ClibPD

a2 United States Patent
Rogaway

US007046802B2

US 7,046,802 B2
May 16, 2006

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
FACILITATING EFFICIENT
AUTHENTICATED ENCRYPTION

(76) Inventor: Phillip W. Rogaway, 1212 Purdue Dr.,

Davis, CA (US) 95616

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 843 days.

(21) Appl. No.: 09/918,615

(22) TFiled: Jul 30, 2001

(65) Prior Publication Data
US 2002/0071552 A1 Jun. 13, 2002

Related U.S. Application Data

(60) Provisional application No. 60/267,640, filed on Feb.
9, 2001, provisional application No. 60/240,471, filed
on Oct. 12, 2000.

(51) Imt.CL
HO04K 1/04 (2006.01)
(52) US.CL v, 380/37;380/28
(58) Field of Classification Search 380/37,
380/28, 286
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
2001/0033656 Al* 10/2001 Gligor et al.cc.eeeeeee 380/28
2001/0046292 Al* 11/2001 Gligor et al. 380/37
2002/0048364 Al* 4/2002 Gligor et al.ccoeeeeeeee 380/37

OTHER PUBLICATIONS

Black, Halevi, Krawczyk, Krovetz, Rogaway. UMAC: Fast
and Secure Message Authentication. 1999.*

Jutla, Charanjit. Encryption Modes with Almost Free Mes-
sage Integrity. Aug. 2000.*

Menezes, Alfred J. Handbook of Applied Cryptography.
1997. CRC Press. pp. 321-383.*

Press, William H. Numerical Recipes in C: The Art of
Scientific Computing. 1992. Cambridge University Press.*
Jueneman, Matyas, Meyer. Message Authentication with
Manipulation Detection Codes. Computer Sciences Corp
and IBM Corp. 1988.*

Gligor and Donescu. Fast Encryption and Authentication.
XCBC Encryption and XECB Authentication Modes. Oct.
27, 2000.*

* cited by examiner

Primary Examiner—Emmanuel L. Moise

Assistant Examiner—Kevin Schubert

(74) Attorney, Agent, or Firm—Park, Vaughan & Fleming
LLP

(57) ABSTRACT

A block-cipher based encryption scheme providing both
privacy and authenticity that encrypts an arbitrary-length
message into a minimal-length ciphertext. In one embodi-
ment, “OCB”, a message is encrypted using a nonce by
partitioning it into 128-bit message blocks and a possibly
shorter message fragment. A sequence of offsets is computed
from the nonce and block cipher using shifts and conditional
xors. Hach message block is xored with an offset, enci-
phered, and xored with the offset, yielding a ciphertext
block. The length of the message fragment is encoded, xored
with an offset, enciphered to give a pad, truncated, and xored
with the message fragment to give a ciphertext fragment. A
checksum is formed by xoring the message blocks, the
padded ciphertext fragment, and the pad. It is xored with an
offset and enciphered to yield a tag. The ciphertext is the
ciphertext blocks, the ciphertext fragment, and the tag.

4 Claims, 10 Drawing Sheets

| NonceJ | 1] ‘ | ML2] | | Mim-1] [Mrﬂ——
y
LA len Checksum
L bag)| ZI2] Zim-1] Z[-m] Z[m]
PrePad PreFullTag
EK EK EK EK EK EK
R Pad
Use Rand L Fag)| 212} ZIm-1] (+)
to form
Z{11,2(2],...
Con) [em] [amn]

www fastio.com

http://www.fastio.com/

US 7,046,802 B2

Sheet 1 of 10

May 16, 2006

U.S. Patent

be)

Be]|in4 ﬂ

|

A
be jindaid

[wiz lv@u

winsyoeyD

I "OId
[w]o [1-w]o [2lo [L1o
$ A
lelz vz
wioj 0}
Iv@ [1-wiz l@ [clz [Liz 1 pue y asn
ped Y a
= = 3 3 3
A 7y 7 Y r. y Y
pedeid
[w-]z Ivmmu [}-wiz \v@ 21z Iv@ 11z —(+ q svmnv
ug
[win [1-wln 4 (1w SOUON

www fastio.com

ClibPD

http://www.fastio.com/

US 7,046,802 B2

Sheet 2 of 10

May 16, 2006

U.S. Patent

S]9SH0 poje|suel)
Jo @ouanbas ayen

M —>

19sl0
aseq e

SOUON

eoe [elZ ‘[clz
A A

H

i1z

S}osyo paxi}
J0 @duanbes aye

|

A

www fastio.com

ClibPD

http://www.fastio.com/

US 7,046,802 B2

Sheet 3 of 10

May 16, 2006

U.S. Patent

4

(1)1 @ [w]z=[w-]z
(wzu)] Eli-wlz = [w]z

X l_ +
01 @I8lz=1I6lz Nr

e @z =181z
01 @lolz=1[11z
()1 @lelz=1[9lz
o1 @vz=Islz
(o1 @lclz =1ylz
01 @llz=I[lz

)1 @lllz=1[zlz

01 @ d=0[Iz SOUON

|eAlIe-ofessaw Jo awi 3y

€ 'Old

‘()1 (o

(M1 = @

I

‘(-1

L=(()1)naisy 4
o=((uaisiy

L=(Tuaise| 4
o=(uaise| y

2isuo @ (1 >>M)N)=(1L+)7

L >>(0)7 =(L+)1
7= (0)1

LIsuoD @ (1 << 1= (1)1

L <<1=()1
'SjoslO siseg el

il

Buissaooud-aid

www fastio.com

ClibPD

http://www.fastio.com/

US 7,046,802 B2

Sheet 4 of 10

May 16, 2006

U.S. Patent

[W]A =+« [LIIN SOBSSOW 1d90oy
SOA

Be| bej

ON

xauaydio
18ley

a Belind

3

A
Be]|ngaid

[wiz \va

wnsyo8y9

¥ 'Old

A

us|

pedaid

_e-_va@ :-E_N% 2]z ¢@ L1z |va 1

A

[wlo

[L-wio

2]z

[zln

[Llw

A

[L1z Ivmwu

“eiz'l]z
woj o}

7 pue ¥ osn

]

73

3

$

[210

[LIo

80UON

www fastio.com

ClibPD

http://www.fastio.com/

US 7,046,802 B2

Sheet 5 of 10

May 16, 2006

U.S. Patent

Be |

Siiq } 384l

[L+w]z
oso Belind
0 uay}
u=|[w]nl peling
]
3
A
bejn4a.d
[wiz Iv@
wns)}oayo

[w]o

ped
[w]z

[L-wlz

e

pedald

[w]z

win

[}-wiz \v@

g 'Old

[1-w]o

[1L-win

[clz

[clo [L1D
A
[z +

3 "3
A A

[2IN

LI

2lz' L]z
wioj 0}

7 pue Y asn

SOUON

www fastio.com

ClibPD

http://www.fastio.com/

US 7,046,802 B2

Sheet 6 of 10

May 16, 2006

U.S. Patent

be|

[w]o

+ [L+w]z @A\

wnso8y9d

—v_w

[wln

[w]z

(My Joud)

9 "OId

[2]D

§w

[zIn

[L1o

rdV4 @A| [L]z

Fv_m_

0L

lolo [L+w]z'eeT1]Z'[0]Z
Y} A
©
¢ pPoyisw
Fv_m_ o —r 10
| poylew
A
o

Stlo.com

wwvw . fa

ClibPD

http://www.fastio.com/

US 7,046,802 B2

Sheet 7 of 10

May 16, 2006

U.S. Patent

e [w]o
y § A
G [olz t
Mg I3
. i
m»uAIH Lrwlz G
wnsyosy9 fwin

[wiz

(Mv Joud)
L Old
[2lo [L1D
* a
@AI [2lz
Mg g
y Y A
va\ [Zlz (@
[2IN (1l

19 | [swizTiizl0lz
% A
&
Z poylow
b3 o 0
| poylow
7'} A
Y

Stlo.com

wwvw . fa

ClibPD

http://www.fastio.com/

US 7,046,802 B2

(My Joud)
8 'old

[1+wiz*[11Z'lolz
auILLIB)ap 0} SUOIJBUIQUIOD SNOLBA JOX

Sheet 8 of 10

May 16, 2006

U.S. Patent

BIAI

o3

MY

[2IAl

[LIAI

Nv_m_

Nv_w

¢+d

L+4

Stlo.com

W fa

ClibPD

http://www.fastio.com/

US 7,046,802 B2

Sheet 9 of 10

May 16, 2006

U.S. Patent

be)

A

+ «—y(1+w)

(M Joud)

6 "Old

[21o
Y

+ €+ Y¢

wnsyoay)

[w]n

[2In

(110

Pv_w

[0l

Nv_w

8]

vv_m

[ro.com

fas

/’\“ /

VW

ClibPD

http://www.fastio.com/

U.S. Patent May 16, 2006 Sheet 10 of 10 US 7,046,802 B2

£
2 o
X + N
5 1
4
b
E
E >+—» E
= 1 O
o
€
r
E >§ °<
s &) -
s b
O o
o
'
= "o
o
> g
Ll
5 §oS e

ClibPD www fastio.com

http://www.fastio.com/

ClibPD

US 7,046,802 B2

1

METHOD AND APPARATUS FOR
FACILITATING EFFICIENT
AUTHENTICATED ENCRYPTION

RELATED APPLICATION

This application hereby claims priority under 35 U.S.C.
section 119 to U.S. Provisional Patent Application No.
60/240,471, filed Oct. 12, 2000, and U.S. Provisional Appli-
cation Ser. No. 60/267,640, filed Feb. 9, 2001. The above-
referenced Provisional Patent applications are hereby incor-
porated by reference.

BACKGROUND

1. Field of the Invention

The present invention relates generally to cryptographic
techniques for the construction of symmetric (shared-key)
encryption schemes, and more particularly, to ways to use a
block cipher in order to construct a highly efficient encryp-
tion scheme that simultaneously provides both message
privacy and message authenticity.

2. Related Art

When two parties, a Sender and a Receiver, communicate,
the parties often need to protect both the privacy and the
authenticity of the transmitted data. Protecting the privacy of
the data ensures that unauthorized parties will not under-
stand the content of transmissions. Protecting the authentic-
ity of the data provides assurance to the Receiver that the
actual Sender of a message coincides with the claimed
Sender of the message (and it thereby provides assurance to
the Receiver that the message was not accidentally or
intentionally modified in transit). Both goals are often
accomplished using symmetric (“shared key™) techniques,
wherein the Sender and the Receiver make use of a shared
key K. We call “authenticated encryption” the goal of
simultaneously achieving both privacy and authenticity
using shared-key techniques. In an authenticated-encryption
method, the Sender can encrypt a message using a key and
a nonce (also called an Initialization Vector, or IV) to yield
a ciphertext. The Receiver can decrypt a ciphertext using a
key and a nonce to yield either a message or a special
symbol, invalid, that indicates to the Receiver that the
ciphertext should be regarded as inauthentic.

The most common approach for authenticated encryption
uses two different tools: for privacy, a privacy-only encryp-
tion scheme, and for authenticity, a message authentication
code (MAC). Privacy-only encryption schemes compute a
ciphertext from a plaintext, a key, and a nonce. Message
authentication codes compute an authentication tag (which
is a fixed-length string) from a message and a key. To MAC
a message means to computes its authentication tag using a
message authentication code.

Many constructions for privacy-only encryption schemes
and many constructions for message authentication codes
are known in the art. Some are described, for example, in the
book of Menezes, van Oorschot and Vanstone, Handbook of
Applied Cryptography, published by CRC Press, 1997. Both
privacy-only encryption schemes and message authentica-
tion codes are commonly based on the use of a block cipher.

By way of further background, a block cipher is a function
E that takes a key K and a message block X, the key being
a binary string from some set of allowed keys and the
message block being a binary string of some fixed length n.
The block cipher returns a ciphertext block Y=FE(X), which
is also a binary string of length n. The number n is called the
block length of the block cipher. It is required that for each

www fastio.com

15

20

25

40

45

60

65

2

key K, the function E. is one-to-one and onto (in other
words, it is a bijection on the space of n-bit strings). Since
Ex is one-to-one and onto, it has a well-defined inverse,
denoted E, . Well known block ciphers include the algo-
rithm of the Data Encryption Standard (DES), which has a
block length of n=64 bits, and the algorithm of the Advanced
Encryption Standard (AES), which has a block length of
n=128 bits. We shall speak of “applying a block cipher” or
“enciphering” to refer to the process of taking an n-bit string
X and computing from it a string Y=E (X) for some
understood key K and block cipher E. Similarly, we shall
speak of “deciphering” to refer to the process of taking an
n-bit string Y and computing from it a string X=E,'(Y).

The most common approach for privacy-only encryption
using an n-bit block cipher E is CBC encryption (cipher
block chaining encryption). In the “basic” form of CBC
encryption, the message M that we wish to encrypt must be
a binary string of length that is a positive multiple of the
block length n. The message M is partitioned into n-bit
blocks M[1], M[2], . . ., M[m] by taking M[1] as the first
n bits of M, taking M[2] as the next n bits of M, and so forth.
An n-bit nonce, 1V, is selected. Then one encrypts M using
the key K and the nonce IV by computing, for each
i€[1 . . . m], the ciphertext block

Cli=E(C[i-1JOM[i])

where C[0]=IV. The complete ciphertext is [V together with
the ciphertext C=C[1] . . . C[m].

Nonces are used quite generally for shared-key encryp-
tion. A nonce is a value used at most once (or almost
certainly used at most once) within a given context. Most
often, nonces are realized using a counter or random value.
For CBC encryption, a random value should be used; for
CBC encryption, there are problems with using a counter IV.

The most common approach for making a message
authentication code using an n-bit block cipher E is the CBC
MAC (cipher block chaining message authentication code).
In the “basic” form of the CBC MAC, the message M to be
authenticated must be a binary string having a length that is
a positive multiple of n. The message M is partitioned into
n-bit blocks M[1], M[2], . . ., M[m] by taking M[1] as the
first n bits of M, taking M[2] as the next n bits of M, and so
forth. One then computes the authentication tag of M, using
key K, by way of the same algorithm used for CBC
encryption, but where the IV=0, the block of n zero bits, and
where the authentication tag is the final ciphertext block,
Tag=C[m]. Only Tag, or a prefix of Tag, is output as the
authentication tag. A Receiver who obtains an authenticated
message M|Tag checks the validity of M by re-computing
the CBC MAC of M under key K, obtaining a string Tag',
and verifying that Tag' is identical to Tag.

To combine CBC encryption and the CBC MAC, in order
to obtain both privacy and authenticity, use the generic
composition method. One uses two keys: an encryption key
Ke and a message-authentication key Ka. In one method for
generic composition, the message M is CBC encrypted
using key Ka and nonce IV to yield an intermediate cipher-
text C,,,=IV||C[1] . . . C[m]. Then the intermediate ciphertext
C,,; s MACed using the CBC MAC under key Ka to yield
an authentication tag Tag. The ciphertext for the authenti-
cated-encryption scheme is C=C[1] . . . C[m]||Tag. The
Receiver, on receipt of IV and C[1] . . . C[m]|/Tag, checks
that Tag is the CBC MAC of C,,=IV||C[1] . . . C[m] under
key Ka. If the received Tag is what the Receiver computes
it should be, the Receiver decrypts C[1] . . . C[m] using key
Ke and nonce IV to obtain the plaintext M. If the received

http://www.fastio.com/

ClibPD

US 7,046,802 B2

3

Tag is different from what the Receiver computes it should
be, the Receiver rejects the received ciphertext C=C[1] . . .
C[m]|Tag, regarding it as invalid.

The same generic-composition approach can be used to
combine any privacy-only encryption scheme with any
message authentication code.

There are a number of limitations to the generic compo-
sition approach. The main limitation is that two sequential
computing passes are made over the data, one to privacy-
only encrypt and one to MAC, making the process twice as
slow as privacy-only encryption (assuming that privacy-
only encryption and MAC computation take about the same
amount of time, as they would for CBC encryption and the
CBC MAC). Privacy-only encryption can be computation-
ally expensive, and adding in a major additional expense to
ensure message authenticity is considered undesirable in
many settings.

Because of the limitation just described, individuals have
tried for many years to merge privacy and authenticity into
a single, unified process that would be nearly as fast as
conventional ways to do privacy-only encryption. Until
quite recently, all such attempts failed. For a history of some
of the failed attempts, see the survey article of Bart Preneel
entitled Cryptographic Primitives for Information Authen-
tication—State of the Art, appearing in State of the Art of
Applied Cryptography, COSIAC "97, Lecture Notes in Com-
puter Science, vol. 1528, Springer-Verlag, pp. 49-104, 1998.
As an example of a particularly recent attempt, Gligor and
Donescu describe an incorrect authenticated-encryption
mode in their paper Integrity Aware PCBC Encryption,
appearing in Security Protocols, 7" International Workshop,
Cambridge, UK, Apr. 19-21, 1999, Lecture Notes in Com-
puter Science, vol. 1796, Springer-Verlag, pp. 153-171,
2000.

The first publicly disclosed authenticated-encryption
scheme that achieves nearly the speed of a conventional,
privacy-only encryption scheme, was developed by Charan-
jit Jutla, of IBM. Jutla describes two authenticated-encryp-
tion methods in his paper Encryption Modes with Almost
Free Message Integrity, which first appeared in the Cryp-
tology ePrint Archive on Aug. 1, 2000. (Later versions of
this paper subsequently appeared in Advances in Cryptol-
ogy—FEurocrypt 2001, Lecture Notes in Computer Science,
vol. 2045, Springer-Verlag, May 2001, and as a submission
to NIST (the National Institute of Standards and Technol-
ogy), posted on NIST’s website on Apr. 17, 2001.) One of
Jutla’s schemes is similar to CBC encryption and is called
IACBC. The other one of Jutla’s scheme is parallelizable
mode that Jutla calls JAPM. Jutla’s JACBC scheme is
illustrated in FIG. 6, while his IAPM scheme is illustrated in
FIG. 7.

Both IACBC and IAPM are authenticated-encryption
schemes based on an n-bit block cipher, E. The modes
require that the message M which is to be encrypted has a
length which is a positive multiple of the block length n: say
M=M[1] . . . M[m], where each MJi] is n bits long. The
schemes employ two block-cipher keys, K1 and K2, which
together comprise the encryption key K=(K1, K2). Concep-
tually, there are two processes involved: a “make-offset
process” and a “main process”. The make-offset process is
the same for IACBC and IAPM, while the main process in
the two schemes differ.

Refering to the left hand side of FIGS. 6 and 7, the
make-offset process in IACBC and IAPM uses the key K2
to map a random nonce, R, into a sequence of “pairwise
independent” offsets, Z=7[0], . . . , Z[m], Z[m+1]. Notice
that one needs two more offsets than the message M is long
(measured in blocks). Each offset is n bits. Jutla describes
two different methods to realize the make-offset process. We

www fastio.com

20

25

40

45

60

65

4

shall describe these methods shortly; for now we view the
production of offsets as a black-box process and we continue
the explanation of the main-process of IACBC and IAPM.

The main process of IACBC is shown in the right-hand
side of FIG. 6. Having used the key K2 and the nonce R to
derive offsets Z[0], . . . , Z[m+1], encipher nonce R, now
under key K1, to determine an initial chaining value, Y[0]
=C[0]=E,(R). Then CBC encrypt M=M]1] . . . M[m]: for
i€[1 . .. m], let Y[i]=E,(Y[i-1]M][i]). Next, mask each
of these block-cipher outputs to determine a ciphertext
block: for i€[1 . . . m], let C[i]=Y[i]BZ][i]. Call the string
C=C[1] . . . C[m] is the “ciphertext core”. Next one
computes a “checksum”, Checksum, by xoring the message
blocks: Checksum=M[1]® . . . &M[m]. Next one forms an
“authentication tag” by setting Tag=FE .., (Checksum@®Y[m])
@7[0]. The complete ciphertext specifies C[0], ciphertext
core C=C[1] . .. C[m], and authentication tag Tag.

Decryption proceeds by the natural algorithm, as will be
understood by those skilled in the art to which the present
invention pertains, rejecting the ciphertext if the supplied
authentication tag does not have the anticipated value.

We now describe the main process of IAPM, as show in
the right-hand side of FIG. 7. Having used the key K2 and
the nonce R to derive offsets Z[0], . . ., Z[m+1], encipher R,
now using key K1, to determine an enciphered R-value,
C[0]=E,(R). Now, for each i€[1 . . . m], message block
M][i] is xored with offset Z[i], the result is enciphered using
E (keyed by K1), and the resulting block is xored once again
with offset Z[i], yielding a ciphertext block C[i]: that is, for
each i€[1 . . . m], let C[i]=Z[i]®Es, M[i]PZ[i]). Call
C=C[1] . . . C[m] the ciphertext core. Next, compute a
checksum, Checksum, by xoring together the message
blocks: Checksum=M[1]® . . . &M|[m]. Next, form an
authentication tag, Tag, by xoring the checksum with offset
Z[m+1], enciphering the result with E,,, and xoring the
resulting block with offset Z[0]: Tag=Z[0]BE,,
(Checksum@®Z[m+1]). The complete ciphertext specifies
C[0], ciphertext core C=C[1] . . . C[m], and authentication
tag Tag.

Decryption proceeds by the natural algorithm, rejecting a
ciphertext if its supplied authentication tag does not have the
anticipated value. Namely, set R=E,, ~*(C[0]) and use R and
K2 to compute the offset sequence Z[0], . . ., Z[m+1]. Then
compute the prospective plaintext M'=M[1] . . . M[m] by
setting M[i]=Z[i]®E, *(C[i]®Z[i]). Next, re-compute the
tag Tag' that one would expect for the prospective plaintext
M" Checksum=M[1]® . . . &M[m] and Tag'=Z[0]PE,,
(Checksumé@Z[m+1]). If the expected tag, Tag', matches the
tag Tag appearing within the ciphertext, then the plaintext M
is defined as the prospective plaintext M'. Otherwise, the
received ciphertext is invalid.

It should be noted that IACBC is not parallelizable: one
can not compute Y[i] until Y[i-1] has already been com-
puted, making that method inherently sequential. But IAPM
is fully parallelizable: all of the block-cipher calls needed to
compute the ciphertext core can be computed at the same
time.

We comment that the nonce R used in JACBC must be
random. Use of a counter, or another adversarially predict-
able value, will result in an incorrect scheme.

It is important to optimize the speed of the make-offset
process because, if it is slow, then the entire encryption
process will be slow. Jutla’s “method 17 for making offsets
is depicted in FIG. 8. It works as follows. Let t be the
number of bits needed to write m+2 in binary; that is,

t=1+[log,(m+2)].

http://www.fastio.com/

ClibPD

US 7,046,802 B2

S

Now for each ig[1 . . . t], let

IV[i]=E g (R+i)

where the indicated addition operation means computer
addition of n-bit strings (that is, regard i as an n-bit string
and add it to the n-bit string R, ignoring any carry that might
be generated). The value R should be a random value (a
counter, for example, will not work correctly). Offsets are
now formed by xoring together different combinations of
IV[i]-values. Jutla suggests the following to compute each
Z[i] value, for i€[0 . . . m+1]. Number bit positions
left-to-right by 1, ..., tand leti,, ..., &1 . .. t] denote
all of the bit positions where i+1, when written as a t-bit
binary number, has a 1-bit. Then set

Z[=IVIAD . . . OV

As an example, if m=3 then t=3 (since 5 is 101 in binary,
which takes 3 bits to write down), Z[0]=IV[3] (since 1 is 001
in binary), Z[1]=IV[2] (since 2 is 010 in binary), Z[2]=IV
[2]1V[3] (since 3 is 011 in binary), Z[3]=IV[1] (since 4 is
100 in binary), and Z[4]=IV[1]BIV[3] (since 5 is 101 in
binary).

We now describe Jutla’s “method 2” for making offsets.
Choose a large prime number p just less than 2” (e.g., choose
the largest prime less than 2”) and then, for i€[0 . . . m+1],
set

Zfil=V]1J+i-IV]2])mod p

where IV[1]=E,(R+1) and IV[2]=E,(R+2) are defined as
before. Again, nonce R should be a random value. The
multiplication operator *“-” refers to ordinary multiplication
in the integers. Notice that for i=1, the value of Z[i] can be
computed from Z[i-1] by addition of IV[2], modulo p. This
second method of Jutla’s requires fewer block-cipher calls
than the first method of Jutla’s (block-cipher calls are used
to make the IV[i] values, and now only two such values are
needed, regardless of the length of the message). On the
other hand, the mod p addition is likely more expensive than
XOr.

The property that Jutla demands of the sequence of offsets
he calls pairwise independence, but Jutla does not use this
term in accordance with its customary meaning in probabil-
ity theory. Jutla appears to mean the property usually called
strongly universal-2. A family of random variables Z[0],
Z[1], Z]2], . . ., each with range D, is said to be strongly
universal-2 if, for all i=j, the random variable (Z[i], Z[j]) is
uniformly distributed DxD.

Just subsequent to the appearance of Jutla’s paper, two
other authors, Virgil Gligor and Pompiliu Donescu,
described another authenticated-encryption scheme. Their
paper, dated Aug. 18, 2000 and entitled, http:/www.eng.um-
d.edu/~gligorFast Encryption and Authentication. XCBC
encryption and XECB Authentication Modes, first appeared
on Gligor’s worldwide web homepage. The Gligor-Donescu
authenticated-encryption scheme, which the authors call
XCBC, resembles Jutla’s TACBC. The scheme called
XCBCS is depicted in FIG. 9. The main difference between
TACBC and XCBCS is that the latter uses offsets Z[1],
Z[2], ... 7Z[m+1], which are now defined by: Z[0]=0 and, for
i€[1 . .. m+l], Z[i+1]=Z][i-1]+R. The indicated addition
means addition of binary strings, modulo 2”. Besides this
“method 3” to create offsets, one should note that the value
of Z[i] is now added (modulo 2”) to the block-cipher output,
rather than being xored with the block-cipher output. Other

www fastio.com

15

20

25

30

40

45

50

60

65

6

differences between the Jutla and Gligor-Donescu schemes
will be apparent to those skilled in the relevant art when
comparing FIGS. 5 and 8.

As with Jutla’s schemes, the nonce R in XCBC$ should
be a random value; use of a counter, or another adversari-
ally-predictable quantity, will not work correctly. The
authors give a closely related scheme, XCBC, which
employs a counter instead of a random value. That scheme
is illustrated in FIG. 10. The complete ciphertext specifies
the nonce, “ctr”, as well as C[1] . . . C[m]| Tag.

It should be noted that XCBC and XCBCS$, like IACBC,
are sequential. Gligor’s paper, as it originally appeared, did
not suggest a parallelizable approach for authenticated
encryption.

All of the available authenticated-encryption schemes we
have described thus far share the following limitation: they
assume that all messages to be encrypted have a length that
is a positive multiple of the block length n. This restriction
can be removed by first padding the message, using padding
techniques well-known in the art. For example, one can
append to every message M a “1” bit and then append the
minimum number of 0-bits so that the padded message has
a length which is a multiple of n. We call this “obligatory
padding”. Decryption removes the obligatory padding to
recover the original message. However, removing the length
restriction in an authenticated-encryption scheme by obliga-
tory padding is undesirable because it increases the length of
the ciphertext (by an amount between 1 and n-1 bits).
Furthermore, the method results in an extra block-cipher
invocation when the message M is of a length already a
positive multiple of n.

Another approach known in the art to deal with messages
whose length is not a positive multiple of n is “ciphertext
stealing CBC encryption”, which is like ordinary CBC
encryption except that the final message block M[m] may
have fewer than n bits and the final ciphertext block C[m] is
defined not by C[m]=E(M[m]PC[m-1]) but by C[m]|=E,
(C[m-11)$M[m]. One could hope to somehow use cipher-
text stealing in an authenticated-encryption scheme, but it is
not known how to do this in a way that does not destroy the
authenticity property required of an authenticated-encryp-
tion scheme. In particular, natural attempts to try to modify
IAPM in a manner that employs ciphertext stealing result in
flawed schemes. A possible approach is to adapt ideas from
the paper of Black and Rogaway, CBC MACs for Arbitrary-
Length Messages: The Three Key Constructions, appearing
in Advances in Cryptology—CRYPTO 00, Lecture Notes in
Computer Science, Springer-Verlag, 2000. This paper
teaches the use of obligatory padding for messages of length
zero or a non-multiple of n, combined with no padding for
messages of length of positive multiple of n, combined with
xoring into the last block one of two different keys, as a way
to differentiate these two different cases. However, such a
method is tailored to the construction of message authenti-
cation codes, particularly message authentication codes
based on the CBC MAC. It is unknown if such methods can
be correctly adapted to an authenticated-encryption scheme
like IAPM.

An additional limitation of the authenticated-encryption
techniques we have discussed is the use of multiple keys.
While well-known key-separation techniques can create as
many “key variants” as one needs from a single underlying
key, depending on such methods results in additional time
for key-setup and additional space for key storage. It is
unknown how one could devise a correct algorithm that
would use only a single block-cipher key and use this one
key to key all block-cipher invocations.

http://www.fastio.com/

ClibPD

US 7,046,802 B2

7

Method 1 for computing offsets is complex and slow,
needing an unbounded number of block-cipher calls. The
values IV[1], . . ., IV[t] can be computed during a pre-
processing stage, but this pre-processing will be slow.
Method 2 for computing offsets requires modulo p addition,
which is not particularly fast because typical implementa-
tions use blocks having n=128 bits. Method 3 for computing
offsets likewise requires addition (now modulo 2”) of quan-
tities typically having n=128 bits, which may again be
inconvenient because computers do not generally support
such an operation, and high-level programming languages
do not give access to the add-with-carry instruction that best
helps to implement it. Most of the methods we have
described require the use of a random nonce R, and the
schemes will not work correctly should R be predictable by
an adversary.

SUMMARY

Variations of the present invention provide methods for
constructing more efficient authenticated-encryption
schemes. The new methods give rise to parallelizable
authenticated-encryption schemes that combine any or all of
the following features: (1) Messages of arbitrary bit length
(not necessarily a multiple of the block length n) can be
encrypted. (2) The resulting ciphertext will be as short as
possible (in particular, the ciphertext core will have the same
length as the message that is being encrypted, even when the
message length is not a multiple of the block length). (3)
Offsets can be computed by extremely fast and simple
means, and without the use of modular addition. (4) Pre-
processing costs are very low (e.g., one block-cipher call and
some shifts and xors). (5) The encryption key is a single
block-cipher key, and all block-cipher calls make use of only
this one key. (6) The needed nonce may be adversarially
predictable (a counter is fine). (7) Only as many offsets are
needed as the message is long (in blocks). (8) A total of m+2,
(or even m+1) block-cipher calls are adequate to encrypt a
message of m blocks.

To achieve these and other goals, new techniques have
been developed. A first set of techniques concern the “struc-
ture” of an authenticated-encryption scheme, and describe
improved methods for how the message M is partitioned into
pieces and how these pieces are then processed. A second set
of techniques concern improved ways to generate the needed
offsets. A third set of techniques deal with methods to avoid
the use of multiple block-cipher keys. A fourth set of
techniques facilitate authenticated-encryption schemes
which efficiently process associated-data, where associated-
data refers to information which should be authenticated by
the Receiver but which is not a part of the message that is
being encrypted. The different types of improvements are
largely orthogonal.

More specifically, one embodiment of the present inven-
tion provides an authenticated-encryption system that uses a
key and a nonce to encrypt a message into a ciphertext. The
system operates by partitioning the message into a message
body comprising a sequence of n-bit message blocks, and a
message fragment of at most n bits. Next, the system
generates a sequence of offsets from the nonce and the key.
The system then computes a ciphertext body using a block
cipher, the message body, the key, the nonce, and the
sequence of offsets. The system also computes a ciphertext
fragment using the block cipher, the message fragment, the
key, and an offset. The system additionally computes a tag
as a function of the message body, the message fragment, the

www fastio.com

20

25

40

45

60

65

8

sequence of offsets, and the key. The ciphertext is defined to
include the ciphertext body, the ciphertext fragment, and the
tag.

In one embodiment of the present invention, generating
the sequence of offsets involves determining a first offset as
a function of the nonce and the key. It also involves
determining each subsequent offset by combining a previous
offset and a basis offset, wherein each basis offset is deter-
mined as a function of the key.

In one embodiment of the present invention, generating
the sequence of offsets involves determining an offset by
combining a base offset and a fixed offset, wherein the base
offset is a function to the key and the nonce, and the fixed
offset is a function of the key and a position of the fixed
offset in a sequence of fixed offsets.

In one embodiment of the present invention, generating
the sequence of offsets involves: generating a sequence of
fixed offsets from the key; generating a base offset from the
key and the nonce; generating a sequence of translated
offsets by combining each fixed offset with the base offset to
get a corresponding translated offset; and using the sequence
of translated offsets as the sequence of offsets. In a variation
on this embodiment, the key determines a sequence of basis
offsets and each fixed offset is determined by xoring some
combination of basis offsets. In a further variation, each
basis offset except for the first basis offset is determined by
a shift and a conditional xor applied to a previous basis
offset. In yet a further variation, the order that basis offsets
are combined into fixed offsets is determined according to a
Gray code.

In one embodiment of the present invention, generating
the sequence of offsets involves: computing a sequence of
basis offsets from the key; computing a base offset from the
key and the nonce; and computing a sequence of translated
offsets, wherein the first offset is determined from the base
offset, the key, and the nonce, and subsequent offsets are
determined by combining the prior translated offset with a
basis offset.

In one embodiment of the present invention, generating
the sequence of offsets involves: computing a key-variant
offset by enciphering a constant with the block cipher,
wherein the block cipher is keyed by a given key; and
computing the sequence of offsets using the key-variant
offset.

In one embodiment of the present invention, computing
the ciphertext body involves: combining each message block
in the message body with a corresponding offset to produce
a corresponding input block; applying the block cipher to
each input block to produce a corresponding output block;
and combining each output block with a corresponding
offset to produce a corresponding ciphertext block.

In one embodiment of the present invention, computing
the ciphertext fragment involves: computing a precursor pad
as a function of an offset; computing a pad by applying the
block cipher to the precursor pad; and computing the cipher-
text fragment by combining the message fragment and the
pad.

In one embodiment of the present invention, computing
the tag involves: computing a checksum as a function of the
message and a sequence of offsets; and computing the tag as
a function of the checksum, the key, and an offset.

In one embodiment of the present invention, computing
the tag involves computing a checksum from the message
blocks, the message fragment, and a pad; combining the
checksum with an offset to produce a precursor full tag;

http://www.fastio.com/

ClibPD

US 7,046,802 B2

9

computing a full tag by applying the block cipher to the
precursor full tag; and computing a tag as a portion of the
full tag.

One embodiment of the present invention provides a
system that uses a key and a nonce to decrypt a ciphertext
into a message. The system operates by partitioning the
ciphertext into a ciphertext body including a sequence of
n-bit ciphertext blocks, a ciphertext fragment of at most n
bits, and a tag. Next, the system generates a sequence of
offsets from the nonce and the key. The system then com-
putes a message body using a block cipher, the ciphertext
body, the key, the nonce, and the sequence of offsets. The
system also computes a message fragment using the block
cipher, the ciphertext fragment, the key, and an offset. The
system additionally computes a new tag as a function of the
message body, and then compares the new tag with the tag.
If the new tag matches the tag, the system returns the
message, wherein the message includes the message body
and the message fragment. Otherwise, if the new tag does
not match the tag, the system returns a message invalid
signal.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 describes encryption under “OCB”, where OCB is
the name for one embodiment of many of the techniques
taught in the present invention.

FIG. 2 is a high-level description of the make-offset
process of OCB in accordance with an embodiment of the
present invention.

FIG. 3 is a low-level description of the make-offset
process of OCB in accordance with an embodiment of the
present invention.

FIG. 4 describes decryption under OCB in accordance
with an embodiment of the present invention.

FIG. 5 describes a variant of OCB in accordance with an
embodiment of the present invention.

FIG. 6 depicts the IACBC scheme of Jutla.

FIG. 7 depicts the IAPM scheme of Jutla.

FIG. 8 depicts one of Jutla’s methods for constructing
offsets.

FIG. 9 depicts the XCBC$ scheme of Gligor and
Donescu.

FIG. 10 depicts the XCBC scheme of Gligor and
Donescu.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of a particular application and its
requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present invention. Thus, the
present invention is not intended to be limited to the embodi-
ments shown, but is to be accorded the widest scope
consistent with the principles and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system.
This includes, but is not limited to, magnetic and optical
storage devices such as disk drives, magnetic tape, CDs
(compact discs) and DVDs (digital versatile discs or digital
video discs), and computer instruction signals embodied in

www fastio.com

20

25

30

35

40

45

60

65

10

a transmission medium (with or without a carrier wave upon
which the signals are modulated). For example, the trans-
mission medium may include a communications network,
such as the Internet.

We now describe an embodiment of the present invention
known as OCB (for offset codebook) mode. OCB is an
authenticated-encryption scheme that uses an n-bit block
cipher E, a key K, and a nonce Nonce to encrypt an arbitrary
message M. To specify OCB we begin by giving some
notation and reviewing some mathematical background.

Notation and Mathematical Background

If a and b are integers, a=b, then [a . . . b] is the set of all
integers between and including a and b. If i=1 is an integer
then ntz(i) is the number of trailing O-bits in the binary
representation of i (equivalently, ntz(i) is the largest integer
z such that 2° divides 1). So, for example, ntz(7)=0 and
ntz(8)=3.

A string is a finite sequence of symbols, each symbol
being O or 1. The string of length O is called the empty string
and is denoted e. Let {0,1}* denote the set of all strings. If
A, BE{0,1}* then A B, or A|B, is their concatenation. If
AE{0,1}* and A=e then firstbit(A) is the first bit of A and
lastbit(A) is the last bit of A. Let i and n be nonnegative
integers. Then (/ and 1’ denote strings of i 0’s and 1’s,
respectively. For n understood, 0 means 0”. Let {0,1}"
denote the set of all strings of length n. If AS{0,1}* then IAl
is the length of A, in bits, while |Al,=max(1, [IAl/n] is the
length of A in n-bit blocks, where the empty string counts as
one block. For AS{0,1}* and IAI=n, zpad,(A) is AJ|0,_,.
With n understood we write A0* for zpad,(A). If A€{0,1}*
and t€]0 . . . |Al] then A[first t bits] and A[last t bits] are the
first t bits of A and the last t bits of A, respectively. Both of
these values are the empty string if t=0. If A, BE{0,1}* then
A®B is the bitwise xor of A[first s bits] and BJfirst s bits]
where s=min{IAl,BI}; for example, 10016110=010.
IfA=a,_, ...a, a,&{0,1}" is a string, each a,&{0,1}, then
str2num(A) is the number X, ~,-, ; 2° a, that this string
represents, in binary. If ac[0 . . . 2"7'] is a number, then
num?2str,,(a) is the n-bit string A such that str2num(A)=a. Let
len, (A)=num?2str,(IAl) be the string that encodes the length
of A as an n-bit string. We omit the subscript n when it is
understood.

IfA=a,_ a, ,...a, 8,E{0,1}" then A<<l=a,_,...a, a,
0 is the n-bit string which is a left shift of A by 1 bit (the first
bit of A disappearing and a zero coming into the last bit),
while A>>1=04a,,_, a,,_, . . . a, is the n-bit string which is a
right shift of A by one bit (the last bit disappearing and a zero
coming into the first bit).

In pseudocode we write “Partition M into M[1] ... M[m]”
as shorthand for “Let m=/M|, and let M[1], . . ., M[m] be
strings such that M[1] . . . M[m]=M and M][i]=n for
1=i<m.” We write “Partition C into C[1] . . . C[m] T” as
shorthand for “if ICl<t then return invalid. Otherwise, let
C=CffirstlCI-t bits], let T=C[last t bits], let m=ICl,,, and let
C[1] . . . C|m] be strings such that C[1] . . . C[m]=C and
IC[i]Fn for 1=i<m.” Recall that IMl,=max {1, [MI/n]}, so
the empty string partitions into m=1 blocks, that one block
being the empty string.

By way of mathematical background, recall that a finite
field is a finite set together with an addition operation and a
multiplication operation, each defined to take a pair of points
in the field to another point in the field. The operations must
obey certain basic axioms defined by the art. (For example,
there must be a point 0 in the field such that a+0=0+a=a for
every a; there must be a point 1 in the field such that
a-1=1-a=a for every a; and for every a=0 there must be a

http://www.fastio.com/

ClibPD

US 7,046,802 B2

11

point a~' in the field such that a-a~'=a~!-a=1.) For each
number n there is a unique finite field (up to the naming of
the points) that has 2” elements. It is called the Galois field
of size 2", and it is denoted GF(2").

We interchangeably think of a point a€GF(2”) in any of
the following ways: (1) as an abstract point in a field; (2) as
an n-bit string a,_, . . . a, a,&{0,1}"; (3) as a formal
polynomial a(x)=a,_,x" '+ ... +a,X+a, with binary coeffi-
cients; (4) as a nonnegative integer between 0 and 2%,
where the string a&{0,1}" corresponds to the number
str2num(a). For example, one can regard the string
a=0'2*101 as a 128-bit string, as the number 5, as the
polynomial x*+1, or as a particular point in the finite field
GF(2'2®). We write a(x) instead of a if we wish to emphasize
the view of a as a polynomial in the formal variable x.

To add two points in GF(2"), take their bitwise xor. We
denote this operation by adb.

Before we can say how to multiply two points we must fix
some irreducible polynomial poly,(x) having binary coeffi-
cients and degree n. For OCB, choose the lexicographically
first polynomial among the irreducible degree-n polynomi-
als having a minimum number of coefficients. For n=128,
the indicated polynomial is poly,,g(X)=x"?®+x"+x7+x+1.

To multiply points a, bEGF(2”), which we denote a‘b,
regard a and b as polynomials a(x) and b(x), form their
product polynomial c(x) (where one adds and multiplies
coeflicients in GF(2)), and take the remainder one gets when
dividing c(x) by the polynomial poly,,(x). By convention, the
multiplication operator has higher precedence than addition
operator and so, for example, y,-L@R means (y,"L)PR.

It is particularly easy to multiply a point a={0,1}” by x.
We illustrate the method for n=128, where poly,,(x)=x'**+
x +x?+x+1. Then multiplying a=a,,_, . .. a, a, by x yields the
polynomial a,_ 1x"+an_2x"‘1+a1X2+aOX. Thus, if the first bit
of ais 0, then a-x=a<<]1. If the first bit of a is 1 then we must
add x'*® to a<<l. Since x'**+x”+x*x+1=0 we know that
x1 28 x"4x%4x+1, so adding x'*®* means to xor by
0'2°10000111. In summary, when n=128,

a<xl if firstbit(a) = 0, and
T (@<)@0'2°10000111 if firstbita) = 1

If ac{0,1}" then we can divide a by X, meaning that one
multiplies a by the multiplicative inverse of x in the field:
ax"'. Itis easy to compute ax™'. To illustrate, again assume
that n=128. Then if the last bit of a is 0, then ax"! is a>>1.
If the last bit of a is 1, then we must add (xor) to a>>1 the

value x~'. Since X' 2=x"+x+x+1 we have x 27 =xC+x+14x~!
and so x '=x"?"4x%+x+1=10'*°1000011. In summary, for
n=128,
ax»1 if lastbit(a) = 0, and
a-x'=

" (@ D@102°1000011 if lastbit(a) = 1

If LE{0,1}" and i= -1, we write L(i) for Lx". There is an
easy way to compute L(-1),L(0),L.(1), . . ., L(u), for a small
number u. Namely, set L(0)=L; compute L(i)=L(i-1)x from
L(i-1), for all i€[1 . . . u], using a shift and a conditional xor
(with the formula we have given); and compute L(-1) from
L by a shift and a conditional xor (with the formula we have
given).

Still by way of background, a Gray code is an ordering of
the points of {0,1}° (for some number s) such that successive
points differ (in the Hamming sense) by just one bit. For n
a fixed number, like n=128, OCB uses the canonical Gray
code Gray(n)=(Yy, V1> - - - » Yo 1)- Gray(n) is defined as
follows: Gray(1)=(0, 1) and Gray(s) is constructed from

www fastio.com

15

40

45

50

60

65

12

Gray(s—1) by first listing the strings of Gray(s-1) in order,
each preceded by a 0-bit, and then listing the strings of
Gray(s—1) in reverse order, each preceded by a 1 bit. It is
easy to see that Gray(n) is a Gray code. What is more, vy, can
be obtained fromy,_, by xoring y,_, with 0"~ 1<<ntz(i). This
makes successive strings easy to compute.

As an example, Gray(128)=(0,1,3,2,6,7,5,4, . . .). To see
this, start with (0, 1). Then write it once forward and once
backwards, (0,1,1,0). Then write (00, 01, 11, 10). Then write
it once forward and once backwards, (00,01,11,10, 10,11,
01,00). Then write (000,001,011,010, 110,111,101,100). At
this point we already know the first 8 strings of Gray(128),
which are (0,1,3,2,6,7,5,4), where these numbers are under-
stood to represent 128-bit strings. So, for example, y5 is 7
and y¢ is 5, and y,=5 really is ys=7 xored with 2, where 2 is
the string 1 shifted left ntz(6)=1 positions.

Let LE{0, 1}” and consider the problem of successively
forming the strings v,-L, v,'L, v5;'L, . . ., v, L. Of course
y,'L=1-L=L. Now, for i=2, assume one has already com-
puted v,_,-L. Since y,=y,_,®(0" ' 1<<ntz(i)) we know that

Vo L=, DO Newntz(i)-L
= LBO™ <21 ntz(@))-L
e LBL D)
=Y,_1'LOL(nez(i))

That is, the i-th string in the sequence is obtained by xoring
the previous string in the sequence with L(ntz(i)).

Had the sequence we were considering been additively
offset by some value R, that is, Ry, L., RGy, L
R@®y,, L, the i-th string in the sequence would be formed in
the same way, for i=2, but the first string in the sequence
would be LBR instead of L.

Definition of OCB

With the necessary notation and background now in place,
we are ready to describe OCB. OCB depends on two
parameters: a block cipher E, having block length n, and a
tag length t, where t is a number between 1 and n. By trivial
means, the adversary will be able to forge a valid ciphertext
with probability 27°.

A popular block cipher to use with OCB is likely to be the
AES algorithm (AES-128, AES-192, or AES-256). As for
the tag length, a suggested default of t=64 is reasonable, but
tags of any length are fine.

Encryption under OCB mode requires an n-bit nonce,
Nonce. The nonce would typically be a counter (maintained
by the sender) or a random value (selected by the sender).
Security is maintained even if the adversary can control the
nonce, subject to the constraint that no nonce may be
repeated within the current session (that is, during the period
of'use of the current encryption key). The nonce need not be
random, unpredictable, or secret.

The nonce Nonce is needed both to encrypt and to
decrypt. To permit maximum flexibility, it is not specified by
OCB how the nonce is communicated to the Receiver, and
we do not regard the nonce as part of the ciphertext. Most
often the nonce would be communicated, in the clear, along
with the ciphertext: for example, the nonce, in it entirety,
might be prepended to the ciphertext. Alternatively, the
Sender may encode the nonce using some agreed upon
number of bits less than n, and this encoded nonce would be
sent to the Receiver along with the ciphertext.

http://www.fastio.com/

ClibPD

US 7,046,802 B2

13 14
TABLE 1
OCB-Encryptg (Nonce,M)
Partition M into M[1] ... M[m] // Define needed values
L = Ex(0) // Key variant. Recall 0=0"
R = Ex (Nonce & L) // Base offset R
fori=1tom // Offsets: Z[1],...,Z[m]
doZ[i]=y;," LGSR
Z[-m] =Zm] & L-x!
for i=1 to m-1 do // Process message blocks...
Clil = Ex(M[i] ® Z[i]) ® Z[i]
PrePad = len(M[m]) & Z[-m] // Process final fragment...
Pad = Ex(PrePad)
C[m] = Pad ® M[m] // Uses Pad bits 1..M[m]!
C=CJ[1] .. C[m] // Ciphertext core

Checksum = M[1] @ ... & M[m-1] & C[m] 0* & Pad
PreFullTag = Checksum ¢ Z[m]

FullTag = Ex (PreFullTag)

Tag = FullTag [first t bits]

return C |l Tag // The final ciphertext,

C

See FIG. 1 for an illustration of OCB encryption. FIG. 1 20

is best understood in conjunction with the algorithm defi-
nition in Table 1, which explains all of the figure’s various
parts and gives additional algorithmic details. The key space
for OCB is the key space for the underlying block cipher E.
OCB encryption is then defined in Table 1.

Referring to FIG. 1 and the algorithm definition above,
one sees that the message M has been partitioned into n-bit
blocks M[1], . . ., M[m-1], as well as a message fragment,
M[m], which may have fewer than n bits. The message 3,
blocks and the final fragment are treated differently.

Each message block M[i] is xored with an offset (the Z[i]
value), enciphered, and then xored again with the same
offset. This gives a ciphertext block C[i].

The message fragment M[m] is mapped into a ciphertext 33
fragment C[m] by xoring it with the string Pad. According
to our conventions, only the first IM[m]l bits of Pad are used.
In this way, C[m], will have the same length as M[m]. The
value Pad does not depend on M[m], apart from its length.
In particular, Pad is formed by enciphering the string PrePad 40
which is the xor of the length of the final fragment M[m],
encoded as a string, and the “special” offset Z[-m], which is
the xor of Z[m] and L-x™". Thus PrePad (and therefore Pad)
depends on the bit length of M.

At this point, the ciphertext core C=C[1] . . . C[m] has
been computed. Its length is the length of M.

A checksum is now computed by xoring together: (a) the
m-1 message blocks; (b) the zero-padded ciphertext frag-
ment, C[m]0*; and (c) the value Pad. (This is equivalent to
xoring together: (a) the message blocks; (b') the zero-padded
message fragment, M[m]0*; (¢') the string S which is the
first n-IM[m]! bits of Pad followed by IM[m]| zero-bits.) The
checksum is offset using offset Z[m], giving the PreFullTag.
That string is enciphered to give the FullTag. The t-bit prefix
of the FullTag is used as the actual tag, Tag.

The ciphertext C is the ciphertext core C=C[1] . . . C[m]
together with the tag Tag. The Nonce must be communicated
along with the ciphertext C to allow the Receiver to decrypt.

FIGS. 2 and 3 clarify the make-offset process that is used 60
in OCB but which is only partially depicted in FIG. 1. First,
FIG. 2 depicts how the underlying key K is mapped,
conceptually, into a sequence of fixed offsets z[1], z[2],
7[3], We call this sequence of offsets “fixed” because
it does not depend on the nonce Nonce (it only depends on 65
the key K). The sequence of fixed offsets is mapped into a
sequence of translated offsets, or simply offsets, by xoring

25

45

50

55

www fastio.com

each fixed offset with a base offset, R: that is, Z[i]=z[i]®R.
The base offset R is determined from the nonce Nonce and
from the underlying key K.

FIG. 3 shows the inventive process in more detail. The
sequence of fixed offsets that we choose is z[1]=y,L,
z[2]=y,’L, z[3]=y;L, and so on. Thus the sequence of
translated offsets used by OCB is Z[1]=y, LER,
Z[2]=y,' LBR, Z[3]=y5;' LR, and so on. These offsets can be
calculated in a particularly simple manner. Namely, in a
pre-processing step we map L, which is a key variant
determined by enciphering under K the constant string O,
into a sequence of basis offsets L.(0), L(1), L.(2), Basis
offset (i) is defined to be L-x’. We have already explained
how to easily compute these strings. Now we compute
translated offsets as follows. The first offset, Z[1], is defined
as RPL(0). Offset Z[2] is computed from offset Z[1] by
xoring Z[1] with [(1). One chooses L(1) because we are
making offset number 2 and the number 2, written in binary,
ends in 1 zero-bit. Offset Z[3] is computed from offset Z[2]
by xoring Z[2] with L(0). One chooses L.(0) because we are
making offset 3 and 3, written in binary, ends in 0 zero-bits.
Offset Z[4] is computed from offset Z[3] by xoring into Z[3]
with L(2). One chooses [(2) because we are making offset
4 and 4, written in binary, ends in 2 zero-bits. One continues
in this way, constructing each (translated) offset from the
prior offset by xoring in the appropriate L(i) value.

Decryption in OCB works in the expected way. The
algorithm is shown in FIG. 4 and is defined as follows. All
parts of FIG. 4 can be understood by consulting the algo-
rithm definition that appears in Table 2.

TABLE 2

OCB-Decryptx (Nonce, C)
Partition C into C[1] ... C[m] T
L = Eg (0)
R = Ex (Nonce ¢ L)
fori=1tomdo Z[i]=y,- LG R
Z-m]=Zm] &L -x!
fori=1to m-1do

MIi] = Ex* (Cli] ® Z[i]) ® ZIi]
PrePad = len(C[m]) & Z[-m]
Pad = Ex(PrePad)
M[m] = Pad @ C[m]
M = M[1] ... M[m]
Checksum = M[1] @ ... & M[m-1] @ C[m] 0* $ Pad
Tag' = Ex (Checksum & Z[m]) [first t bits]
if Tag = Tag' then return M

else return invalid

http://www.fastio.com/

ClibPD

US 7,046,802 B2

15

An Alternative Description

At this point, we have fully described the embodiment
OCB. $till, the following alternative description may help to
clarify what a typical implementation might choose to do.

Key Generation: Choose a random key K from the key
space for the block cipher. The key K is provided to both the
entity that encrypts and the entity that decrypts.

Key Setup: With the key now distributed, the following
can be pre-computed:

1. Setup the block-cipher key. For the party that encrypts:
do any key setup associated to enciphering using the
block-cipher with key K. For the party that decrypts: do
any key setup associated to enciphering or deciphering
using the block-cipher with key K.

. Pre-compute L. Let L=E(0).

. Pre-compute L(i)-values. Let m,,,_be at least as large
as the number of n-bit blocks in any message to be
encrypted or decrypted. Let u=[log,m,,,.|. Let L(0)=L
and, for i€[1 . . . u], compute L(i)=L.(i-1)-x using a
shift and a conditional xor, in the manner already
described. Compute L(-1)=L-x~* using a shift and a
conditional xor, in the manner already described. Save
L(-1), L(0), . . ., L(w) in a table.

Encryption: To encrypt message ME{0,1}* using key K
nonce Nonce&{0,1}”, obtaining ciphertext C, do the fol-
lowing:

1. Partition M. Let m=[IMV/n]. If m=0 then replace m by

1. Let M[1], . . . , M[m] be strings such that M[1] . ..
M[m]=M and IM[i]=n for all ig[1 . .. m-1].

2. Initialize variables. Let Offset=E (Nonce@L). Let
Checksum=0.

3. Encipher all blocks but the last one. For i=1 to m-1, do
the following:

Let Checksum=Checksum@M]i].
Let Offset=Offset®L.(ntz(i)).
Let C[i]=Ex(M[i]Offset)POffset.

4. Mask the final fragment and finish constructing the
checksum:

Let Offset=Offset®L(ntz(m)).

Let Pad=E(Ien(M[m])®L(-1)POffset).

Let C[m]=M[m]&(the first IM[m]| bits of Pad).
Let Checksum=Checksum@PadPC[m]0*.

5. Form the tag. Let Tag be the first t bits of
Ex(Checksum@Ofiset).

6. Return the ciphertext. The ciphertext is defined as the
string C=C[1]. C[m-1]C[m]||Tag. It is communicated
along with the nonce Nonce to the Receiver.

Decryption: To decrypt a ciphertext CE{0,1}* using key
K and nonce Nonce&{0,1}”, obtaining a plaintext ME{0,
1}* or else an indication invalid, do the following:

1. Partition the ciphertext. If ICl<t then return invalid (the
ciphertext has been rejected). Otherwise, let C be the
first ICl-t bits of C and let Tag be the remaining t bits.
Let m=[ICl/n]. If m=0 then let m=1. Let C[1], . . ., C[m]
be strings such that C[1] . . . C[m]=C and IC[i]I=n for
i€l ... m-1].

2. Initialize variables. Let Offset=F (Nonce®L). Let
Checksum=0.

3. Recover all blocks but the last one. For i=1 to m-1, do
the following:

Let Offset=Offset®L.(ntz(i)).
Let M[i]=E,_,(C[i]®Oflset)POftset.
Let Checksum=Checksum@M]i].

4. Recover the final fragment and finish making the

checksum:
Let Offset=Offset®L(ntz(m)).
Let Pad=E(len(C[m])®I(-1)POfiset.

W N

www fastio.com

5

10

15

20

25

30

35

40

45

50

55

60

65

16
Let M[m]=C[m]®(the first IC[m]! bits of Pad).
Let Checksum=Checksum@PadPC[m]0*.
5. Check the tag. Let Tag' be the first t bits of
Ex(Checksum@Ofiset). If Tag=Tag' then return invalid
(the ciphertext has been rejected). Otherwise,

6. Return the plaintext. The plaintext that is returned is
defined to be M=MJ1] . . . M[m-1] M[m].

Variations

While many variants of OCB result in incorrect algo-
rithms, there are also many correct variants. One type of
variant leaves the structure of OCB alone, but changes the
way offsets are produced. When changing the way that
offsets are produced, one may also have to change the
semantics of the xor operation. We give a couple of
examples.

For an “addition mod 2" variant” of OCB, one might
change the offsets to Z[i]=(R+iL) mod 2”, for i1, and
Z[-m]=complement(Z[m]) (the bit-wise complement of
Z[m]). According to this definition, each offset is computed
from the prior one by n-bit addition of L. Alternatively,
replace complement(Z[m])) by -Z[m] mod 2”, where is
nearly the same thing (the two differ by a constant, 1, and
this difference is irrelevant).

Assuming n is a multiple of the word size of a computer,
addition mod 2” is easily computed by a computer. We call
addition mod 2,, “computer addition”. Computer addition
might or might not generate a carry. To achieve addition
modulo 2" any carry that is generated is simply ignored.

Alternatively, for iZ1, one could define Z[i]=iR mod 2",
so that each offset is obtained from the prior one by n-bit
addition of R instead of L.

When defining offsets using computer addition, the xor
operations used to combine a message block and an offset,
and the xor operations used to combine a block-cipher
output and an offset, should be replaced by mod 2” addition.
Leaving these operations as xors seems to damage the
schemes’ security.

For a “mod p variant” of OCB, where p is a large prime
number (for example, the smallest prime number less than
2"), change the offsets to Z[i]=(R+iL) mod p, for i=1, and
Z[-m]=complement(Z[m]). According to this definition,
each offset is computed from the prior one by n-bit addition
of L. The complement(Z[m]) can be replaced by -Z[m] mod
p, which is nearly the same thing (the two differ by a
constant, 1, and this difference is irrelevant).

Alternatively, foriZ1, one could define Z[i]=iR mod p, so
that each offset is obtained from the prior one by n-bit
addition of R instead of L.

When defining offsets using addition modulo p, the xor
operations used to combine a message block and an offset,
and then used to combine a block-cipher output and an
offset, could be replaced by mod p addition. However, this
does not seem to be essential.

An efficiency improvement can be made to the mod p
schemes for offset production: define Z[i] not as (Z[i-1]+L)
mod p, where an implementation would always have to
check if the sum is p or larger, but by doing the (mod
p)-reduction in a “lazy” manner, according to the carry bit
produced by computer addition. Namely, form Z[i] by
computer addition of n-bit numbers L and Z[i-1]. If the
addition generates a carry bit, then add into the sum the
number 8=2"-p. This method results in Z[i] being equal to
one of two possible values: (iL+R) mod p, or p+((iL+R) mod
p)- The latter is only a possibility in (rare) case that the
indicated sum is less than 2”. Thus the sequence of offsets is
not little changed, yet an implementation is more efficient

http://www.fastio.com/

ClibPD

US 7,046,802 B2

17

since it only has to make an adjustment to the computer-
addition sum when a carry is generated. The carry will
typically be computed “for free” in a modern processor. We
call this method of offset production lazy mod p addition.

Lazy mod p addition also works as a modification to the
Z[i]=1R mod p method; namely, define Z[1]=R and Z[i|=(Z
[i-1]+R) mod 2” if the indicated computer addition does not
generate a carry, and define Z[i]=(Z[i-1]+R+d) mod 2" if the
first addition does generate a carry.

Other variants of OCB change minor details in the struc-
ture of the algorithm. For example, the value L-x™" used in
forming the PrePad can be replaced by the value L>>1.
These two possibilities are nearly the same thing: recall that
L-x~! is actually equal to L>>1 if L ends in a 0 bit, and, if
Lends ina 1 bit, L-x™" differs from L>>1 by a fixed constant.
Thus there is no practical difference between L-x~' and
L>>1. This is exactly analogous to the use of —A mod p
verses complement(A) in an addition mod p based scheme;
or —A mod 2” verses complement(A) in an addition mod 2”
based scheme.

More structural changes can be made to OCB while
preserving its basic ideas. The intuition for the manner in
which OCB processes the final fragment and then produces
the tag is to ensure that the PreFullTag appreciably depends
not only on the message blocks, but also on (a) the message
fragment/ciphertext fragment, and (b) the length of the
message. As an example alternative, one might change the
Z[-m)] offset to Z[m], and change the Z|m] offset to Z[-m].

It is even possible to allow PreFullTag to inadequately
depend on the message fragment/ciphertext fragment, as
long as this dependency is realized in the FullTag itself. An
example of such an OCB variant is shown in FIG. 5. In that
variant, Pad does not depend on the bit length of M[m], but
only on the block length of M. The checksum is defined
differently from before; it is now defined by Checksum=M
116 . . . BM[m-1]Ppad(M[m]), where pad(A)=A if A is
n bits long and pad(A)=Al10""~! otherwise. With such a
scheme, PreFullTag would seem to inadequately depend on
the message; for example, 17 and 177" give rise to identical
checksums, as well as ciphertext cores that differ by just one
bit. So if the authentication tag were taken to be FullTag*,
the scheme would be insecure. To differentiate pairs of
strings like 17 and 177", the scheme of FIG. 5 modifies the
value FullTag*=E (PreFullTag) by xoring it with one of two
different offsets, O or Z[m+1]. The first offset is used if the
message fragment is n bits long (so no padding was
appended to the message fragment when forming the check-
sum), while the second offset is used when the message
fragment has fewer than n bits (so 10* padding was
appended to it when forming the checksum). Now strings
such as 17 and 1"" will give rise to the same FullTag* but
different FullTag values.

Many other correct variants of OCB are possible, as a
person skilled in the art will now be able to discern.

Avariant in a different direction is to facilitate the efficient
processing of associated-data. Associated-data refers to
information which the Receiver would like to ensure that he
shares (in identical form) with the Sender, but where this
information is not a part of the message that is being
encrypted. Such information is usually non-secret, and it is
usually held static during the course of a session (that is, all
messages encrypted using a given key will usually share the
same associated-data). The associated-data is a vector of
strings AD, or it is a single string AD that encodes such a
vector of strings.

An authenticated-encryption scheme that permits associ-
ated-data can be regarded as an authenticated-encryption

www fastio.com

20

25

40

45

60

65

18

scheme in which there is an extra argument, AD, supplied to
both the encryption function E and the decryption function
D. The Sender encrypts using E (Nonce, AD, M), while the
Receiver decrypts using D (Nonce, AD, C). If the Receiver
supplies an AD-value which is different from the one which
the Sender used, the ciphertext C, on decryption, will almost
certainly be regarded as invalid.

A method to allow for associated-data that will be obvious
to those skilled in the art is to have the Sender encode AD
along with the message M, obtaining an augmented message
M, and then have the Sender encrypt M', with authenticity,
using an authenticated-encryption scheme. But this method
is inefficient, insofar as the ciphertext C' that one obtains is
longer than a ciphertext C would be for M. The increase in
length is by an amount proportional to the length of AD.
Also, extra processing time is needed to encrypt and to
decrypt (even when AD is held constant across many
messages).

The inventive methods permit more efficient processing
of associated-data than what is described above. We illus-
trate the method for encryption under OCB, (Nonce, AD,
M). Let F be a function of the key K and the associated-data
AD. The inventive method begins by computing A=F (AD).
In a first technique, ciphertext OCB (Nonce, AD, M) is then
defined as OCB, (Nonce, M). In an alternative technique,
the ciphertext OCB, (Nonce, AD, M) is defined as OCB,
(Nonce® A, M). In yet another alternative, ciphertext OCB,-
(Nonce, AD, M) is defined as (C, Tag® A), where (C,T)
=0CB; (Nonce, M). Decryption proceeds according to the
obvious associated algorithm, as those skilled in the relevant
art will infer. Other ways to modity the process of comput-
ing ciphertexts under OCB,- (Nonce, M) which make use of
A will be apparent to those skilled in the relevant art.

The inventive method has the advantage that the cipher-
text is not lengthened because of the presence of the asso-
ciated-data, and the processing time is not significantly
increased, assuming that A has been pre-computed.

The description of the inventive method uses one key K
for both F(*) and OCB (, *). This is advantageous, but two
separate keys may of course be used instead.

There are many options for realizing the function F used
above. For example, F may be the CBC MAC described
earlier. Alternatively, F may be obtained from a crypto-
graphic hash function, or from a universal hash function.

There are also many options for realizing the encoding of
avector of strings AD into a string AD. For example, one can
concatenate an encoding of each string in the vector of
strings, where the encoding of each string in the vector of
strings consists of a fixed-byte encoding of the string’s
length, followed by the string itself.

The associated-data techniques we have described are
applicable to any authenticated-encryption scheme, without
restriction. The technique can be used in conjunction with
the other inventive teachings, or the technique can be used
independently. Its use in conjunction with other inventive
teachings does not limit the scope of those teachings, and
mechanisms which allow the presence of associated-data
should be understood as covered by claims which do not
explicitly refer to the presence of associated-data.

Execution Vehicles

The encryption and the decryption process used by the
present invention may reside, without restriction, in soft-
ware, firmware, or in hardware. The execution vehicle might
be a computer CPU, such as those manufactured by Intel
Corporation and used within personal computers. Alterna-
tively, the process may be performed within dedicated

http://www.fastio.com/

ClibPD

US 7,046,802 B2

19

hardware, as would typically be found in a cell phone or a
wireless LAN communications card or the hardware asso-
ciated to the Access Point in a wireless LAN. The process
might be embedded in the special-purpose hardware of a
high-performance encryption engine. The process may be
performed by a PDA (personal digital assistant), such as a
Palm Pilot®. In general, any engine capable of performing
a complex sequence of instructions and needing to provide
a privacy and authenticity service is an appropriate execu-
tion vehicle for the invention.

The various processing routines that comprise the present
invention may reside on the same host machine or on
different host machines interconnected over a network (e.g.,
the Internet, an intranet, a wide area network (WAN), or
local area network (LAN)). Thus, for example, the encryp-
tion of a message may be performed on one machine, with
the associated decryption performed on another machine,
the two communicating over a wired or wireless LAN. In
such a case, a machine running the present invention would
have appropriate networking hardware to establish a con-
nection to another machine in a conventional manner.
Though we speak of a Sender and a Receiver performing
encryption and decryption, respectively, in some settings
(such as file encryption) the Sender and Receiver are a single
entity, at different points in time.

The foregoing descriptions of embodiments of the present
invention have been presented for purposes of illustration
and description only. They are not intended to be exhaustive
or to limit the present invention to the forms disclosed.
Accordingly, many modifications and variations will be
apparent to practitioners skilled in the art. Additionally, the
above disclosure is not intended to limit the present inven-
tion. The scope of the present invention is defined by the
appended claims.

What is claimed is:
1. A computer-implemented authenticated-encryption
method that uses an n-bit block cipher, a key, and an n-bit
nonce to encrypt a message into a ciphertext, the method
comprising:
partitioning the message into m-1 message blocks and
one final fragment, each message block having n bits
and the final fragment having between 0 and n bits;

using the block cipher, the key, and the nonce to generate
a sequence of m offsets, each offset having n bits,
wherein the sequence of offsets is computed by (a)
computing a 0” basis offset by applying the block
cipher, keyed by the key, to a constant; (b) for each
positive number i, defining the i”* basis offset from the
prior basis offset by shifting the prior basis offset left
one position, and then xoring the resulting value with
a constant that depends on the first bit of the prior basis
offset; (d) computing a base offset by applying the
block cipher, keyed by the key, to the xor of the 0%
basis offset and the nonce; (e) defining the 1% offset in
the sequence of offsets as the xor of the 0 basis offset
and the base offset; and (f) for each integer i between
two and m, defining the i offset in the sequence of
offsets as the xor of the prior offset and the j” basis
offset, where j is the number of zero-bits following the
last one-bit when the number i is written in binary;

using the block cipher, the key, the nonce, and the length
of the message to generate an n-bit final offset;

for each number i between 1 and m-1, xoring the i”

message block with the i offset to determine an i”
input block;

www fastio.com

10

20

25

30

35

40

45

55

60

65

20

for each number 1 between 1 and m-1, applying the block
cipher, keyed by the key, to the i’ input block, to
determine an i” output block;

for each number i between 1 and m-1, Xoring the i

output block with the i”* offset to determine an i’
ciphertext block;

concatenating the m-1 ciphertext blocks to determine a

ciphertext body;

computing an encoded length by encoding the length of

the final fragment as an n-bit string;

xoring the encoded length with the final offset to deter-

mine a precursor pad;

computing a pad by applying the block cipher, keyed by

the key, to the precursor pad;

xoring the final fragment with a portion of the pad to

determine a ciphertext fragment having the same length
as the final fragment;
computing a padded ciphertext fragment by appending to
the ciphertext fragment a sufficient number of zero bits
so that the padded ciphertext fragment has n bits;

computing a checksum by xoring together the m-1 mes-
sage blocks, the pad, and the padded ciphertext frag-
ment;

computing a precursor full tag by xoring together the

checksum and the m? offset;

determining a full tag by applying the block cipher, keyed

by the key, to the precursor full tag;

computing a tag as a portion of the full tag; and

defining the ciphertext to be the ciphertext body, the

ciphertext fragment, and the tag.
2. A computer-readable storage medium storing instruc-
tions that when executed by a computer cause the computer
to perform an authenticated-encryption method that uses an
n-bit block cipher, a key, and an n-bit nonce to encrypt a
message into a ciphertext, the method comprising:
partitioning the message into m-1 message blocks and
one final fragment, each message block having n bits
and the final fragment having between 0 and n bits;

using the block cipher, the key, and the nonce to generate
a sequence of m offsets, each offset having n bits,
wherein the sequence of offsets is computed by (a)
computing a 0” basis offset by applying the block
cipher, keyed by the key, to a constant; (b) for each
positive number i, defining the i”* basis offset from the
prior basis offset by shifting the prior basis offset left
one position, and then xoring the resulting value with
a constant that depends on the first bit of the prior basis
offset; (d) computing a base offset by applying the
block cipher, keyed by the key, to the xor of the 07
basis offset and the nonce; (e) defining the 1% offset in
the sequence of offsets as the xor of the 0 basis offset
and the base offset; and (f) for each integer i between
two and m, defining the i offset in the sequence of
offsets as the xor of the prior offset and the j* basis
offset, where j is the number of zero-bits following the
last one-bit when the number i is written in binary;

using the block cipher, the key, the nonce, and the length
of the message to generate an n-bit final offset;

for each number i between 1 and m-1, xoring the i”

message block with the i”* offset to determine an i”
input block;

for each number 1 between 1 and m-1, applying the block

cipher, keyed by the key, to the i’ input block, to
determine an i” output block;

for each number i between 1 and m-1, Xoring the i

output block with the i”* offset to determine an i’
ciphertext block;

http://www.fastio.com/

ClibPD

US 7,046,802 B2

21

concatenating the m-1 ciphertext blocks to determine a

ciphertext body;

computing an encoded length by encoding the length of

the final fragment as an n-bit string;

xoring the encoded length with the final offset to deter-

mine a precursor pad;

computing a pad by applying the block cipher, keyed by

the key, to the precursor pad;

xoring the final fragment with a portion of the pad to

determine a ciphertext fragment having the same length
as the final fragment;
computing a padded ciphertext fragment by appending to
the ciphertext fragment a sufficient number of zero bits
so that the padded ciphertext fragment has n bits;

computing a checksum by xoring together the m-1 mes-
sage blocks, the pad, and the padded ciphertext frag-
ment;

computing a precursor full tag by xoring together the

checksum and the m? offset;

determining a full tag by applying the block cipher, keyed

by the key, to the precursor full tag;

computing a tag as a portion of the full tag; and

defining the ciphertext to be the ciphertext body, the

ciphertext fragment, and the tag.
3. A computer-implemented authenticated-encryption
method that uses an n-bit block cipher, a key, and an n-bit
nonce to encrypt a message of arbitrary length into a
ciphertext of the same length, the method comprising:
partitioning the message into m-1 message blocks and
one final fragment, each message block having n bits
and the final fragment having between 0 and n bits;

generating m+1 offsets using a sequence shift and xor
operations, this sequence of shift and xor operations
being applied to a starting value determined using the
block cipher, the key, and the nonce;

for each number i between 1 and m-1, xoring the i”

message block with the i offset to determine an i”
input block;

for each number i between 1 and m-1, applying the block

cipher, keyed by the key, to the i input block, to
determine an i” output block;

for each number i between 1 and m-1, xoring the it i”

output block with the i” offset to determine an i”
ciphertext block;

concatenating the m-1 ciphertext blocks to determine a

ciphertext body;

computing an encoded length by encoding the length of

the final fragment as an n-bit string;

xoring the encoded length with the m? offset to determine

a precursor pad,

computing a pad by applying the block cipher, keyed by

the key, to the precursor pad;

xoring the final fragment with a portion of the pad to

determine a ciphertext fragment having the same length
as the final fragment;

computing a padded ciphertext fragment by appending to

the ciphertext fragment a sufficient number of zero bits
so that the padded ciphertext fragment has n bits;

www fastio.com

10

20

25

35

40

45

50

55

22

computing a checksum by xoring together the m-1 mes-
sage blocks, the pad, and the padded ciphertext frag-
ment;

computing a precursor full tag by xoring together the
checksum and the (m+1)* offset;

determining a full tag by applying the block cipher, keyed
by the key, to the precursor full tag;

computing a tag as a portion of the full tag; and

defining the ciphertext to be the ciphertext body, the
ciphertext fragment, and the tag.

4. A computer-readable storage medium storing instruc-

tions that when executed by a computer cause the computer
to perform an authenticated-encryption method that uses an
n-bit block cipher, a key, and an n-bit nonce to encrypt a
message of an arbitrary length into a ciphertext of the same
length, the method comprising:

partitioning the message into m-1 message blocks and
one final fragment, each message block having n bits
and the final fragment having between 0 and n bits;

generating m+1 offsets using a sequence shift and xor
operations, this sequence of shift and xor operations
being applied to a starting value determined using the
block cipher, the key, and the nonce;

for each number i between 1 and m-1, Xoring the i
message block with the i”* offset to determine an i”
input block;

for each number 1 between 1 and m-1, applying the block
cipher, keyed by the key, to the i’ input block, to
determine an i” output block;

for each number i between 1 and m-1, xoring the i”
output block with the i offset to determine an i”
ciphertext block;

concatenating the m-1 ciphertext blocks to determine a
ciphertext body;

computing an encoded length by encoding the length of
the final fragment as an n-bit string;

xoring the encoded length with the m” offset to determine
a precursor pad,

computing a pad by applying the block cipher, keyed by
the key, to the precursor pad;

xoring the final fragment with a portion of the pad to
determine a ciphertext fragment having the same length
as the final fragment;

computing a padded ciphertext fragment by appending to
the ciphertext fragment a sufficient number of zero bits
so that the padded ciphertext fragment has n bits;

computing a checksum by xoring together the m-1 mes-
sage blocks, the pad, and the padded ciphertext frag-
ment;

computing a precursor full tag by xoring together the
checksum and the (m+1)* offset;

determining a full tag by applying the block cipher, keyed
by the key, to the precursor full tag;

computing a tag as a portion of the full tag; and

defining the ciphertext to be the ciphertext body, the
ciphertext fragment, and the tag.

#* #* #* #* #*

http://www.fastio.com/

	d:\p2mp\img\0000853509\07046802\300_0001.tif
	d:\p2mp\img\0000853509\07046802\300_0002.tif
	d:\p2mp\img\0000853509\07046802\300_0003.tif
	d:\p2mp\img\0000853509\07046802\300_0004.tif
	d:\p2mp\img\0000853509\07046802\300_0005.tif
	d:\p2mp\img\0000853509\07046802\300_0006.tif
	d:\p2mp\img\0000853509\07046802\300_0007.tif
	d:\p2mp\img\0000853509\07046802\300_0008.tif
	d:\p2mp\img\0000853509\07046802\300_0009.tif
	d:\p2mp\img\0000853509\07046802\300_0010.tif
	d:\p2mp\img\0000853509\07046802\300_0011.tif
	d:\p2mp\img\0000853509\07046802\300_0012.tif
	d:\p2mp\img\0000853509\07046802\300_0013.tif
	d:\p2mp\img\0000853509\07046802\300_0014.tif
	d:\p2mp\img\0000853509\07046802\300_0015.tif
	d:\p2mp\img\0000853509\07046802\300_0016.tif
	d:\p2mp\img\0000853509\07046802\300_0017.tif
	d:\p2mp\img\0000853509\07046802\300_0018.tif
	d:\p2mp\img\0000853509\07046802\300_0019.tif
	d:\p2mp\img\0000853509\07046802\300_0020.tif
	d:\p2mp\img\0000853509\07046802\300_0021.tif
	d:\p2mp\img\0000853509\07046802\300_0022.tif

