
T h e R o u n d C o m p l e x i t y of Secure P r o t o c o l s
(Extended Abstract)

D o n a l d B e a v e r *

H a r v a r d U n i v e r s i t y

Silvio Micali t Phillip Rogaway t
MIT MIT

A b s t r a c t

In a network of n players, each player i having private
input zi, we show how the players can collaboratively
evaluate a function f (z l , . . . , zn) in a way that does not
compromise the privacy of the players ' inputs, and yet
requires only a constant number of rounds of interac-
tion.

The underlying model of computat ion is a complete
network of private channels, with broadcast, and a ma-
jority of the players must behave honestly. Our solution
assumes the existence of a one-way function.

1 I n t r o d u c t i o n

Secure . func t ion eva lua t ion . Assume we have n par-
ties, 1 , . . . , n; each par ty i has a private input xi known
only to him. The parties want to correctly evaluate a
given function f on their inputs, that is to compute
y = f (x l , . . . ,z ,~) , while maintaining the privacy of
their own inputs. Tha t is, they do not want to re-
veal more than the value y implicitly reveals. Secure
function evaluation consists of distributively evaluating
a function so as to satisfy both the correctness and pri-
vacy constraints. This task is made particularly difficult
by the fact that some of the players may be maliciously
faulty and try to cooperate in order to disrupt the cor-
rectness and the privacy of the computat ion.

Secure function evaluation arises in two main settings.
First, in fault-tolerant computat ion. In this setting cor-
:ectness is the main issue: we insist that the values a
distributed system returns are correct, no mat ter how

*Aiken Computation Laboratory, Harvard University, Cam-
bridge, MA 02138. Supported in part by NSF grant CCR-870-
-t513.

tMIT Laboratory for Computer Science, 545 Technology
~;quare, Cambridge, MA 02139. Supported by ARt grant DAAL
03-86-K-0171 and NSF grant CCR-8719689.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

some components in the system fail. However, even if
one is solely interested in correctness, privacy helps to
achieve it most strongly: if one wants to maliciously in-
fluence the outcome of an election, say, it is helpful to
know who plans to vote for whom. Second, secure func-
tion computat ion is central to protocol design, as the
correctness and privacy of any protocol can be reduced
to it. Here, as people may be behind their computers,
correctness and privacy are equally important .

The first general solution for secure function evalu-
ation was found by Yao [Ya86] for the two-party case,
and by Goldreich, Micali and Wigderson [GMW87] for
the mult ipar ty case. Many other protocols for the
mul t ipar ty case have been found since. In particu-
lar, the protocols of Ben-Or, Goldwasser and Wigder-
son [BGW88], Chaum, Cr~peau and Damg£rd[CCD88],
and Rabin and Ben-Or [RB89], succeed in defeating the
influence of bad players without making use of cryp-
tography, assuming that the privacy of communica-
tion among players is guaranteed. Other general pro-
tocols with different and interesting properties include
[GV87, CR87, CDG87, GHY87, Be88, BG89, Ch89].

The G M W parad igm. In the above mult ipar ty pro-
tocols, the underlying notions of security are often quite
different, and so are the assumed communication mod-
els. Nonetheless, all of them follow the same paradigm
of [GMW87] that we now describe.

There are three stages. In the first stage, each player
shares the bits of his private input. Sharing a bit b
entails breaking b into n "shares," bl, . . . , bn, and giving
share bi to player i. For some parameter t, t < n/2,
we require that no t players get information about b
from their pieces; and yet, b is recoverable, and is known
to be recoverable, given the cooperation of the n - t
good players--even if the t bad players t ry to obstruct
b's recovery, or t ry to alter the recovered value. The
value b which a player has effectively "committed to"
is independent of the values that honest players may
concurrently be committ ing to.

After the sharing stage, a computation stage follows,
in which each player, given his own shares of xl , . . . , x,~,
computes his own share of f (z t , . . . , z,~). To accomplish
this, the function f to be evaluated is represented by a

© 1990 ACM 089791-361-2/90/0005/0503 $1.50 503

Boolean circuit, C. Thus, in Stage 1, each player gets his
shares of the values along the input wires of C. In Stage
2, for each gate of the circuit, the parties compute shares
of the value of the output wire from shares of the values
of the input wires in a privacy-preserving manner. (Re-
vealing the "incoming" shares for a gate will certainly
allow the parties to compute its "outgoing" shares, but
this will not preserve privacy. Even the output value of
a single, internal gate constitutes "additional" informa-
tion that must not be revealed.) This privacy-preserving
computation, for a general gate, employs interaction. In
this way, the parties interact, working their way up the
circuit, from leaves to root, and eventually hold shares
for the value corresponding to the output wire of C.

In the third and final stage, the output value of C is
recovered by the players.

M a i n T h e o r e m (Informal version.) There exists a
cryptographic protocol that allows n players, the ma-
jority of whom are honest, to evaluate any circuit se-
curely. The protocol uses a constant number of rounds
and a polynomial amount of communication. The pro-
tocol works on a complete network (with private chan-
nels and supporting broadcast) and with any one-way
function. The protocol tolerates any polynomial-time
dynamic adversary.

In other words, we prove that , with respect to secure
function evaluation, interaction is like an atom. With-
out interaction secure function evaluation is impossible;
but with a tiny bit of interaction, it is fully possible. A
more formal version will be given by Theorem 3, but
even now we would like to emphasize that our result
is largely independent of the underlying communication
model.

The prob lem. In view of this brief description, it
can be seen that all of these protocols for secure mul-
t iparty function evaluation run in unbounded "dis-
t r ibuted time," that is, using an unbounded number of
rounds of communications. Even though the interaction
for each gate can be implemented in a way that requires
only a constant number of rounds, the total number of
rounds will still be linear in the depth of the underlying
circuit.

For many concrete computations, the resulting num-
ber of rounds would be prohibitive; in distributed com-
putation, the number of rounds is generally the most
valuable resource.

Bar-Ilan and Beaver [BB89] were the first to inves-
tigate reducing the round complexity for secure func-
tion evaluation. They exhibited a non-cryptographic
method that always saves a logarithmic factor of rounds
(logarithmic in the total length of the players' inputs),
while the total amount of communication grows only by
a polynomial factor. Alternatively, they show that the
number of rounds can be reduced to a constant, but at
the expense of an exponential blowup in the message
sizes. We insist that the total amount of communica-
tion be polynomially bounded. While their result shows
that the depth of a circuit is not a lower bound for the
number of rounds necessary for securely evaluating it,
the savings is far from being substantial in a general
setting. Thus, the key question is:

How many rounds are necessary to securely
evaluate a circuit while keeping the amount of
communication polynomial in the size of the
circuit?

Our Resu l t . Many of us believed that more compli-
cated functions (i.e., those "with deeper circuits") re-
quired more rounds for secure evaluation. In this paper
we show that , using cryptography, this is not the case.

The m o d e l o f c o m p u t a t i o n . We have stated our
main theorem assuming a rich mode l - -a complete net-
work of private channels, supporting broadcas t - -but
analogous results hold under more restricted models.
For example, if one increases the cryptographic assump-
tion from a one-way function to public-key cryptogra-
phy, then constant-round secure computation is possible
on a network supporting only broadcast. Similarly, for
t < n/3, the broadcast channels can be dispensed with
by using a constant expected time Byzantine agreement
protocol.

S ecu r i t y . To describe the security that our protocol
achieves, we must describe the type of adversary that
we are capable of defeating, and in what sense the ad-
versary is defeated.

These are non-trivial matters. Many valuable notions
of security have been proposed and used in the litera-
ture. In this abstract, we adopt notions of security due
to Kilian, Micali, and Rogaway [KMR90].

We believe their formalization to be the "right one,"
and present it in Section 2. However, we make no at-
tempt to compare this notion with previous ones, or to
support the above claim.

A bird~s-eye v iew of our so lu t ion

Our method can be described as finding the right way
to generalize the older two-party protocol ofYao [Ya86].
His result has been used within the GMW paradigm for
computing the desired "outgoing shares" of each gate
from its "incoming shares" by engaging in many, suit-
ably chosen, two-party computations. This use, how-
ever, leads to an unbounded number of rounds. We,
instead, modify the construction "from the inside," gen-
eralizing it to many parties, but preserving the constant
round complexity.

At a very high level, the idea is to use interaction
to construct a common "garbled circuit," along with

504

a set of "garbled inputs" for this circuit. Then, each
individual player evaluates the garbled circuit, without
interacting with other players. The intermediate infor-
mation that this garbled circuit produces is meaningless
to the players, but the output of the circuit is intelligible
and is guaranteed to be correct.

The circuit is scrambled in a very special way, so to
allow the players to perform the brunt of the scrambling
locally, rather than use intensive interaction to simulate
this computation step-by-step. Still, the requisite lo-
cal computation is not excessive: each player will invest
roughly as much time as is needed to evaluate the func-
tion f without any privacy constraints.

The common garbled circuit is constructed by join-
ing various pieces, each piece being contributed by an
individual player. Of course, nobody is trusted to con-
tribute a correct piece, so each player uses interaction
to prove to the "community" that he has done his work
correctly. As usual, verification is simpler than compu-
tation, and correctness of very deep circuits (evaluated
locally by individual players) can be verified by small,
shallow circuits. These can be evaluated securely in a
constant number of rounds using the gate-by-gate ap-
proach of previous protocols. In the end, the community
can be certain that it is issuing a correct garbled circuit,
which has been found with very little interaction.

We will see what this local and joint computation
looks like after we describe our goal more formally.

For f : (El) n --+ (El)n and T C { 1 , . . . , n } , fT(~)
is the function of ~ defined by fT(~) = (f(£))T, (i.e.,
fT(Z) is the tagged T-coordinates of the image of £ un-
der f) .

The notation Ix ,--- X ; y ,-- Y ; . . . : S (z , y , . . .)] de-
notes the distribution induced by the probabilistic algo-
r i thm 5' when its inputs are drawn by performing the
indicated experiment (in the order specified).

A simulator is a probabilistic polynomial-time algo-
rithm.

Basic definitions

A function e : N .-, t t is negligible i fe (k) = k -~(D,
(i.e., if e(k) vanishes faster than the inverse of any poly-
nomial). An ensemble {Ak} is a family of probability
measures on E* for which there is a polynomial q such
that only strings of length <_ q(k) have nonzero proba-
bility in .Ak. For ,4 taken from some ensemble and C
a Boolean circuit (with sufficiently many inputs), p.~ is
the probability that C outputs 1 on input drawn accord-
ing to ,4. Ensembles {.Ak} and {Bk} are computation-
ally indistinguishable if for any polynomial-size circuit
family C = {Ck}, the function e(k) = [p ~ -pC~l is neg-
ligible; these ensembles are statistically indistinguishable
if e(k) = max IPr~[Sk] -- Pr~[Sk] l is negligible.

SkC~"

2 P r e l i m i n a r i e s

For this abstract, we restrict our definitions to finite
functions. The definitions easily extend to handle, say,
function families or probabilistic functions.

The symbol n will always denote the number of play-
ers, and the symbol g, the length of each individual in-
put and output. Thus the players are trying to securely
evaluate a function f : (~e) , __. (El)n, each player i
learning f i(£). Under these conditions, f can be repre-
sented by a Boolean circuit C. The goal of this section
is to define the notion of securely computing f .

N o t a t i o n

Let Z = {0, 1), let A be the empty string, and let i k be
k written in unary. For x, y • ~*, Ixl = lY[, z ~ y is the
exclusive-or (XOR) of the these strings. If x = al • .. a,~
is a string, x[i:j] denotes the substring a l . . . a j . For x
and y strings, x o y denotes their concatenation. When
b is a bit, b is its complement.

For T C { 1 , . . . , n } , we write T for { 1 , . . . , n } - T.
If ~ = (x l , . . . , x , ~) and T C { 1 , . . . , n } , Z'T = {(i, xi) :
i • T} (i.e., ~'T keeps track off the indices as well as

I the values). If ~ = {xl, . . . , x n } , ~ ' = {x~, . . . , x , } , and
T C {1 , . . . , n}, then g~- O ~ . can be regarded as an n-
vector, (Yl , . . . ,Y ,) , where Yi = xi i f i • T and yi = x~
otherwise.

505

M o d e l o f c o m p u t a t i o n

There are a variety of models of computation under
which secure distributed computation has been consid-
ered. To describe and develop our results, we adopt
a synchronous model of computation with both pri-
vate channels and broadcast; we call this the standard
model. This is the usual model for maximally fault-
tolerant non-cryptographic computation, and is roughly
described below. !

We envisage a network of processors whose compu-
tation is controlled by a common clock ticking at time
0, 1, 2 , Local computation is "instantaneous" com-
pared to the ticking of the clock. Round i is the interval
of time between clock tick i and i + 1.

There is a read-only common input tape that initially
contains a string 1 k and is readable by all processors.
The value k is called the security parameter.

Each processor i has a private read/wri te work tape
(initially containing the string A); a private read-only
input tape (initially containing xi); a private write-only
output tape (initially containing the string A); and some
additional communication tapes described below.

Between each pair of processors i and j there is a
private channel i ---* j for processor i to securely send
messages to processor j . Tha t is, this tape is exclusive-
write for i and exclusive-read for j .

Each processor i also has a broadcast channel. This
is a tape that is exclusive-write for i and readable by all
processors j .

Proper conventions are assumed so that, at round r
and for each player i there is a well-defined message
(possibly the empty message) that i is broadcasting (i.e.,
writing on its broadcasting channel) in this round; and,
for each pair of players i and j , there is a unique message
that i is securely sending to j (i.e., is writing on channel
i -+ j) in this round.

It is understood that channels are properly "labeled"
so that the recipient "knows" who is the sender of a
message.

Each processor has access to a fair coin; that is, it can
enter a distinguished state from which it enters either
of two successor states with equal probability.

A model of computation defined as above but sup-
porting only broadcast for communication is called a
broadcast model.

Processor i of the network runs program Pi; the n-
tuple of programs 79 = (Pi , . . . , Pn) is called a protocol.
For each player i, i's history in the execution of a pro-
tocol consists of everything that player i has had access
to: its private and common input, all broadcast mes-
sages, all messages received along private channels to i,
and the coins that processor i has flipped.

T h e A d v e r s a r y

For simplicity, we assume a uniform adversary. In this
case, an adversary A is a probabilistic polynomial-time
algorithm. An adversary acts on a network, corrupting
processors. A processor is called bad after it has been
corrupted by A, good if it has not yet been corrupted
by A.

When the adversary corrupts a processor, she learns
its entire internal configuration, will read all future mes-
sages sent to it, and will choose what messages it will
send in the future essentially, the adversary totally
subsumes the corrupted processor.

The adversary has the ability to corrupt processors in
a dynamic fashion. At the beginning of each round, the
adversary may choose to corrupt some new processors.
By doing so she learns (in particular) all the messages
sent to it in the current round. Having done this, the
adversary may decide whether to corrupt another new
processor, and so on, until she decides not to corrupt
any more processors during this round. At this point
she composes all the messages from the bad prqcessors
to the good ones for the current round.-These messages
(and the ones between good processors) are guaranteed
to be delivered by the end of the round.

A t-adversary is an adversary that corrupts at most
t processors.

The protocol starts at round 1 arid terminates at the
first round by which all good processors have termi-
nated. The adversary terminates by the end of this
round, as well.

When the adversary terminates, the nonblank portion
of her output tape contains some string. Fixing 7 ~, k,
and g = (xl , x,~), adversary A defines a probability
space VIEW~t(~) , the space of "adversary outputs."
Without loss of generality, the adversary's output , or
view, is an encoding of her history (that is, an encoding
of her coin flips, what messages she received when, etc.)

When the protocol terminates, each good player has
output a certain value. We denote by O U T P U T ~ t (~)
the values output by the good players, tagged by the
good players' identity; that is, a point from this proba-
bility space is a tagged vector fla-

S e c u r i t y

As with zero-knowledge interactive proofs, the notion of
privacy involves the approximability of the adversary's
view by a simulator. The question is: the view should
be approximable given what?

We now state definitions from [KMR90].

A t-bounded (~,f)-oracle behaves as follows. It ac-
cepts two types of queries, called component queries and
output queries.

A component query is an integer i, 1 < i < n. It is an-
swered by xi if t or fewer component queries have been
made so far, and no output query has been made so far;
it is answered by (xi, f i (~y t2 ~)) if t or fewer com-
ponent queries have been made so far, and the proper
output query previously made was z'~. Additional or
improper component queries are not answered)

An output query is a tagged vector x'~.. It is answered
by fT(~T tO ~ .) i f T consists precisely of the component
queries made so far, and if this is the first output query.
Additional or improper output queries are not answered.

Note that we permit component queries to follow the
output query, as long as the total number of component
queries is bounded by t.

We consider simulators S having access to a t-
bounded (~, f)-oracle. The output of such a simulator
is denoted OUTPUT S°'(e'l)(lk); this is a probability
space. We let QuEamS S°'(e,l)(1 k) denote the indices
i for which there was never a component query, together
with the (single) output query; a point from this proba-
bility space is written (G, ~-) . Because of the possibility
of component queries following the output query, G may
be a proper subset of T.

We are now ready to define the notion of security.

a For the pu rpose of c o m p u t i n g s t r i ng -va lued funct ions , th is
can be simplif ied: a c o m p o n e n t query i r e t u rn s x l if there have
been t or fewer c o m p o n e n t quer ies so far.

506

D e f in i t i on 1 Fir f : (Z t) . ~ (Et)n. ProtocoI P t-
securely computes f if for all t-adversaries A there ex-
ists a simulator S (capable of querying a t-bounded or-
acle), such that

• (P r i v a c y) for all ~ E (Et) . , the k-parameterized
ensembles

V I E W ~ (Z)

and
OUTPUT S°'(~'f)(1 k)

are computationally indistinguishable; and,

• (C o r r e c t n e s s) for all ~ E (Et) n, the k-
parameterized ensembles

O U T P U T ~ (~)

and

[(G, fiT) ~-- QUERIES sO ' (e ' /) (l k) : fG(Z'~ U fiT)]

are statistically indistinguishable.

Remarks . This notion of security implicitly enforces
independence--that is, the adversary's inability to influ-
ence the outcome of the protocol on the basis of values
privately held by uncorrupted players. It also implic-
itly enforces fairness--the adversary's inability to ob-
tain more information than the good players do. Fair-
ness is generally not an issue in multiparty protocols
with honest majority, but implicitly enforcing indepen-
dence through the correctness constraint is novel.

Strong Security
The above definition of security essentially says that
any adversary has its own simulator. We will actually
achieve something stronger. Namely, that there will ex-
ist a single simulator that works for any adversary A
with which it interacts in a special fashion. The sim-
ulator creates a "virtual world" and has A act in it.
In this virtual world, A sees an indistinguishable view
from that which it would see when interacting in the
real network. Moreover, the simulator does not moni-
tor the internal computation of A, nor does it choose
the coin flips for A to use. The simulator outputs what
~dversary A in the virtual execution outputs, and the
dmulator asks component queries only for those pro-
:essors "corrupted" during the simulation. (Details on
";he interaction between the simulator and the adversary
will appear in the final paper.)

We call this notion of security strong security. Not
only is strong security what is actually achieved by our
protocol, it is a desirable end goal in itself.

3 T h e P r o t o c o l

Building blocks
This subsection describes some "well known" results
which we require to describe our protocol.

Verifiable Secret Sharing. Let us informally state
the notion of verifiable secret sharing (VSS), originally
introduced by [CGMA85]. This is a way to secretly com-
mit to a value. A distinguished player D (the dealer)
has a private input bit b. At the end of an execution of
a VSS protocol tolerating t faults, each player i holds
his own private share bi of bit b. We require three prop-
erties to hold:

1. With probability > 1 - 1/2 k, there exists a unique
value b ~ such that if the good players broadcast
their private shares, each good player will lo-
cally compute b' from the broadcasted values--
regardless of the values broadcast by the bad play-
ers.

2. If the dealer is good, b' = b.

3. If the dealer is good, the view of any t-adversary
who does not corrupt D is independent of b.

We say that player D commits to bit b if VSS is exe-
cuted with dealer D and private input b. At the end of
such an execution, b is said to be a committed bit. More
generally (and more informally), any bit represented by
shares as above, is called a shared bit, even if its shares
do not originate from a given dealer executing VSS. We
will also speak of shared str ings--meaning that each bit
of the string is a shared bit.

We say that a committed value is privately revealed to
player i if all good players send to i their private shares
of this value along the appropriate private channels; in
this way, i alone recovers the value. A committed value
is publicly'revealed if all good players broadcast their
private shares of the value; in this way, all the players
recover the value.

Comput ing on shared bits. [RB89] have shown that
in our model of computation, VSS is implementable in
a constant number of rounds and tolerating any compu-
rationally unbounded t-adversary, for any t < n/2. Fur-
thermore, they (as well as [Be88]) have shown that any
Boolean circuit C with bounded fan-in and depth d can
be evaluated on shared values securely and secret ly--
that is, the inputs to the computation are shared bits,
and the result also is a shared bit (which will be re-
vealed only if so wanted). This computation requires
O(d) rounds and communication complexity local com-
putation polynomial in k and ICI (where ICI is the size
of the circuit C).

While O(d) rounds are sufficient for securely and se-
cretly evaluating any depth-d circuit, this does not mean

507

that one cannot get by with fewer rounds. In particu-
lar, a closer look at the underlying method shows that
(when the underlying field of the VSS protocol is taken
to have characteristic 2) the XOR function (on any num-
ber of bits) can be securely and secretly evaluated in a
constant number of rounds and polynomial communica-
tion.

Col laborat ive coin f l ipp ing . This, in turn, allows the
players to collaboratively obtain shared, random bits
(known to no one) in a constant number of rounds: each
player commits a random bit, and the XOR of these
committals is securely and secretly evaluated. This
shared value is the shared random bit.

P r o v i n g a s s e r t i o n s to the c o m m u n i t y . It is useful
to conceptualize as a primitive "prove a given asser-
tion to the community." In particular, players in our
protocol will be required to prove that they have done
some local computation correctly. Even though this lo-
cal computation may require deep circuits, the proof
that it has been done correctly will be fast:

P r o p o s i t i o n 2 Let G : Ea .._+ Eb be a function repre-
sented by a circuit C, and let let a l , " ' , a a be shared
bits which have been previously opened to some player
i. Then player i can commit the bits of G (a l ' - ' a a) ,
and prove to the community that the committals repre-
sent the correctly computed value o f f on or1 • .. try. The
proof reveals nothing in the information.theoretic sense
and requires only a constant number of rounds and a
polynomial amount of communication (in the size of C
and in the security parameter).

To prove that ~ was evaluated correctly, player i will
commit (in addition to the function value) a "certifi-
cate" (Cl ,cb) to demonstrate his claim. The cer-
tificate consists of the Boolean values at all (internal)
wires of the circuit C that evaluates G. The community,
acting as the "verifier," checks the condition "the val-
ues specified on the circuit's wires are correct for each
gate." This is just the conjunct of constant depth predi-
cates on committed values, and so the predicates can be
securely evaluated and publicly revealed in a constant
number of rounds. The players compute the AND on
their own-- tha t is, they accept the proof only if they
believe the circuit is locally correct everywhere.

P s e u d o r a n d o m g e n e r a t o r s . Our protocol makes use
of a "perfect" pseudorandom generator. This is a deter-
ministic polynomial-time algorithm stretching a short,
truly random input string (the "seed") to a longer, pseu-
dorandom string. It is required that the ensemble of out-
put strings be computationally indistinguishable from
truly random strings of the same length. This notion
is due to Blum and Micali IBM82] and Yao [Ya82b],
who showed that such generators exist under, suitable
complexity assumptions.

Complexity assumption
The only complexity assumption used for our main the-
orem is the existence of a pseudorandom generator.

Recently, Impagliazzo, Levin and Luby [ILL89] and
H£stad [Ha90] have shown this assumption to be equiv-
alent to the existence of a one-way function.

The s t r u c t u r e o f our protocol

The protocol we construct has two phases. The first
phase is a non-cryptographic protocol. The only in-
formation revealed to players in the first phase of the
protocol are some random strings.

The second phase of the protocol consists of only a
single round. During this round, the players publicly
reveal information which was computed during the first
phase of the protocol. The information that is revealed
is precisely the "garbled circuit" and its "garbled in-
put" rnentioned in the introduction. Though what is
revealed contains information which betrays the play-
ers' private inputs, the information is nonetheless unus-
able (given the cryptographic assumption) with respect
to polynomial-time computation. After recovering the
garbled circuit and garbled input, the players evaluate it
individually, without interaction, obtaining the desired
result.

D e s c r i p t i o n o f o u r protocol

Obvious cheat ing . As we have said, a protocol is a set
of instructions to be followed by the good players. As
we also said, though, the adversary may have some play-
ers deviate from their prescribed program. The subtle
adversary will do this without exposing the corrupted
players. That is, though the corrupted players follow
different instructions, the messages they send are not
obviously dictated by the adversary. Of course, an ad-
versary may not be subtle at all, and instruct a player
to, say, send nothing when a message is expected, or to
provide to the community a clearly fallacious "proof" of
an assertion. Tilts sort of behavior can be taken care of
by proper conventions (deciding on default values, etc.).
These conventions would complicate the description of
our protocol, but without adding any particular insight.
Thus, for the sake of simplicity and for focusing on the
important issues, we first describe the protocol when
no obvious cheating is detected, and later discuss the
necessary additions.

N o t a t i o n . We fix notation for the remainder of the
paper. We let ~ denote a pseudorandom generator that
stretches a k-bit string s to a k + 2nk bit string, and we
define F, G and H to be the first k, next nk, and last
nk bits produced by the generator, F(s) = G(s)[1 : k],
G(s) = G(s)[k+ l : k + nk], and H(s) = ~ (s) [k + n k + 1:
k + 2nk].

508

Without loss of generality, the circuit being evaluated
consists solely of two-input gates. The circuit has W
wires, which are labeled 0, 1 , . . . , W - 1. To simplify
the exposition of the protocol, we will assume there is
only a single output wire, which is wire W - 1, and all
players are to learn this bit. The protocol can readily
be extended to handle the computation of functions f :
(El) n --+ (El) n, and to more general scenarios.

In the description that follows, the superscript i
ranges over the players, 1 < i _< n. The subscript w
ranges over the wires, 0 < w < W - 1 . Each wirew
has two indices associated with it, 2w and 2w + 1. The
subscript j ranges over such indices, 0 < j < 2W - 1.
Phrases in quotes are comments.

P h a s e I

In this phase, the players compute the garbled circuit
and the garbled input, leaving this information as shared
values.

1. Each player shares his input bits. Let b,o be the
shared bit associated with each input wire w of
the circuit. "Each b~ is a bit from some particular
player's xi value."

2. The players collaboratively flip (2kn + 1)W coins,
which define

.

4.

(a) 2nW length-k strings, sj , for 1 < i < n, 0 <
j < 2 W - 1, and

(b) bits (A0, . . . ,Aw_t) .

i "The strings %. are called seeds, while the strings
sjZ o . . . o s~ are called super-seeds. Each super-seed
is associated with a bit, as follows: s ~ o . . . o s ~ is
associated with A~, while s ~ + l o . . . o s~,~+ 1 is as-
sociated with A~. The value Aw-1 will be publicly
revealed in Step 6."

Each player i gets seeds s}, 0 _< j < 2W - 1, pri-
vately revealed to him.

i revealed to player i are used by The strings sj
player i as the seeds of the pseudorandom gener-
ator ~. Thus player / local ly computes f j = F(s~.),
g} = G(s}), and h i = H(s}), for 0 < j < 2 W - 1.
Player i then commits each f~, gj, and h~, and
proves to the community that these committals
were computed correctly. "The strings f] o . . . o f~
are called wire-labels. They will be publicly re-
vealed in Step 6. The other values committed here
will never be revealed."

. "The players securely and secretly compute some
simple functions on the shared values. These values
will be opened in Step 6. Namely:"

(a)

(b)

A g

For each input wire w of the circuit, the play-
ers securely and secretly compute the garbled
input for this wire, defined by

n i O. 0 n

where Itr]]]~r~] = k. "Thus the gar-
bled input consists of one super-seed for each
input wire of the circuit. Which of the two
super-seeds associated with input wire w-- the
super-seed indexed by 2w or the super-seed in-
dexed by 2w+l - - i s determined by A~ and b~."

For each gate g of the circuit, the players se-
curely and secretly compute the gate-labels for
gate g. These consist of four strings, Ag,
Bg, Cg, and Dg. These strings are defined
as follows: If gate g computes the function
®, the left wire is wire a, the right wire is
wire fl, and and the output wire is wire 7,
0 < a,fl, 7 < W - 1), then, writing a = 2a,
b = 2 f l , a n d c = 2 %

= ega" •

@fs~ o . . . o s~ if Aa ® A z = A~
~s~+ x o...ose~+x otherwise

B# = hla(~ ." "(~h n e g~_[.l(~ • "'(~gbn.l_l

fs~ o . . . o s~ ifA~ ® A S = A 7
[S +s o . . . o s %1 otherwise

Cg t ,~ = g~+~e. . .~g~+~ • h ~ . . . q ~ h ~

{s~ o . . . o s ~ if A--~® A~ = A 7
@ 1 '~ otherwise S o + 1 0 . . . 0 So+ 1

1 n Dg = h~+te...q~h~+ 1 ~ h~+t~...~h'~+l

fs~ o . . .os '~ if A~ ® A~ = A- r
G i s t + to . . .os¢~+t otherwise

P h a s e I I

In this phase, the players publicly reveal the garbled cir-
cuit and the garbled input, and they evaluate it on their
own,

6. The

(a)

(b)

(c)

players publicly reveal

"tile bit associated with the output wire,"
Aw_l, computed in Step 2;

the gate-labels f] , 1 < i < n, 0 < j < 2 W - 1,
committed in Step 4;

the garbled input crl~ o . . . o ~,n~ associated with
each input wire w of the circuit, computed in
Step (5a); and

(d) the gate-labels Ag, Ba, Cg, and D 9 associated
with each gate g, computed in Step (hb).

"Together, the strings revealed in Steps 6(a), 6(b),
and 6(d) constitute the garbled circuit, while those
revealed in Step 6(c) are the garbled input."

509

7. "Each player evaluates the garbled circuit by him-
self, learning a super-seed for each wire. The super-
seed of the root determines the output of the cir-
cuit according to the value of -~w-1- To evaluate
the circuit:"

Initially, for each input wire w, you hold s~o ~ o . . . o
s ~ = 0-~ o . . . o 0-w n if r(0-~) = f ~ , and you hold
s ~ + l o . . . o s~o~+ 1 = 0-1o~ o . . . o 0-'*o~ otherwise.

Suppose inductively that you hold sa+ o • • • o sa+
for the left input wire of a gate g, and you hold
s~+q o . . .oS~+q for the right input wire, where a and
b are even and p,q E {0, 1}. Suppose the output
wire of the gate is wire 7, 0 < 7 < W - 1. Then, for

i i i " ha+p 1 < i < n, set ga+p = G(sa+p) , = H(sSa+p) ,

g~+q = G(s~+q), and h/b+q = H(s~+q), and compute

0-7 = 0-~o . . .o0-~ (I0-~1 = " - = I0-~1 = k) according
to

f ga+p (~" • .(~ga+p(~gb+q(~ • . . (~gb+q(~A#
| i f p = O a n d q = O

1 "* 1 n [h a + p ~ " .. ~ h a + p ~ g b + q ~ . " (~gb+q(~Bg
) i f p = 0 and q = 1

0-7 = l n 1 h n] g a + p @ " " ~ g a + p ~ h b + q ~ " " @ b+q(gCa
| i f p = l a n d q = O

1 n 1 "* h a + p ~ . . . ~ h a + p ~ h b + q ~ " .. (~hb+q~Dg
i f p = 1 and q = 1

You are now holding s~7 o . . . o s~7 = 0-7 if F(o'17) =
ftT, and you are holding 1 "* = 8 2 7 + 1 0 • • • O 8 2 7 + 1 0" 7

otherwise.

When you come to hold 1 n S2w +p o. • • o S2w +p, output
p ~ A w - 1 on your private output tape.

This completes the description of the protocol.

A v e r y s i m p l e e x a m p l e

The following example may be useful in understand the
preceding protocol. Suppose that there are n = 3 play-
ers, /91, P2 and P3, and each player holds a single bit,
xl = 0, x2 = 1 and x3 = 1, respectively. The play-
ers wish to compute function f (x l , x 2 , x3) = 21x2 V x3.
They know the fixed circuit C of Figure 1 which eval-
uates this function (including the labeling of wires and
gates).

Figure 2 depicts the garbled circuit and the garbled
input collaboratively computed by the community, if
(~0,,~1, ~2, ~3, ~4) = (0, 1,0,0, 1). The values of the
gate-labels are shown in Figure 3.

What to do when cheating is detected

The protocol we have just given, with simple modifica-
tions to deal with ostensibly cheating players, provides
us with secure constant round computation in the stan-
dard model. We now sketch the main modifications.

0 1

2 1 2 2 Z 3

Figure 1: The circuit C to be securely evaluated.

If a fault is detected before the completion of Step
1, we replace the faulting player's inputs with "default"
values. This certainly incorporates scenarios such as the
default not being the value on any "proper" input, and
the output including a list of players faulting before they
have committed their input bits.

For faults occurring after Step 1, the computation
proceeds using the input values already committed by
the offending player. There is no need to reveal a bad
players' private input in order to accomplish this. Only
the bad player's seeds need to be known by the good
players--and even these need not be known by the good
players if the fault occurs after Step 4. However, for
faults occurring before the completion of Step 4, the
good players effectively 'frill in" for the bad player. Ran-
dom seeds which would otherwise be issued to the bad
player are revealed to all of the players instead. In this
way, the parties select a garbled circuit and garbled
input from the same distribution as if all players had
played honestly after the committal in Step 1.

Faults detected in Steps 5 and 6 need result in no
"punitive" action whatsoever (that is, nothing of the
faulting player needs be divulged).

510

f~of:of~

A2
B2

D2

fd o& of~ (O) 1 2 3

: 2 3 fT°f7°f~

I
A1
B:
C~
Dt

f4ofaofa
1 2 3 1 2 3 f~ of : o f t f~ of~ of~

I 2 3 1 2 3 80080080 82082082 : 2 3 85085085

f~ofgof2 (0)

f~o~2of#

0'igure 2: The
;~nd Aw-values for
(Ao,Ax,A2,Aa, A4) = (0 ,1 ,0 ,0 ,1) , and (bo,bl,b2)
~:o, x, 1).

garbled circuit, garbled input,
the circuit of Figure 1, where

4 P r o v i n g S e c u r i t y

A full proof of the security for our protocol is very in-
volved and not well suited to an abstract. In this sec-
tion, we formMly state our main theorem and briefly
c.iscuss the nature of a proof.

T h e o r e m 3 Assume the standard model, t < n/2,
f : (~l)n ~ (~e)n a function realized by a circuit C.
Assume that a pseudorandom generator exists. Then
l.~ere is a protocol7) that strongly l-securely computes f
i:l const, rounds, where cons1; is an absolute conslanl.
Furthermore, a natural encoding of protocol 7) can be
found by a fixed algorithm in time polynomial in ICI.
Local computation in 7) is poly(IC[,k) lime bounded,

here po ly is a fixed polynomial.

As mentioned in Section 1, corresponding results for
ol,her models of computation follow. For example, the
result of Feldman [Fe88] implies that public-key encryp-
tion can be used to establish the analogous result for the
broadcast model.

A: = g l~ . . , eg~

C: = g le - . , eg~

A2 = g l . . . , eg;
B2 = h ~ . - . @ h ~

D2 = h l e . - - . h ;

• g~e.--eg; • 4 o.. .o s~

de . - - eg? • 4 o . . .o , ;
g~e..-eg~ • 4 o-.-o s~

• h~e.., eh; ~ 4 o...o ~;

Figure 3: The gate-labels for the two gates of Figure 2.

C o r o l l a r y 4 Same as Theorem 3, but in the broadcast
model and assuming a secure public-key cryptosystem.

To give a second example, the result of Ben-Or and
EI-Yaniv [BE88] can be applied to give secure constant-
round computation in the model with only private chan-
nels.

C o r o l l a r y 5 Same as Theorem 3, but for t < n/3 and
in the model with only private channels (no broadcast).

To prove Theorem 3 we must exhibit a simulator S
which satisfies the privacy and correctness constraints.
This is a very big job.

Privacy is the main issue. To achieve privacy, the
simulator S must provide the adversary A with a com-
putationally indistinguishable view from that which it
would see when interacting in the real network. This
is argued round-by-round, repeatedly showing how to
extend the view that the simulator has created so far
for the adversary to a view that works for one more
round. The simulator must imitate broadcast messages
and messages sent along private channels to players cor-
rupted in the simulation, and the simulator must pro-
vide to the adversary a fake "state" for processors when
they are corrupted by the adversary during the the sim-
ulation.

The proof mirrors the two phase structure of the pro-
tocol. The first phase of the protocol is argued to be
strongly t-private in the "information-theoretic sense,"
and revealing nothing. Then we show how to extend
this simulation for the one round of the second phase.

For that, we must show both how to simulate the
players' final round of broadcasts, and also, how to sim-
ulate the players' private state for those players who are
corrupted during the adversary's final round.

The former task is the more interesting. Proceed-
ing intuitively, to simulate the player's final round of
messages, we must insure that the garbled circuit and
the garbled input released in Step 6 is drawn from a
distribution that the simulator can approximate (up

511

to computat ional indistinguishability) given the simu-
lator 's previous history. To do this, the simulator con-
structed for the first phase of the protocol, observing
outgoing messages to at least (n + 1)/2 players, "knows"
the values ~ . that the adversary has effectively commit-
ted to. Likewise, the simulator will "know" the seeds
issued to all of the players.

The simulator uses this information in constructing
a "fake" garbled circuit and garbled input which it will
(effectively) hand over to the adversary.

To construct a convincing garbled circuit and gar-
bled input, an output oracle query of ~'~. is made, and
the simulator will learn (for a Boolean function) a bit
b. Wire-labels are selected as the image under F of
the seeds which the simulator already knows from the
first phase of the simulation. Then, a "random path"
through the garbled circuit is selected. This pa th (to-
gether with the seeds) determines which one of the four
gate labels is to be "used" in evaluating the circuit, and
what the garbled input is. The bit b is used to select
)~w-1 so that the circuit (given the selected path) com-
putes the bit b. All that remains unspecified are the
three "unused" gate-labels associated with each gate;
the simulator simply fills in random strings here.

Of course, it is far from clear that this "fake" garbled
circuit and garbled input will in any sense fool the ad-
versary. A key lemma to establishing this is that , for any
u7 E (~t)n , the space of "real" garbled circuits and gar-
bled inputs for u7 is computat ionally indistinguishable
from the space of "fake" garbled circuits and garbled
inputs which we have just specif ied--and this remains
so, even if conditioned on some particular partial choice
of seeds {S~.}ieT ' 0<j<2~V-1, for IT I <_ n -- 1.

5 Open Problems

Our cryptographic protocol for constant-round, secure
function evaluation is optimal in the sense that it is
based on the mildest possible cryptographic assumption,
the existence of a one-way function, and some positive
number of rounds is certainly required.

Let us conclude by stat ing what we believe to be the
key open question in this a rea- -namely ,

Is there a constant-round, non-cryptographic
protocol for secure function evaluation?

Tha t is, is there a constant-round protocol, in the stan-
dard model, tha t allows n computat ionally unbounded
players to defeat a computat ionally unbounded adver-
sary, while using only a polynomial amount of commu-
nication?

This problem is open even for the case of t = 1.
A partial answer to this question is now known, due to

Beaver, Feigenbaum, Kilian, and Rogaway [BFKR89]:
they show tha t any functions on O ((n l o g n) / t) shared
bits can be t-securely evaluated in a constant number
of rounds by a network of n processors.

Acknowledgments

The various authors happily acknowledge discussions
with Mihir Bellare, Shaft Goldwasser, Stuart Haber,
Joe Kilian, Rafail Ostrovsky, Charlie Rackoff, and Moti
Yung.

References

[BB89] J. Bar-llan and D. Beaver, "Non-Cryptographic
Fault Tolerant Computing in a Constant Number
of Rounds of Interaction," Proc. of the 8th PODC
(1989), 201-09.

[Be88] D. Beaver, "Secure Multiparty Protocols Tolerating
Half Faulty Processors," Harvard Technical Report
TR-19-88, and in CRYPTO-89 Proceedings.

[Be90] D. Beaver, "Security, Fault-Tolerance, and Commu-
nication Complexity for Distributed Systems," Har-
vard University Ph.D. Thesis, 1990.

[BFKR89] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rog-
away, "Cryptographic Applications of Locally Ran-
dom Reductions," Bell Laboratories Technical Mem-
orandum, November 1989. Also a 1990 PODC sub-
mission, "Security with Low Communication Over-
head."

[BG89] D. Beaver and S. Goldwasser, "Multiparty Com-
putations with Faulty Majority," CRYPTO-89 Pro-
ceedings.

[BE88] M. Ben-Or and R. E1-Yaniv, "Interactive Consis-
tency in Constant Expected Time," manuscript, De-
cember 1988.

[BGW88] M. Ben-Or, S. Goldwasser and A~ Wigderson,
"Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation," Proc. of
the 20th STOC (1988), 1-10.

[BM82] M. Blum and S. Micali, "How to Generate Cryp-
tographically Strong Sequences of Pseudo-Random
Bits," SIAM J. of Computing, 13:850-864 (1984),
and FOCS 82.

[Ch89] D. Chaum, "The Spymasters Double-Agent Prob-
lem: Multiparty Computations Secure Uncondition-
ally from Minorities and Cryptographically from
Majorities," CRYPTO-89 Proceeding.

[CCD88] D. Chaum, C. Cr@peau and 1. Damg£rd, "Multi-
party Unconditionally Secure Protocols," Proc. of
the 20th STOC (1988), 11-19.

[CDG87] D. Chaum, I. Damg£rd and J. van de Graft,
"Multiparty Computations Ensuring the Privacy of
Each Party's Input and Correctness of the Result,"
CRYPTO-87 Proceedings, 87-119.

[CGMA85] B. Chor, O. Goldreich, S. Micali and B. Awer-
buch, "Verifiable Secret Sharing and Achieving Si-
multaneity in the Presence of Faults," Proc. of the
26th FOCS (1985), 383-95.

512

[C, R87] B. Chor and M. Rabin, "Achieving Independence in
Logarithmic Number of Rounds," Proc. of the 6th
P O D C (1987).

[Fe88] P. Feldman, "One Can Always Assume Private
Channels," unpublished manuscript (1988).

[FM88] P. Feldman and S. Micali, "Optimal Algorithms
for Byzantine Agreement," Proc. of the 20th S T O C
(1988), 148-161.

[C.HY87] Z. Galil, S. Haber and M. Yung, "Cryptographic
Computation: Secure Fault-Tolerant Protocols and
the Public-Key Model," CRYPTO-87 Proceedings,
135-155.

[GMW87] O. Goldreich, S. Micali and A. Wigderson, "How
to Play Any Mental Game," Proc. of the 19th S T O C
(1987), 218-229.

[GV87] O. Goldreich and R. VaJnish, "How to Solve any
Protocol Problem--An Efficiency Improvement,"
CRYPTO-87 Proceedings, 76-86.

[Ha88] S. Haber, "Multi-Party Cryptographic Computa-
tion: Techniques and Applications," Columbia Uni-
versity Ph.D. Thesis (1988).

[H~90] J. H£stad, "Pseudo-Random Generators with Uni-
form Assumptions," these proceedings.

[KMR90] J. Kilian, S. Micah and P. Rogaway, "The Notion
of Secure Computation," manuscript, March 1990.

[IIL89] R. Impagliazzo, L. Levin and M. Luby, "Pseudo-
Random Generation from One-Way Functions,"
Proc. of the 21st S T O C (1989), 12-23.

[RB89] T. Rabin and M. Ben-Or, "Verifiable Secret Shar-
ing and Multiparty Protocols with Honest Major-
ity," Proc. of the 21st S T O C (1989), 73-85.

[Ro90] P. Rogaway, "The Round Complexity of Secure Pro-
tocols," MIT Ph.D. Thesis (1990).

[Ya82a] A. Yao, Protocols for Secure Computation, Proc. of
the 23rd FOCS (1982) 160-164.

[¥a82b] A. Yao, "Theory and Applications of Trapdoor
Functions," Proc. of the 23rd FOCS (1982) 80-91.

[Ya86] A. Yao, "How to Generate and Exchange Secrets,"
Proc. of the 18th S T O C (1986) 162-167.

513

