per byte, considering
their timings for 60-byte messages and our timings for 16-byte messages) are
1 733 cpb for EAX, 5 133 cpb for GCM, 1 680 cpb for LetterSoup, 1 506 cpb for
OCB2 and 2 266 cpb for CCFB+H with 8-byte tag. Our CCM is 2.2 times faster
than their EAX, while our GCM is 7.3 times faster, and our OCB3 3.2 times
faster than their OCB2. This difference can probably be explained by the fact
that the authors have not optimized the algorithms for performance.

In [4], the encryption performance using the AES module present in the
CC2420 transceiver is studied, achieving 110 cycles per byte. This is still 5 times
slower than our results for the CTR mode, probably because the CC2420 is a
peripheral and communicating with it is more expensive.

The Dragon-MAC [11] is based on the Dragon stream cipher. Its authors
describe an implementation for the MSP430 that achieves 21.4 cycles per byte
for authenticated encryption (applying Dragon then Dragon-MAC), which is
faster than all timings in this work. However, it requires 18.9 KB of code. Our
CCM implementation using the AES accelerator is 1.7 times slower, but 11 times
smaller; while our HB2 is 9.2 times slower and 5.1 times smaller.

The Hummingbird-2 timings reported for the MSP430 in its paper [5] are
about 6% and 2% faster for encryption and decryption than the timings we have
obtained. However, the authors do not describe their optimization techniques,
nor the exact MSP430 model used and their timing methodology, making it dif-
ficult to explain their achieved speed. However, we believe that our implementa-
tion is good enough for comparisons. Furthermore, by completely unrolling the
encryption and decryption functions, we were able to achieve timings 3% and
4% faster than theirs, increasing code size by 296 and 432 bytes, respectively.

6 Conclusion and Future Work

The CCM and OCB3 modes were found to provide similar speed results using
the AES accelerator, with CCM being around 5% faster. While OCB3 is the
fastest scheme in many platforms, we expect CCM to be faster whenever a non-
parallel AES accelerator is available. This is the case for the MSP430X models
studied and is also the case for other platforms, for example, the AVR XMEGA
microcontroller with has an analogue AES module.

The CCM appears to be the best choice for MSP430X models with AES
accelerator considering that it also consumes less code space and less stack RAM.
If one of the undesirable properties of CCM must be avoided (not being online,
lack of support for preprocessing of static AD), a good alternative is the EAX
mode [1] and should have performance similar to CCM. Considering software-
only schemes, it is harder to give a clear recommendation: SGCM, OCB3 and
HB2 provide good results, with distinct advantages and downsides. The GCM
mode, even though it has many good properties, does not appear to be adequate
in software implementation for resource-constrained platforms since it requires
very large lookup tables in order to be competitive.

Some other relevant facts we have found are that Hummingbird-2 is slower
than AES; that SGCM is 50% faster than GCM when using the AES accelerator
and 20% when not; and that OCB3 and Hummingbird-2 in particular have
a decryption performance remarkably slower than encryption (18% and 50%
respectively). MASHA has great speed for large enough messages (29% faster
than the second fastest, HB2) but very low performance for small messages
(almost 4 times slower than the second slowest, CCM). For this reason, we
believe there is still the need for a fast, secure and lightweight authenticated
encryption scheme based on a stream cipher.

For future works it would be interesting to implement and compare
lightweight encrypt-and-authenticate or authenticated encryption schemes such
as LetterSoup [15] and Rabbit-MAC [17] for the MSP430X. Another possible
venue for research is to study the efficient implementation of authenticated en-
cryption using the AES accelerator featured in other platforms such as the AVR
XMEGA and devices based on the ARM Cortex such as the EFM32 Gecko,
STM32 and LPC1800.

References

1. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Fast Soft-
ware Encryption, Lecture Notes in Computer Science, vol. 3017, pp. 389–407.
Springer Berlin / Heidelberg (2004)

2. Chai, Q., Gong, G.: A cryptanalysis of HummingBird-2: The differential sequence
analysis. Cryptology ePrint Archive, Report 2012/233 (2012), http://eprint.

iacr.org/

3. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Selected
Areas in Cryptography, Lecture Notes in Computer Science, vol. 7118, pp. 293–
319. Springer Berlin / Heidelberg (2012)

4. Didla, S., Ault, A., Bagchi, S.: Optimizing AES for embedded devices and wire-
less sensor networks. In: Proceedings of the 4th International ICST Conference
on Testbeds and Research Infrastructures for the Development of Networks and
Communities. pp. 4:1–4:10 (2008)

5. Engels, D., Saarinen, M.J.O., Smith, E.M.: The Hummingbird-2 lightweight au-
thenticated encryption algorithm. In: RFID Security and Privacy, Lecture Notes
in Computer Science, vol. 7055. Springer Berlin / Heidelberg (2011)

6. Gladman, B.: AES and combined encryption/authentication modes. http://

gladman.plushost.co.uk/oldsite/AES/ (2008)
7. Gouvêa, C.P.L., López, J.: Efficient software implementation of public-key cryp-

tography on sensor networks using the MSP430X microcontroller. Journal of Cryp-
tographic Engineering 2(1), 19–29 (2012)

8. Institute for Applied Information Processing and Communication: Crypto
software for microcontrollers - Texas Instruments MSP430 microcon-
trollers. http://jce.iaik.tugraz.at/sic/Products/Crypto_Software_for_

Microcontrollers/Texas_Instruments_MSP430_Microcontrollers (2012)
9. Kiyomoto, S., Henricksen, M., Yap, W.S., Nakano, Y., Fukushima, K.: Masha —

low cost authentication with a new stream cipher. In: Information Security, Lecture
Notes in Computer Science, vol. 7001, pp. 63–78. Springer Berlin / Heidelberg
(2011)

10. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Fast Software Encryption, Lecture Notes in Computer Science, vol.
6733, pp. 306–327. Springer Berlin / Heidelberg (2011)

11. Lim, S.Y., Pu, C.C., Lim, H.T., Lee, H.J.: Dragon-MAC: Securing wireless sen-
sor networks with authenticated encryption. Cryptology ePrint Archive, Report
2007/204 (2007), http://eprint.iacr.org/

12. López, J., Dahab, R.: High-speed software multiplication in F2m . In: Progress in
Cryptology — INDOCRYPT 2000. Lecture Notes in Computer Science, vol. 1977,
pp. 93–102. Springer Berlin / Heidelberg (2000)

13. McGrew, D., Viega, J.: The security and performance of the Galois/Counter Mode
(GCM) of operation. In: Progress in Cryptology — INDOCRYPT 2004, Lecture
Notes in Computer Science, vol. 3348, pp. 377–413. Springer Berlin / Heidelberg
(2005)

14. Saarinen, M.J.O.: SGCM: The Sophie Germain counter mode. Cryptology ePrint
Archive, Report 2011/326 (2011), http://eprint.iacr.org/

15. Simplicio Jr, M.A., Barbuda, P.F.F.S., Barreto, P.S.L.M., Carvalho, T.C.M.B.,
Margi, C.B.: The MARVIN message authentication code and the LETTERSOUP
authenticated encryption scheme. Security and Communication Networks 2(2),
165–180 (2009)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://gladman.plushost.co.uk/oldsite/AES/
http://gladman.plushost.co.uk/oldsite/AES/
http://jce.iaik.tugraz.at/sic/Products/Crypto_Software_for_Microcontrollers/Texas_Instruments_MSP430_Microcontrollers
http://jce.iaik.tugraz.at/sic/Products/Crypto_Software_for_Microcontrollers/Texas_Instruments_MSP430_Microcontrollers
http://eprint.iacr.org/
http://eprint.iacr.org/

16. Simplicio Jr., M.A., de Oliveira, B.T., Barreto, P.S.L.M., Margi, C.B., Carvalho,
T.C.M.B., Naslund, M.: Comparison of authenticated-encryption schemes in wire-
less sensor networks. In: 2011 IEEE 36th Conference on Local Computer Networks
(LCN). pp. 450–457 (2011)

17. Tahir, R., Javed, M., Cheema, A.: Rabbit-MAC: Lightweight authenticated en-
cryption in wireless sensor networks. In: Information and Automation, 2008. ICIA
2008. International Conference on. pp. 573–577 (2008)

18. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM) (2002),
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

19. Zhang, K., Ding, L., Guan, J.: Cryptanalysis of Hummingbird-2. Cryptology ePrint
Archive, Report 2012/207 (2012), http://eprint.iacr.org/

A Algorithms

Algorithm 1 presents CCM, where the function format computes a header
block B0 (which encodes the tag length, message length and nonce), the blocks
A1, . . . , Aa (which encode the length of the associated data along with the data
itself) and the blocks M1, . . . ,Mm which represent the original message. The
function init ctr returns the initial counter based on the nonce. The function
inc increments the counter.

Algorithm 1 CCM encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1: B0, A1, . . . , Aa,M1, . . . ,Mm ← format(N,A,M)
2: Y ← EK(B0)
3: for i← 1 to a do
4: Y ← EK(Ai ⊕ Y)
5: end for
6: J ← init ctr(N)
7: S0 ← EK(J)
8: J ← inc(J)
9: for i← 1 to m do

10: U ← EK(J)
11: J ← inc(J) {delay slot}
12: S ←Mi ⊕ Y {delay slot}
13: Y ← EK(S)
14: Ci ←Mi ⊕ U {delay slot}
15: end for
16: T ← Y [0..t− 1]⊕ S0[0..t− 1]

Algorithm 2 describes GCM, where the function init ctr initializes the
counter and the function inc ctr increments the counter. The operation A · B
denotes the multiplication of A and B in F2128 . The mode benefits from pre-
computed lookup tables since the second operand is fixed for all multiplications

http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
http://eprint.iacr.org/

(lines 6, 15 and 18 from Algorithm 1). The LD multiplication with two tables,
used in the field multiplication, is described in Algorithm 3.

Algorithm 2 GCM encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1: A1, . . . , Aa ← A
2: M1, . . . ,Mm ←M
3: H ← EK(0128)
4: Y ← 0128

5: for i← 1 to a do
6: Y ← (Ai ⊕ Y) ·H
7: end for
8: J ← init ctr(N)
9: S0 ← EK(J)

10: J ← inc(J)
11: for i← 1 to m do
12: U ← EK(J)
13: J ← inc(J) {delay slot}
14: Ci ←Mi ⊕ U
15: Y ← (Ci ⊕ Y) ·H
16: end for
17: L← [len(A)]64 || [len(M)]64
18: S ← (L⊕ Y) ·H
19: T ← (S ⊕ S0)[0..t− 1]

OCB3 is described in Algorithm 4, where the function init delta derives
a value from the nonce and it may require a block cipher call, as explained
later. The function ntz(i) returns the number of trailing zeros in the binary
representation of i (e.g. ntz(1) = 0, ntz(2) = 1). The function getL(L0, x)
computes the field element L0 · zx and can benefit from a precomputed lookup
table. Notice that the multiplication by z is simply a left shift of the operand by
one bit, discarding the last bit and xoring the last byte of the result with 135
(which is the representation of z7 + z2 + z1 + 1) if the discarded bit was 1. The
function hash authenticates the additional data and is omitted for brevity.

Algorithm 3 López-Dahab multiplication in F2128 for 16-bit words and 4-bit
window, using 2 lookup tables.

Input: a(z) = a[0..7], b(z) = b[0..7]
Output: c(z) = c[0..15]
1: Compute T0(u) = u(z)b(z) for all polynomials u(z) of degree lower than 4.
2: Compute T1(u) = u(z)b(z)z4 for all polynomials u(z) of degree lower than 4.
3: c[0..15]← 0
4: for k ← 1 down to 0 do
5: for i← 0 to 7 do
6: u0 ← (a[i]� (8k)) mod 24

7: u1 ← (a[i]� (8k + 4)) mod 24

8: for j ← 0 to 8 do
9: c[i+ j]← c[i+ j]⊕ T0(u0)[j]⊕ T1(u1)[j]

10: end for
11: end for
12: if k > 0 then
13: c(z)← c(z)z8

14: end if
15: end for
16: return c

Algorithm 4 OCB3 mode encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits
1: A1, . . . , Aa ← A
2: M1, . . . ,Mm ←M
3: L∗ ← EK(0128)
4: L$ ← L∗ · z
5: L0 ← L$ · z
6: Y ← 0128

7: ∆← init delta(N,K)
8: for i← 1 to m do
9: ∆← ∆⊕ getL(L0, ntz(i))

10: U ← EK(Mi ⊕∆)
11: Y ← Y ⊕Mi {delay slot}
12: Ci ← U ⊕∆
13: end for
14: ∆← ∆⊕ L$

15: F ← EK(Y ⊕∆)
16: G← hash(K,A)
17: T ← (F ⊕G)[0..t− 1]

	High Speed Implementation of Authenticated Encryption for the MSP430X Microcontroller

