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Abstract—Security is an important concern in any modern
network. This also applies to Wireless Sensor Networks (WSNs),
especially those used in applications that monitor sensitive
information (e.g., health care applications). However, the highly
constrained nature of sensors impose a difficult challenge: their
reduced availability of memory, processing power and energy
hinders the deployment of many modern cryptographic algo-
rithms considered secure. For this reason, the choice of the most
memory-, processing- and energy-efficient security solutions is
of vital importance in WSNs. To date, several authors have
developed extensive analyses comparing different encryption
algorithms and key management schemes, while very little
attention has been given to message authentication mechanisms.
In this paper, we address this issues by identifying Authenticated
Encryption with Associated Data (AEAD) schemes suitable for
WSNs and by evaluating their features and performance on
TelosB sensor nodes. As a result of this analysis, we identify
the recommended choices depending on the characteristics of
the target network.

Index Terms—benchmark, Authenticated Encryption with As-
sociated Data (AEAD), wireless sensor networks

I. INTRODUCTION

Wireless Sensor Network (WSNs) can be seen as a especial

type of ad-hoc network composed by a large number of tiny,

cheap and highly resource constrained sensor nodes, known as

motes [3]. The sensors are distributed in the area of interest,

and can then gather and process data from the environment

(e.g., mechanical, thermal, biological, chemical, and optical

readings), enabling applications such as environment and habi-

tat monitoring, support for logistics, health care, emergency

response, as well as military operations [4].

Motes are typically battery-powered, which has motivated

considerable research efforts on the development of energy-

aware protocols, such as data link layer protocols (for a survey,

see [41]). In general, one of the main goals driving the design

of these schemes is to optimize network communications in

order to save energy, and thus extend the network’s lifetime.

On the other hand, security is often (and sadly) considered

at the very last step in the design of WSNs. Actually, most

WSN deployments do not even consider security among their

requirements because the execution and energy overheads it

adds to the system is seen as an undesirable “extra cost”

in such constrained environments. However, in WSN-based

applications that monitor sensitive information, it is essential

to prevent eavesdropping, which is typically obtained by

TABLE I
HARDWARE SPECIFICATION OF SOME MOTES.

Processor Code Memory RAM Bandwidth
MICAz [11] 7.3 MHz 128 KiB 4 KiB 250 Kbps
Mica2 [10] 7.3 MHz 128 KiB 4 KiB 38.4 Kbps
FireFly [27] 7.3 MHz 128 KiB 8 KiB 250 Kbps
TelosB [12] 8 MHz 48 KiB 10 KiB 250 Kbps

means of encryption algorithms (e.g., symmetric ciphers).

Even when the information acquired is not confidential, it

is still necessary to ensure data integrity and authenticity

by means of message authentication mechanisms, since the

acceptance of invalid data (generated either by natural causes

or with malicious purposes) could lead to mistaken actions

and severe consequences. Finally, given that such algorithms

depend on the existence of secret keys for their functioning,

applications need also to handle these keys’ distribution.

To date, many security-oriented architectures have been

proposed for WSNs, such as TinySec [19], Sensec [23] and

MiniSec [26]. In spite of these advances, a main challenge in

the security field is that the low resource availability inherent

to WSNs still imposes several limitations on the type of

cryptographic algorithms that can be effectively deployed in

such environments. As shown in Table I, motes usually have

48-128 KiB of code memory, 0.5-10 KiB of data memory

(RAM) and are equipped with 8- or 16-bit processors operating

at 4-16 MHz; their bandwidth is also small, ranging from 10

to 250 Kbps. Moreover, messages exchanged between nodes

are frequently small, a typical packet being between 30 and

60 bytes in length [9]. Finally, a mote constantly operating in

active mode is expected to run out of batteries in about 72

hours [43].

It is a well-known fact that transmission in WSNs consumes

more energy than computation – 1 bit transmitted may require

the power equivalent to executing 800-1000 instructions [19].

Nonetheless, once the communication is already fully opti-

mized, identifying and optimizing resource consuming tasks

becomes the next natural step, and cryptographic algorithms

usually play a crucial role in this context due to their expected

complexity. Indeed, this is the motivation behind several

extensive analyses available in the literature. Most of these

studies have been focused on the efficiency of symmetric

ciphers [8], [16], [21], [24], hash functions [8], [40] and

asymmetric algorithms [14], [15] on constrained platforms.

However, and despite the fact that most security architec-
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tures rely on message authentication algorithms, only recently

some attention has been given to this subject: in [6], Bauer et
al. evaluate the suitability of some schemes for Authenticated-

Encryption with Associated Data (AEAD), which provide

authentication of confidential and non-confidential data alto-

gether. Using Atmel’s AVR Studio to simulate MICAz [11]

sensors, their conclusion is that CCFB+H [25] is the best

choice for the three different packet formats considered: 1-, 17-

and 29- byte messages having an 8-byte header and a 4-byte

authentication tag. On the other hand, it remains unclear how

the results from [6] generalize to a wider range of scenarios.

Aiming to close this gap, in this paper we present a more

comprehensive study on prominent AEAD schemes for WSNs,

namely CCFB+H, EAX [7], GCM [30], LETTERSOUP [37]

and OCB [20]. We develop both a theoretical analysis –

comparing the design characteristics of each algorithm – and

an experimental evaluation in real motes – measuring a broad

range of metrics (energy consumption, execution time, code

size and RAM occupation) for different message, header and

tag lengths. Our results show that, even though CCFB+H is

indeed an interesting solution in some situations, it would

actually provide a lower performance than its counterparts in

many significant scenarios. In this manner, this study should

help in the choice of the most suitable AEAD algorithm

depending on the target application.

The remainder of this document is organized as follows.

Section II discusses the usage of AEAD algorithms in the

context of WSNs, further motivating our research. Section III

describes and analyzes the features of the AEAD schemes

covered in this document. Section IV details the benchmark

methodology adopted, while section V presents the results ob-

tained. Section VI provides some recommendations depending

on the characteristics of the target application and platform.

We present our final conclusions in section VII.

II. AUTHENTICATED-ENCRYPTION AND WSNS

Several applications require the deployment of confidential-

ity and message authentication as security services. Indeed,

these are exactly the services offered by most WSN-oriented

security architectures, such as TinySec [19], SenSec [23],

and Minisec [26]. One important reason for this fact is that

confidentiality alone cannot assure a secure communication:

without access to the secret key K, attackers are unable to

access the content of an encrypted message C = EK(M);
however, they still can flip some bits of C, turning it into

C ′, in such a manner that its receiver will believe that M ′ =
E−1

K (C ′), and not M , was the message originally sent. Indeed,

verifying data authenticity in the whole data path can help

saving energy in WSNs, since this allows invalid data to be

discarded swiftly, avoiding unnecessary communications [42].

On the other hand, the cryptographic mechanism used for this

task needs to be efficient, or its repeated execution on the

different nodes would itself become a source of energy waste,

facilitating Denial-of-Service attacks [18]. Hence, adopting

efficient solutions is essential even in very simple networks

in which the nodes basically forward data to a base station.

Authenticated-Encryption (AE) schemes provide these security

services in a seamless manner, combining the operations of

a cipher and of a message authentication algorithm under

a single key. They can be classified according to how the

encryption and authentication operations are bound together.

When the solution makes two passes through the data (one

aimed at providing privacy and the other, authenticating it), it

is called a Two-Pass scheme; when single pass is made, we

have a One-Pass scheme. One-Pass schemes are potentially

faster than Two-Pass solutions, but the existence of patents

covering the usage of the formers hinders their broad adoption.

Moreover, many applications require a cryptographic so-

lution that allows the authentication of non-encrypted data.

This is the case when one desires to authenticate not only the

packet’s confidential payload but also some plaintext associ-

ated to it (e.g., the TCP/IP information, which shall remain

unencrypted for packet routing). An AE solution that supports

the authentication of messages consisting of both plaintext and

ciphertext in this manner is called an Authenticated Encryption
with Associated Data (AEAD) scheme, where the “associated

data” (also called a header) refers to the portion of the message

that is transmitted as plaintext. Most modern AE schemes –

including the solutions hereby considered – are also AEAD

schemes, and rely on some Message Authentication Code

(MAC) when authenticating the message’s header.

AEAD schemes take as arguments an Initialization Vector

(IV), together with the message M and header H to be authen-

ticated. Internally, M is encrypted with secret key K, using

an underlying cipher under some operation mode, yielding

ciphertext C; either M or C is then authenticated together

with H , resulting in the authentication tag T (which can be

truncated to a suitable length). The output of the algorithm is

C ‖T , which can be decrypted and verified using the same key

K applied during the encryption process. The authentication

of the ciphertext instead of the plaintext is usually preferred,

since it allows the receiver to check the authentication tag

without having to decrypt the whole message, thus discarding

invalid messages earlier. Additionally, like in many block

cipher operation modes, the IVs of AEAD schemes usually

must be non-repeating (i.e., nonces) in order to prevent attacks.

An AEAD scheme is said to provide minimal expansion when

we have |M | = |C|; this is a common requirement of such

solutions, especially when they are used in scenarios such as

WSNs, where the cost of transmitting extra bits is very high.

III. LITERATURE SURVEY

In the following, we describe the four two-pass schemes

(namely, EAX, GCM, LETTERSOUP and CCFB+H) and the

one-pass scheme (OCB) that are subject of our analysis. Since

all surveyed solutions display provable security assuming a

secure underlying block cipher, the description is focused

on performance, implementation and flexibility issues, while

some practical security considerations are left for section III-G.
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A. EAX

EAX [7] is a strictly sequential two-pass AEAD scheme.

Data encryption with this solution is performed using the

Counter Mode of operation (CTR) [28], which provides min-

imal expansion in a straightforward manner. Authentication

is provided by CMACt, a variant of CMAC [29] where a

constant block t is prepended to its input. Different values of

t are used for handling the IV, the ciphertext C and the header

H , and the results from each process are XORed together for

yielding the authentication tag T . The initial counter value of

the CTR mode is computed from the IV, also using the CMACt

algorithm; this allows EAX to process IVs of arbitrary length,

but also implicates the need of non-repeating IVs.

Upon reception of a packet authenticated with EAX, the

receiver can verify its authenticity prior to its decryption,

since T can be computed directly from C. Furthermore, the

algorithm does not require the implementation of the cipher’s

decryption algorithm, since only the encryption process is used

by CMACt and by the CTR mode. Finally, this scheme is

flexible enough to allow the header and the message to be

processed in any desired order.

The motivation for including EAX in this survey is that

this AEAD scheme is a NIST recommendation that displays

a fairly simple design, introducing little memory overhead

when a regular CMAC implementation is available. Indeed,

this simplicity greatly facilitates implementation, and allows

interesting optimizations depending on the amount of memory

available for pre-computing some key-dependent constants.

B. OCB

The Offset CodeBook (OCB) [20] algorithm, sometimes

called OCB 2.0, is a fully parallelizable one-pass AEAD

scheme based on a tweaked version of the ECB [28] en-

cryption mode. During OCB’s operation, each block of the

plaintext is XORed with an IV- and key-dependent offset,

encrypted, and then XORed again with that same offset. Only

the last block is treated differently: its length is XORed with

the corresponding offset, encrypted, and then XORed with this

last portion of plaintext, preventing the undesirable expansion

of the encrypted message. The (potentially padded) plaintext

blocks are XORed together and with a final offset, and the

result is then encrypted. The output of this operation is the

authentication tag T if there is no header to be authenticated;

otherwise, the header is processed using PMAC1 [34] and T is

computed by XORing the outputs from both processes. Hence,

message and header blocks can be computed in any desired

order. However, the tag verification process cannot take place

prior to decryption, since the tag computation depends on the

plaintext data. Moreover, despite the great similarity between

the encryption and decryption operations, the latter requires

the implementation of E−1
K . This requirement adds some

hindrance when implementing OCB, but this task remains

relatively simple thanks to a quite clear specification.

The additional overhead introduced by the authentication

process in OCB – when compared to the encryption using

some non-authenticated mode of operation – consists essen-

tially in the computation of offsets and in the final encryption

used for computing the tag; for large enough messages, this

overhead is likely to remain very low, accounting for less than

0.1 encryption per block. Thus, even though the adoption of

PMAC1 for handling the header leads to an overhead of one

full encryption per block of the unencrypted data, OCB is

expected to deliver a high performance and a low memory

overhead, which motivated its inclusion among the schemes

surveyed in this paper. Nonetheless, it is important to note that

the algorithm is covered by patents in USA, while its royalty-

free use is allowed in projects conforming to the GNU General

Public License (GPL) [20].

C. GCM

The Galois/Counter Mode (GCM) [30] is a paralleliz-

able two-pass AEAD scheme. It follows the Carter-Wegman

design [31], internally adopting a universal hash-function

(GHASH [30]) for authentication and the Counter Mode

(CTR) for data encryption.

The specification of GCM has many minutiae, but its

operation is essentially as follows: the message M is encrypted

using the CTR mode initialized with an IV-dependent value;

the resulting ciphertext C and the header H are concatenated

with their lengths and then processed using GHASH initialized

with a key-dependent hash sub-key; finally, the resulting hash

value is XORed with the encryption of the initial counter

value, yielding tag T with the same length as the cipher’s

block size. Such as in EAX, the tag can be verified prior

to decryption; however (and unlike EAX), unless finite field

exponentiation algorithms are available, the header must be

completely processed before the authentication of the cipher-

text part starts.

Due to the adoption of the CTR mode, GCM does not

require the implementation of the cipher’s decryption algo-

rithm and provides minimal ciphertext expansion. Addition-

ally, GCM accepts IVs of any length, since they can be

processed using GHASH; there is, however, a significant

shortcut for IVs of (n−32) bits (considering a n-bit underlying

block cipher): in this case, the IVs are simply padded. In any

case, the IVs must be non-repeating for any given key.

The main advantage of the Carter-Wegman design is that it

potentially reduces the amount of processing required for its

execution. This happens when costly operations, such as finite

field multiplications, are implemented with key-dependent

lookup tables (LUTs); in these cases, the overhead per message

block can be as low as 10%–25% of a cipher call. However,

such pre-computed tables are usually large and change as

frequently as the key does, i.e., they cannot be statically

stored in scenarios where re-keying mechanisms are deployed.

Therefore, although such optimizations allow GCM to achieve

a high throughput in memory-abundant platforms, they are

difficult to be used in memory-constrained platforms.

We decided to include GCM in our analysis because it is

part of a NIST recommendation [30] and, thus, it is useful

to evaluate its suitability on platforms where space for large
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LUTs is hardly available. We note, however, that efficiently

implementing GCM is not an easy task due to the number of

details and potential pitfalls involved in its specification, such

as the mixing of big-endian and little-endian operations and

the fact that most of the proposed optimizations are mainly

focused on powerful platforms.

D. LetterSoup

LETTERSOUP [37] is a parallelizable two-pass AEAD

scheme that targets constrained platforms. It is based on the

Linear Feedback Shift Register Counter (LFSRC) mode of

operation for encryption and on MARVIN [37] for message

authentication. One of the main interests of using MARVIN is

that it follows the ALRED construction [13], meaning that each

block of the message blocks are processed using a few unkeyed

rounds of an underlying block cipher (the so called Square

Complete Transform – SCT) instead of a full encryption

as in CMAC or PMAC1. This can be 2 to 4 times slower

than a Carter-Wegman solution using LUTs, but it does not

require extra storage since it reuses part of the underlying

block cipher’s implementation. At the same time, the LFSRC

mode provides minimal data expansion, does not require the

implementation of E−1
K for decryption, and, in the case of

LETTERSOUP, benefits from MARVIN’s choice of offsets (that

are also generated using a LFSRC), thus saving processing,

memory and bandwidth.

The algorithm’s operation uses IV- and key-dependent off-

sets that are encrypted and then XORed with the message

blocks, yielding the ciphertext; the blocks of the ciphertext are

then authenticated using MARVIN and the same offsets used

during the encryption process, while the header is processed

using MARVIN with offsets that do not depend on the IV value;

the results from both authentication processes are combined

together before a final encryption, which finally generates the

tag T . The message and the header can be processed in any

desired order, and the tag can be verified before the decryption

process takes place. The IVs used must be non-repeating.

Due to the adoption of the ALRED design, authenticating

with LETTERSOUP requires about 0.25–0.4 encryptions per

(message or header) block processed, which makes this al-

gorithm an interesting subject for our evaluation. However,

the main difficulty when implementing LETTERSOUP is also

related to the structure of SCTs: since the underlying cipher

is not treated as a black-box, the cipher algorithm itself must

be adapted in order to obtain an SCT. Except for this issue,

the design of LETTERSOUP is quite simple, leading to a

reasonably low implementation effort.

E. CCFB+H

The CCFB+H scheme [25] is a strictly sequential two-pass

AEAD scheme whose structure strongly resembles that of one-

pass solutions. It provides minimal ciphertext expansion and

does not need E−1
K to be implemented.

The algorithm adopts a somewhat unusual combination of

the Counter (CTR) and Cipher Feedback (CFB) modes of

operation [28] for providing both encryption and authentica-

tion: for an n-bit underlying block cipher and a τ -bit tag,

the input of the block cipher call is the concatenation of the

previous (n − τ)-bit ciphertext block and a τ -bit counter;

likewise, (n− τ) bits of the cipher’s output are XORed with

the plaintext for encryption, while the remaining τ bits are

used for computing the authentication tag. The initialization

of CFB is performed using an (n − τ)-bit non-repeating IV,

which is beforehand XORed with the tag of the same size

resulting from the CMAC computation of the header, if it

is present. Hence, the header authentication must be finished

before the private data can be processed. Moreover, the tag

computation process requires the generation of the same

keystream used for decrypting the message and, thus, verifying

the tag prior to or after decryption involves approximately the

same computational effort.

Note that the exact choice of the size of the tag has great

impact on the scheme’s efficiency: the larger the tag, the higher

the number of block cipher invocations per authenticated block

(e.g., for τ = n − 1, the encryption+authentication of every

single bit would require a full cipher invocation). In fact,

this characteristic of CCFB+H also affects its implementation,

since some optimization techniques (e.g., the manual unrolling

of loops) depend on the size of internal buffers, which in

turn depend on the exact tag length adopted; for this reason,

in spite of its clear specification, implementing CCFB+H

involves many trade-offs between flexibility and efficiency.

Nonetheless, as discussed in [6], with the tag length typically

adopted by TinySec (namely, 4 bytes), CCFB+H displays a

better performance than many similar solutions, which is the

main reason why the scheme is included in this study.

F. Security considerations

An attacker trying to create forgeries (i.e., valid message-

tag pairs) using any of the discussed solutions is expected

to succeed after approximately 2τ−1 attempts. Therefore,

the tag length τ is an important security parameter for all

soltuions considered here, and should be chosen according to

the presumed capabilities of the attackers.

Moreover, all AEAD schemes considered in this document

require non-repeatable (albeit not necessarily unpredictable)

IVs for a same key. The effects of IV repetition is especially

disastrous when the encryption is performed using a stream

mode of operation (e.g., CTR, LFSRC, and CFB): in EAX,

GCM and LETTERSOUP, two messages M1 and M2 yield

ciphertexts C1 and C2 in such a manner that C1 ⊕ C2 =
M1 ⊕M2; for CCFB+H, the same relationship exists for the

first block of the message, while subsequent blocks display

the same behavior only if all previous plaintext blocks are

identical; finally, the same behavior is observed for the last

blocks of OCB only if they have the same length, while

the effect of IV repetition for all other blocks (encrypted

under an ECB-like mode) is that identical plaintexts result in

identical ciphertexts. In contrast, IV repetition in a CBC-like

encryption mode allows attackers to gain a minimal amount
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TABLE II
COMPARISON BETWEEN AEAD SCHEMES USING AN n-BIT (b-BYTE) UNDERLYING BLOCK CIPHER AND τ -BIT TAGS. THE MAC COST IS COMPUTED AS

THE NUMBER OF EXTRA ENCRYPTIONS NEEDED FOR THE AUTHENTICATION PROCESS; THUS, IT DEPENDS ON THE |H|/|M | RATIO FOR OCB, ON THE

TYPE OF LUTS USED FOR GCM AND ON {|H|, |M |, τ} FOR CCFB+H.

EAX OCB GCM LETTERSOUP CCFB+H
#Passes Two One Two Two Two
Tag length (bits) 0 to n 0 to n 0 to n 0 to n 0 to n− |IV |
IV size (bits) Any n Any (favored: n− 32) n 0 to (n− τ )
Requires non-repeating IV? Yes Yes Yes Yes Yes
Encryption Mode CTR Tweaked ECB CTR LFSRC CFB+CTR
Header Handling CMAC PMAC1 GHASH MARVIN CMAC
Input order Free Free Partially Free Header First
Tag Verifiable Before Decryption? Yes No Yes Yes No
MAC cost 1 ≈ 0.1 to 1 ≈ 0.1–0.25 to > 1 ≈ 0.25–0.4 ≈ 0.1 to > 1
Storage (blocks) O(1) O(1) O(1) to O(28b) O(1) O(1)
Parallelizable? No Yes Yes Yes No
Only EK required? Yes No Yes Yes Yes
Minimal Data Expansion? Yes Yes Yes Yes Yes
Patents? No in USA No No No

of information about the plaintexts, namely the length of their

longest shared prefix, in blocks.

IV repetition can be avoided by using sufficiently large IVs,

e.g., by taking their values from monotonically increasing

counters having the same size as the AEAD’s block cipher.

However, this strategy must be adopted with care, since adding

large IVs to each packet transmitted will inevitably increase

energy consumption and thus reduce the sensors lifespan.

There are, though, some techniques for addressing this issue.

For example, instead of sending the whole IVs in every packet,

both sender and receiver could keep a synchronized counter,

incremented at the reception of a packet, and from which the

IV value is taken. This strategy is adopted by SNEP (Secure

Network Encryption Protocol) [33], in which the counter value

corresponds to the whole IV and, thus, no IV is sent; it is also

used by MiniSec, in which the packets include a few bits of

the IV, thus facilitating resynchronization when packets are

lost. It is also possible to reuse some of the packet header

fields as part of the IVs, as done in TinySec and SenSec: both

solutions reuse 4 bytes of the header for composing the IV.

Finally, before the IV repetition occurs, re-keying mechanisms

such as those proposed in [44] should be employed in order

to update the nodes’ keys.

G. Summary and Discussion

Table II summarizes the characteristics of the surveyed

AEAD algorithms. We note that parallelizability is usually

not considered an important feature in WSNs, although it

may be of interest in scenarios having powerful nodes in the

network, such as a multi-core base station processing many

large packets resulting from data aggregation [32]).

IV. BENCHMARK METHODOLOGY

The testbed used in our benchmark is composed by Cross-

bow TelosB motes (see Table I), running TinyOS 2.0.2.

TinyOS [22] is a lightweight, event-driven operating system

for sensor nodes that was originally developed as a research

project at the University of California Berkeley. Nowadays

it is maintained by an open-source community, and is many

times considered the de facto standard for WSNs. TinyOS is

based on the nesC programming language [17], a component-

oriented extension of C, where the components in WSNs usu-

ally are abstractions of the mote’s hardware modules (radio in-

terface, sensors, LEDs, etc.). Its memory requirements depend

on the libraries used by the specific application developed, but

the base OS occupies about 400 bytes of code memory.

The compiler used is the GNU avr-gcc [5] with the -Os
optimization option, which means “optimize for size”. We

note that this option provided better results in terms of both

compactness and performance than its counterparts did.

A. Implementations

We implemented all the algorithms from scratch using the

C language, and created a nesC wrapper module for calling

the algorithms from TinyOS. We tested some variations on

the coding strategy trying to identify memory- and speed-

optimized constructions for constrained platforms, and also

aiming to provide a fair comparison through similar optimiza-

tions, interfaces and coding style. Since faster algorithms usu-

ally lead to lower energy consumption, we focused on a more

speed-oriented approach, including inline functions and pre-

computing small constants whenever their impact on memory

was not too significant. In this sense, key-dependent constants

used in the algorithms setup phase (e.g., the constants used

by the CMACt instances in EAX) are computed only once

and then stored in RAM. The source code is available at

www.larc.usp.br/∼mjunior.

As underlying block cipher, we adopted CURUPIRA-2 [38]

with 96-bit keys and on-the-fly key expansion [36]. This is

a special-purpose 96-bit block cipher from the same family

as AES, but tailored for constrained platforms. This choice

has been motivated by the cipher’s good performance and

fairly reduced memory footprint in constrained platforms,

even when both encryption and decryption processes need to

be implemented [38, Section 5.2], as in the case of OCB.

Nonetheless, we emphasize that the adoption of a different

block cipher (e.g., AES) would not affect our comparative

analysis, since this modification would impact the performance

of every algorithm in a similar manner. As a final remark, we
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note that the static arrays used by the cipher (e.g., its S-Box)

are stored in ROM in order to save RAM memory.

1) On the implementation of GCM: Even though GCM

can be optimized by means of key-dependent LUTs, these are

not adopted in our implementation for the following reasons.

The slightest level of optimization proposed in [30] would

double GCM’s speed at the cost of 256 bytes of RAM1.

However, GCM using such LUTs would use approximately

twice more RAM than any other algorithm considered in this

paper and would still be slower than them (see Tables III

and IV), especially considering that a similar amount of

memory could easily be used to accelerate the other algorithms

(e.g., by pre-computing the underlying cipher’s round keys,

their performance gain would be ≈ 30%). With 4096 bytes

of RAM, GCM could run four times faster than its LUT-free

version [30]. Nevertheless, this more aggressive optimization

would consume almost 50% of all memory available on TelosB

(and 100% of the RAM in other popular platforms such as

MICAz), and would still make GCM’s speed only as fast as

the other algorithms analyzed.

2) On the implementation of CCFB+H: Due to the imple-

mentation concerns discussed in section III-E, we developed

different versions of CCFB+H for each tag length considered

in this study. In order to differentiate these versions, we use

CCFB+Hτ to denote CCFB+H with τ -byte tags.

B. Metrics and Methodology

The memory required by each individual algorithm in

TinyOS was obtained from the compiler itself; for Contiki we

used the MSP430-size and MSP430-ram-usage tools [39] for

measuring, respectively, ROM and RAM usage. However, the

measurement of their power consumption and execution time

required a more careful approach, described in the following.

In order to obtain an accurate measurement of the en-

ergy consumption, we performed direct measurements on

the motes, after turning off their radio. Instead of batteries,

we use an Agilent E3631A power supply [1] configured to

provide 3.0 V for the TelosB motes. An Agilent 34401A

digital multimeter [2] is then employed to measure the system

current flow as the different algorithms are executed, with

reading rate of 60 Hz. The data measured in this manner

is sent to a computer through a GPIB cable, and displayed

in the LabView2 interface, as illustrated in Figure 1. After

we eliminated the influence of the current drained when the

system is not executing the task we are interested in, Iidle, the

energy consumption E was obtained as the time integration of

the total current drained I multiplied by the (constant) voltage

V used to power up the mote, i.e., E = V × ∫
t
(I − Iidle)dt.

When measuring the execution time, one would typically

rely on the system’s clock function, called just before a given

operation starts and right after it finishes. However, during

our experiments, we noticed that the intervals given in this

manner by TinyOS were much lower than those observed in

1Key-dependent LUTs can be implemented in ROM instead of RAM only
if the keys never change, which usually leads to lower security.

2http://www.ni.com/labview/

Fig. 1. Measurements setup.

TABLE III
MEMORY OCCUPATION OF AEAD ALGORITHMS ON TELOSB (IN BYTES).

Algorithm Code RAM Algorithm Code RAM
CCFB+H4 3856 204 LETTERSOUP 3682 218
CCFB+H8 4020 208 OCB 5120 216
EAX 4528 252 CURUPIRA-2 1784 50
GCM 3862 220

the multimeter; for this reason, we consider only the measure-

ments obtained with the latter. This unexpected behavior of

TinyOS is probably caused by its process scheduling, which

does not necessarily lead to a clock reading right after a call

to the clock function. On the other hand, we did not observe

such discrepancy when measuring the algorithm’s execution

time in Contiki: the time results obtained with Energest are

compatible with those observed with the multimeter. We

note, though, that Energest’s accuracy in terms of time did

not apply to the energy: a comparison between the values

measured with this tool and the multimeter shows differences

that ranges from -30% to 130%; this fact, together with the

unavailability of energy profiling tools on TinyOS, motivated

the approach described above for measuring the algorithms’

energy consumption in both operating systems.

V. EXPERIMENTAL RESULTS

This section presents and discusses our benchmark results.

A. Memory Occupation

We start our evaluation with Table III, which displays the

code size and the amount of RAM used by each algorithm.

This table shows that, using a similar amount of RAM, LET-

TERSOUP is the most compact algorithm, followed closely by

GCM and CCFB+H4. OCB, on the other hand, has the largest

memory footprint mainly due to the need of implementing

cipher’s decryption routine, which does not happen with the

other solutions. Finally, EAX displays the highest RAM usage

due to the larger number of pre-computed constants used by

the algorithm.

B. Performance and Energy Consumption

Table IV shows the execution time and energy consumed by

the AEAD algorithms, considering both their initialization and

the encrypted-authentication of messages having typical sizes,

(i.e., up to 60 bytes of confidential data [9]). We note that the

costs of authenticating messages whose length is nb + 1 to

nb + b bytes are very similar for any n � 0, where b stands

for the cipher’s block size; hence the lengths shown in the

Table IV are enough for the comparison.

The analysis of this table shows the cost of initializing each

algorithm is quite similar, with a small advantage for CCFB+H
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TABLE IV
PERFORMANCE OF AEAD ALGORITHMS ON TELOSB FOR DIFFERENT MESSAGE LENGTHS.

Execution Time (ms) Energy Consumed (μJ)
[Standard Deviation � 0.1] [Standard Deviation � 0.02]

Setup 12 24 36 48 60 Setup 12 24 36 48 60
|H

ea
d
er
|=

0 CCFB+H4 1.4 3.4 4.5 6.7 7.8 9.8 6.8 18.8 25.1 37.5 43.9 56.4
CCFB+H8 1.5 4.6 7.7 11.0 13.9 17.0 6.9 24.8 43.2 61.8 80.1 98.6
EAX 2.4 4.5 6.7 8.8 10.9 13.0 13.0 25.4 37.9 50.3 62.4 74.4
GCM 1.2 15.0 21.9 29.2 32.2 38.5 6.4 81.9 122.5 163.2 179.7 215.7
LETTERSOUP 1.7 5.1 7.0 8.8 10.7 12.6 8.7 29.1 40.3 51.7 62.9 74.2
OCB 2.0 5.0 6.6 8.3 9.8 11.3 10.1 28.0 37.6 47.4 57.2 66.8

|H
ea

d
er
|=

1
2 CCFB+H4 1.4 5.5 6.6 8.8 9.8 11.9 6.8 31.1 37.5 50.1 56.4 68.7

CCFB+H8 1.5 6.6 9.7 13.1 16.0 19.3 6.9 37.1 55.6 74.1 92.6 110.9
EAX 2.4 5.7 7.8 9.9 12.1 14.2 13.0 32.1 44.7 57.2 69.3 81.5
GCM 1.2 20.9 28.1 35.6 37.5 43.8 6.4 116.1 156.7 197.5 209.4 245.5
LETTERSOUP 1.7 5.9 7.8 9.7 11.6 13.5 8.7 34.2 45.5 56.9 68.0 79.2
OCB 2.0 6.6 8.3 9.8 11.3 12.9 10.1 37.6 47.2 56.8 66.6 76.3

|H
ea

d
er
|=

2
4 CCFB+H4 1.4 6.6 7.7 9.8 10.9 13.0 6.8 37.5 43.9 56.5 62.7 75.3

CCFB+H8 1.5 7.6 10.8 14.2 17.1 20.2 6.9 43.7 61.8 80.8 98.9 117.3
EAX 2.4 6.8 8.9 11.0 13.2 15.3 13.0 38.5 51.0 63.5 75.6 87.8
GCM 1.2 27.0 33.8 41.4 42.8 49.1 6.4 150.8 189.3 232.1 239.3 275.6
LETTERSOUP 1.7 6.4 8.3 10.2 12.0 13.9 8.7 37.0 48.3 59.7 70.7 82.0
OCB 2.0 8.1 9.7 11.3 12.8 14.4 10.1 46.6 56.3 66.1 75.8 85.5

and GCM. However, given that the algorithms initialization

need to be performed only once for each key, this small

difference between them should not be too significant in

scenarios where the authentication keys are not changed often,

such as in WSNs where each sensor communicates with a

same neighbor most of times.

Turning our attention to the cost of processing messages, it

is easy to see that CCFB+H is indeed a very efficient solution

for 4-byte tags, as concluded in [6]. However, the same does

not apply in scenarios with 8-byte tags, for which CCFB+H

becomes less appealing than EAX, OCB and LETTERSOUP.

The relative advantage of the latter three solutions depends

on the size of the associated data |H| to be authenticated.

For |H| = 0 EAX is more efficient when |M | = 1 block,

while OCB is better for a larger |M |; when |H| � 1 block,

EAX e OCB are the most efficient solutions for 0 � |M | � 2
and |M | > 2 (in blocks), respectively, while LETTERSOUP

presents itself as an intermediary between these two AEADs;

finally, for |H| � 2 blocks, LETTERSOUP displays the best

performance. In contrast, GCM is up to 4 times more resource-

demanding than the other AEADs analyzed.

VI. DISCUSSION AND RECOMMENDATIONS

According to our results, CCFB+H is the most attractive

AEAD scheme for scenarios having short tags, usually smaller

than half a block: the algorithm is uncovered by patents, takes

good advantage of the underlying block cipher (which leads to

a small memory footprint), and adds a reduced impact in terms

of energy consumption. EAX, OCB and LETTERSOUP, on

the other hand, are recommended in scenarios having stricter

security requirements, i.e., demanding larger tags. The choice

between them depends on the average size of the confidential

and associated data to be authenticated: LETTERSOUP is very

compact, and is more adequate for processing packets with

reasonably large headers (bigger than two blocks), while sce-

narios with smaller headers would benefit from the adoption of

the less compact EAX and OCB schemes for messages smaller

TABLE V
RECOMMENDATION OF AEAD ALGORITHMS DEPENDING ON THE

AVERAGE DATA SIZE (IN BLOCKS) AND SECURITY LEVEL REQUIRED.

→ data size |H| � 2 |H| > 2
↓ security |M | < 3 |M | � 3 any |M |
τ < 1/2 CCFB+H CCFB+H CCFB+H
τ � 1/2 EAX OCB LETTERSOUP

and larger than three blocks, respectively. We emphasize,

however, that due to the non-negligible overhead associated to

the switching between transmit, receive and sleep radio states,

the transmission of tiny messages (as opposed to consolidated,

larger messages) in WSNs is usually discouraged [35]. For

this reason, solutions adapted to larger messages are likely

the better choice in a larger number of applications.

Finally, some deployment scenarios may have less com-

mon requirements that also influence in the decision for the

most suitable algorithm. One case is when the algorithm’s

underlying block cipher is already implemented in an in-

flexible manner and must be treated as a black-box, which

is usually the case when the sensor node is equipped with

a hardware encryption module; in this scenario, computing

SCTs in software is likely less efficient than performing full

encryptions in hardware, at least to typical message lengths

(i.e., shorter than 60 bytes [9]), leading to a lower efficiency of

LETTERSOUP when compared to EAX or OCB even for large

bulks of associated data. Another aspect refers to the existence

of patents: applications that cannot afford the use of patented

algorithms may require the adoption of EAX or LETTERSOUP

in cases where OCB would deliver a better performance.

Table V summarizes this discussion: assuming that enough

memory is available, it links the different AEAD schemes with

their recommended application scenarios, which depend on the

security level desired and on the average size of the data to

be authenticated.

VII. CONCLUSIONS

The deployment of message authentication mechanisms in

Wireless Sensor Networks (WSNs) is essential to prevent the
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insertion of fake data into the system. However, and in spite

of this importance, there are to date few studies covering the

suitability of existing algorithms for such applications. In this

paper, aiming to cover this gap, we provide theoretical and

practical comparisons between some relevant AEAD schemes

in representative scenarios.

As a result of this analysis, we make several recommen-

dations based on the characteristics of the target network and

available hardware, showing that the suitability of CCFB+H,

OCB, EAX and LETTERSOUP depends on the adopted size

of the authentication tags (which relates to system’s required

security level) and also on the average size of the confidential

and associated data in the packets to be authenticated.
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CURUPIRA-2 block cipher for constrained platforms: Specification and
benchmarking,” in Proc. of Int. Workshop on Privacy in Location-Based
Applications (PiLBA’08/ESORICS’08), vol. 397. CEUR-WS, 2008.

[39] S. Underwood, “Mspgcc,” http://mspgcc.sourceforge.net/, 2009.
[40] R. Venugopalan, P. Ganesan, P. Peddabachagari, A. Dean, F. Mueller,

and M. Sichitiu, “Encryption overhead in embedded systems and sensor
network nodes: modeling and analysis,” in Proc. of CASES’03. ACM,
2003, pp. 188–197.

[41] B. Yahya and J. Ben-Othman, “Towards a classification of energy aware
MAC protocols for wireless sensor networks,” Wirel. Commun. Mob.
Comput., vol. 9, no. 12, pp. 1572–1607, 2009.

[42] L. Yao, Z. Yu, T. Zhang, and F. Gao, “Dynamic window based multihop
authentication for WSN,” in Proc. of the 17th ACM conference on
Computer and communications security, 2010, pp. 744–746.

[43] P. Zhang, C. Sadler, S. Lyon, and M. Martonosi, “Hardware design
experiences in ZebraNet,” in SenSys’04. New York, NY, USA: ACM,
2004, pp. 227–238.

[44] W. Zhang, s. Zhu, and G. Cao, “Pre-distribution and local collaboration-
based group re-keying for wireless sensor networks,” Ad Hoc Networks,
vol. 7, no. 6, pp. 1229–1242, 2009.

457



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /SABAEN44
    /SAKURAalp
    /Shruti
    /SimSun
    /STSong
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


