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Abstract. Many people seem to think that cryptography is all about
creating and analyzing cryptographic schemes. This view ignores the
centrality of definitions in shaping the character of the field. More than
schemes or their analysis, it is definitions that most occupy my thoughts.
In this paper, written to accompany an invited talk at Latincrypt 2017,
I try to explain my own fascination with definitions. I outline a few of
the definitions I’ve recently worked on—garbling schemes, online AE,
and onion encryption—and provide some general advice and comments
about the definitional enterprise.
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1 Introduction

Cryptography is about more than creating and analyzing cryptographic schemes.
While these two activities are central cryptographic tasks, cryptography is also,
and importantly, about definitions.

Cryptographic definitions emerged within the provable-security framework,
which largely begins with Goldwasser and Micali [18]. The basic steps are to
define a cryptographic problem, to devise a protocol for it, and to prove that the
protocol satisfies its definition, assuming that some other cryptographic scheme
satisfies its definition. This type of proof is known as a reduction.

It seems little discussed that cryptographic definitions can be significant
beyond the provable security framework. (a) Definitions can have a profound
role in what we see in our field—what is rendered visible—and how we approach
working on problems [23]. (b) Definitions can enable clear communication and
clear thinking. When you encounter confusion in cryptography—which is often—
the root cause is often a lack of agreement as to what you’re trying to accomplish,
and what the words even mean. (c) Definitions can be useful in breaking schemes.
I remember breaking the NSA’s Dual Counter Mode encryption scheme [10] in
minutes, as I read the spec. The NSA claimed this authenticated encryption
(AE) scheme to be the product of a 1.5 year effort. It’s not that I’m a skilled
cryptanalyst—I am not. What I had that the NSA authors obviously didn’t was
an understanding of a definition for AE. (d) Definitions can give rise to schemes
with improved efficiency. When I started off, I anticipated that there would be a
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cost, in running time, to doing things with definitions and proofs. And sometimes
there is. But, just as often, the exact opposite happens. By having definitions
and proofs you are sometimes able to develop mechanisms that let you “cut to
the bone,” but no deeper, thereby improving efficiency.(e) Finally, there are defi-
nitional models that fall outside of the provable security paradigm, such as work
done purely in the random-oracle model, the random-permutation model, or the
ideal-cipher model; or things in Dolev-Yao style models.Such work absolutely is
cryptography, begins with definitions, and shouldn’t be denigrated because it
doesn’t fall within the reduction-based tradition.

My plan for this paper is to provide examples of definitions in three differ-
ent domains. I’ve chosen definitions that are relatively recent, and that have
something to do with encryption. I’ll discuss garbling schemes (or garbled cir-
cuits), online AE, and onion AE (or simply onion encryption). The hope is that
by giving multiple examples I’ll manage to communicate something about the
character of definitional work that I wouldn’t manage to communicate if I spoke
more abstractly, or if focused on a single example. My conclusions, supported
by the three examples, are in Sect. 5.

I first wrote about the value of cryptographic definitions more than a decade
ago [22]. The current paper is from a different perspective and uses different
examples. The examples are from papers with Mihir Bellare, Viet Tung Hoang,
Reza Reyhanitabar, Damian Vizár, and Yusi Zhang [4,19,25,26].

2 Garbling Schemes

In a conventional boolean circuit, a label, zero or one, is associated to each wire.
These represent truth values, the 0-label corresponding to false and the 1-label
corresponding to true. The labels propagate up the circuit, moving from the
input wires toward a designated output wire. If you possess the labels for the
inputs to some gate then you possess the label for its output, which you compute
according to the functionality of the gate. An or-gate with input labels of 0 and 1
gives you an output label of 1; an and-gate with input labels of 0 and 1 gives
you an output label of 0; and so on.

A garbled circuit is similar, but instead of propagating labels with known
semantics you propagate tokens with unknown semantics. There are two tokens
associated to each wire. They are strings, maybe 128 bits each. You can think
of them as random 128-bit strings. Possession of one token doesn’t imply what
the other one is. To be sure, there is a semantics, a truth values, associated to
each token; if a wire has tokens of A and B, either A represents true and B
represents false, or else it’s the other way around. But you can’t just look at a
token and know what its semantics is.

If you happen to possess an A token (of A and B) for the left-hand wire of
an and gate, and you have the C token (of C and D) for the right-hand, and if
the output wire has tokens of E and F , then if A has hidden semantics of false
and C of true, then you need to be able to compute the output token, whether E
or F , that has hidden semantics of false. In general, each gate, which you can
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call a garbled gate, is a little algorithm, a recipe, that tells you how to propagate
tokens from the input wires to the output wire, doing this in a way that respects
the hidden semantics. You evaluate the garbled circuit in this manner until you
acquire a token for the final output, and usually the semantics associated to that
particular token is made manifest from the token itself. This is how evaluating
a garbled circuit works.

Garbled circuits were first described in oral presentations given by Andy Yao
in the early or mid 1980s, and it become customary to cite a certain 1986 paper
of Yao’s for the garbled-circuit idea [30]. But if you read the paper, you won’t
find there any hint of garbled circuits. I’m actually not sure if the conventional
citation is even the paper corresponding to Yao’s talks; a 1982 paper of Yao’s
looks to be more relevant [31], although there’s nothing described there like
garbled circuits, either. Perhaps the informal and oral culture surrounding this
area is part of what launched garbled circuits on a trajectory in which definitions
weren’t seen as essential. This became characteristic of multiparty computation
(MPC) more broadly, despite it being embraced by the theoretical computer
science, STOC/FOCS, community.

You might guess that in the intervening 25 years, someone would have gone
back and defined just what a garbled circuit was intended to do. Strangely, this
didn’t happen. I think the reason for this is that an entire community had come
to view garbled circuits as a technique. Being seen as a method for solving other
problems, it wasn’t conceptualized as something in need of a definition.

Originally, garbled circuits had been seen as a tool to solve two-party secure-
function evaluation. One party, call it B, presents to the other party, call it A, a
garbled circuit specialized to his own (that is, B’s) input. The sending party B
also helps the receiving party A to acquire exactly one of the two tokens for
each input wire held by A—in particular, to acquire the token with the correct
semantics for that wire, as per A’s input. Party A then evaluates the garbled
circuit on its own, pushing tokens up the circuit until it has the garbled output,
which, as I said before, was supposed to be interpretable as an actual output.

So my coauthors and I wanted to identify the problem that garbled cir-
cuits are implicitly intended to solve [4]. I think that one of the key realizations
was that garbled circuits really have nothing to do with circuits. In fact, there
were already examples in the literature in which people were garbling other
things—arithmetic circuits, for example, or branching programs, or DFAs. More
recently, people have been wanting to garble Random Access Machine (RAM)
computations, or Turing Machine computations. The part of garbling that one
really needed to focus on wasn’t the garbled thing, but the garbling scheme that
produces it—the process that takes in a function and turns it into a garbled
version of that function. This should be done in a way that’s representation-
independent. That was our first goal for a definition in this domain. A second
goal was to make sure that we would encompass as many applications as possi-
ble. There are already over a thousand papers that used garbling and we weren’t
going to be able to have an abstraction that would work for all of them. But we
wanted something that would work for most.
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So here is an overview for our definition of a garbling scheme. First, and
quite importantly, we have to lay down the syntax for what a garbling scheme
does. When I speak here of syntax, I mean the types of algorithms one must
specify for a scheme—the signature (the domain and range) for each. By way
of example, if you are defining a blockcipher, the syntax is that of a map E :
K ×{0, 1}n → {0, 1}n such that E(K, ·) is always a permutation. It seems really
useful to separate the syntax of the object you’re defining from the measure of
security for it.Yet it’s common for people to try to define cryptographic goals
without attending much to the desired syntax. This is a mistake.

Fig. 1. Garbling schemes. Left: Informally, a function f is probabilistically factored
into a triple of functions d ◦ F ◦ e. In actuality, all of these are strings. They represent
functions using the maps ev, En, Ev, and De. Right: Formally, a garbling scheme
consists of functions (Gb, En, De, Ev, ev) satisfying the indicated relationship. The
function Gb is probabilistic; the remaining functions are deterministic.

So here’s the basic idea for a garbling scheme’s syntax. See the left-hand
side of Fig. 1. You’re given some function f—think of it as the initial function—
and garbling it is a way of “factoring” f , probabilistically, into three pieces:
f = d ◦ F ◦ e (with composition written right-to-left). We’re going to feed f
(maybe a circuit you want to garble) into a garbling scheme that will produce
those three pieces: an encoding function e, which will take in the initial inputs
and produce the garbled inputs; the garbled function F itself; and the decoding
function d, which will take in the garbled output and produce the final output.
We intend that if f maps x to y, then you will get the same result by feeding x
into e to get the garbled input X, then feeding X into the garbled function F
to get the garbled output Y , then feeding Y into decoding function d to get y.

A problem with what I’ve just described is that I am treating f , e, F , and d
as both functions and as strings that are either fed into algorithms or spat out
by them. That doesn’t work in this setting, because the whole point of garbling
is to deal with matters of how things are represented. We therefore need to be
quite explicit about how we interpret strings as functions. In many contexts in
cryptography we don’t need to bother with that; we treat strings as describing
functions with very little fuss. But here we’re going to regard f , F , e, and d as
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strings that describe functions under the auspices of maps named ev, En, Ev,
and De, respectively. See the right-hand side of Fig. 1, where a garbling scheme is
shown to be a 5-tuple of algorithms G = (Gb,En,De,Ev, ev). The main algorithm,
the “business end” of things, is the probabilistic garbling algorithm Gb. It maps
a string representing a function to a string representing a garbled function. Then
there are four more functions. These encode the initial input, decode the garbled
output, evaluate the string representing the garbled function, and evaluate the
string representing the initial function. We intend first a correctness condition,
as illustrated on the left side of Fig. 1. You always get the same thing when
you go through the route on the top and the route on the bottom. There’s also
a nondegeneracy condition that makes sure that the main work is done in the
garbling function itself; we don’t want you to factor f in such a way that the
real work is happening in the encoding or decoding step.

What I’ve described so far is the syntax of a garbling scheme; I haven’t
described security. In our paper [4], we define notions we call privacy, authentic-
ity, and obliviousness. I’ll only describe the first. The basic intuition for privacy is
that learning (F,X, d)—the garbled function, the garbled input, and the decod-
ing function—shouldn’t reveal anything except the final output y. But the basic
intuition isn’t quite right, because real garbling schemes always leak something
beyond the output y. A garbled circuit typically leaks the topology of the under-
lying circuit—the pattern of how gates are connected up—if not the circuit itself.
You could hide these things, but you would still leak the circuit’s size. In order to
capture what is understood to be leaked, we provide a side-information function,
denoted Φ. Given an initial function f , it indicates the information Φ(f) that we
expect to leak by revealing F . For circuit garbling, side-information functions
Φcirc(f), Φtopo(f), and Φsize(f) return all of f , the topology of f , and the size
of f , respectively. We always assume that we leak at least the signature of the
function f , meaning the values n and m where f: {0, 1}n → {0, 1}m.

Now ready to define privacy for a garbling scheme, we imagine that an
adversary is presented one of two types of oracles—a left-handed oracle or a
right-handed oracle. Which type of oracle the adversary gets is determined by
a coin flip b � {0, 1}: if b = 0 the adversary gets a left-handed oracle; if b = 1
it gets a right-handed oracle. Our adversary presents to its oracle a pair of
pairs (f0, x0), (f1, x1). If the oracle is left-handed then it properly garbles the
left-hand pair: it computes (F, e, d)�Gb(1k, f0) and then sets X ← En(e, x0).
If the oracle is right-handed then it garbles the right-hand pair: it computes
(F, e, d)�Gb(1k, f1) and then sets X ← En(e, x1). Either way, the oracle now
returns (F,X, d): the garbled function, the garbled input, and the decoding func-
tion. The adversary’s job is to guess the bit b. We do have to ensure that
f0(x0) = f1(x1); otherwise, it would be easy for the adversary to compute
the value b. We also have to ensure that the side-information doesn’t allow a
trivial distinguishing attack. Formalizing these requirements, regardless of b,
the oracle begins by testing if Φ(f0) �= Φ(f1) or ev(f0, x0) �= ev(f1, x1). If so,
the oracle just returns a distinguished symbol ⊥. The adversary’s advantage
Advprv.ind

G,Φ (A, k) = 2Pr[b′ = b] − 1 is the probability that A correctly identi-
fies b, renormalized, as usual, to the interval [−1, 1].
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There is also a simulation-based notion for garbling privacy. Here the adver-
sary presents to its oracle a single pair (f, x). The oracle will behave in one of
two ways, based on a coin flip b � {0, 1}. If it’s a “real” oracle, b = 1, then
it garbles the function f and its input x, computing (F, e, d)�Gb(1k, f) and
X ← En(e, x). It returns (F,X, d). When the oracle is a “fake” oracle, b = 0,
a simulator must provide (F,X, d) without benefit of seeing f and x. What
it is given instead is Φ(f) and f(x). This definition of privacy also seems like a
relatively direct way to capture the idea that the garbled input, the garbled func-
tion, and the decoding function don’t leak anything that shouldn’t be leaked.
Adversarial advantage is defined as before, Advprv.sim

G,Φ,S (A, k) = 2Pr[b′ = b] − 1.
How do these two notions relate? They’re quite close. The simulation defini-

tion implies the indistinguishability version, and the indistinguishability version
implies the simulatability version if you add in some modest side-condition.

Where does this go from here? By having definitions for what a garbling
scheme is supposed to do we are able to achieve much improved efficiency [2]:
we can do garbled circuit evaluation, in the ideal-permutation model, where the
work associated to evaluating a gate is, say, a single AES computation employing
a fixed key. In practice, something like 25 clock cycles, or 7.5 ns, per gate. Much
of this efficiency improvement, however, isn’t due to any cryptographic advance,
but to a different definitional aspect: formalizing circuits in a particularly clean
way, then implementing directly to that formalization. In another direction, we
look at dynamic adversaries (they corrupt parties as-they-go) [3]. We find that
garbled circuits, as conventionally realized, don’t work for dynamic adversaries.
When papers implicitly assumed that conventional circuit garbling works even
in the case of dynamic adversaries, they made claims that were not correct.

3 Online AE

I will next describe online authenticated-encryption (online AE), sketching joint
work with Hoang, Reyhanitabar, and Vizár from 2015 [19].

I hope that readers have seen the “basic” notion of AE, what I’ll call nonce-
based AE (NAE). Under NAE, encryption is a deterministic way to make a
key K, associated data A, and a message M to a ciphertext C; formally, an
NAE scheme is a function E : K × N × A × M → C where E(K,N,A, ·) is
an injection, where x ∈ M implies {0, 1}|x| ⊆ M, and where |E(K,A,M)| =
|M | + τ for some constant τ . We can then define the decryption function from
the encryption function, letting D(K,N,A,C) = M if there is an M for which
E(K,N,A,M) = C, and letting D(K,N,A,C) = ⊥ otherwise. Since we have
defined the behavior of D from E , we can omit the usual correctness condition,
which would mandate that they appropriately compose.

For NAE security, we ask for the following indistinguishability condition [24].
In the “real” game, an adversary is given an oracle that encrypts according to EK :
for a K chosen uniformly from K at the beginning of the game, it responds to
a query (N,A,M) with EK(N,A,M). It also has a second oracle that decrypts
according to DK : given (N,A,C), it returns the plaintext M = DK(N,A,C).
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We ask the adversary to distinguish this pair of oracles from an “ideal” pair of
oracles—the first of which spits out |M |+τ random bits and the second of which
always answers ⊥, an indication of invalidity.

When you make a definition like this, you need to add in provisos to out-
law trivial wins. The adversary could always encrypt some (N,A,M) to get C,
then decrypt (N,A,C) to get back either M or ⊥, thereby identifying the oper-
ative game. Similarly it could repeat a nonce value N in an encryption query,
violating the intent of a nonce. So we must either forbid these activities, or
give the adversary no credit if it engages in them. The advantage is defined as
Advnae

Π (A) = Pr[AEK ,Dk → 1] − Pr[A$,⊥ → 1]. This NAE notion has been quite
influential. For example, the CAESAR competition going on right now [7] has
resulted in dozens of submissions designed to meet it.

Now one of the often-heard complaints about NAE is that a conforming
scheme can fail completely if nonces are reused. And we know from experience
that nonces do get reused with alarming regularity. A recent example is the
KRACK attack on WPA2 [29]. Nonce reuse is usually a result of error, but
there are also settings in which it is difficult or impossible to ensure that nonces
don’t get reused. So a nice strengthening of the NAE notion is the notion of
misuse-resistant AE, or MRAE [24]. It’s not a great name, as the misuse we are
considering here is only one form of misuse, namely, nonce reuse.

The definition of MRAE looks just like the definition of NAE except that
we allow the adversary to repeat N -values on encryption queries, as long as it
doesn’t repeat an entire (N,A,M) triple. That’s it. Yet the notion becomes quite
different to achieve. One of the key differences between NAE and MRAE is that,
for the latter, you’ve got to read the entire plaintext before you can output even
the first bit of ciphertext: online encryption is impossible. This is easy to see
because if the first bit of ciphertext didn’t depend on the last bit of plaintext
then you’d have an easy way to win the MRAE game.

There are situations where the can’t-be-online restriction is a problem. You
might have a long input an no ability to buffer it all. You might need to act
on the prefix of a message before hearing the suffix. There has therefore been a
perceived need to achieve something like MRAE, but where online encryption
would be possible. When I say that online encryption is possible, I mean that
you should be able to read in a plaintext left-to-right, and, using a constant
amount of memory, spit out bits until you extrude the entire ciphertext.

In order to answer this need, Fleischmann, Forler, and Lucks (FFL) proposed
a security notion for online authenticated-encryption [15] that I’ll call OAE1. It
was said to imply security against nonce reuse, yet to be achievable by online
schemes. The notion quickly caught on. Among the round-1 CAESAR submis-
sions (2014), fully a dozen claimed OAE1 security. Additional schemes were said
to achieve something closely related to OAE1 security. This is an extraordinary
degree of influence for a 2012 definition.

But there are problems with OAE1. To define the notion, I must go back
to an earlier definition from Bellare, Boldyreva, Knudsen, and Namprempre for
an online cipher [1]. They start by fixing a block length n and assuming that
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we’re going to be enciphering strings that are a multiple of n bits. They imagine
an ideal object in which the i-th n-bit block of plaintext gets enciphered to the
i-th n-bit block of ciphertext. This block may depend only on blocks 1 to i.
A good online cipher must approximate this ideal object. More formally, let
Bn = {0, 1}n and define a multiple-of-n cipher as a map E : K × B∗

n → B∗
n

where E(K, ·) is a length-preserving injection for each K. Let OPerm[n] be all
multiple-of-n ciphers π where the i-th block of π(X) depends only on the first i
blocks of X. A good online cipher is a multiple-of-n cipher E where E(K, ·) is
indistinguishable from a random permutation π � OPerm[n].

FFL’s definition for OAE1 modifies the online-cipher notion in a simple way.
FFL again assume that n is fixed and that the plaintext is a multiple of n
bits. They assume that the output is going to look like a ciphertext piece that
is exactly as long as the original plaintext, followed by a τ -bit authentication
tag T . The ciphertext piece must be given by an online cipher, although tweaked
by a header that encodes the nonce N and associated data A. The tag T should
be pseudorandom: it should look like τ random bits. This is the privacy notion.
There is also a standard notion of authenticity that goes with it, capturing
unforgeability under an adaptive chosen-message attack.

Unfortunately, the OAE1 definition doesn’t make a whole lot of sense. Its
problems include:

1. Admits unexpected attacks. OAE1 doesn’t guarantee the anticipated degree
of privacy in the face of nonce reuse. With an OAE1-secure scheme, if you’re
given an oracle that takes in a message-prefix, appends a secret suffix, and
then encrypts the whole thing, then you can play with that oracle to recover
that secret suffix, in its entirety, with a small number of queries. Attacks like
this can be damaging, as seen in the BEAST attack on SSL/TLS [14]. Still,
this is not the worst problem for OAE1. Maybe it’s just incorrect intuition
about what online AE can be expected to achieve; maybe any online-AE
scheme must fall to this sort of attack.

2. The blocksize should be user-selectable, not a scheme-dependent constant.
Why were we trying to make an online-AE scheme in the first place? It is
due to some memory or latency restriction. Maybe the encryption is realized
by an ASIC or FPGA, and we can only give over so much memory for the
task. Maybe a video file is being streamed to a user, and there is only so long
the user should wait. Whatever the restriction is, it has nothing to do with
the blocksize of some implementing blockcipher. That value, which is likely
to be quite small (like or 64 or 128 bits), has nothing to do with the extent
to which a scheme can buffer things or wait. Since we can’t realistically know
what the user’s actual constraint is, it is best if this is left unspecified—a
user-selectable value, not a scheme-dependent constant.

3. Decryption also needs to be online. It’s very strange to demand that encryp-
tion be online but make no analogous requirement for decryption. In fact,
it’s hard to even think of a context in which it would be OK for decryption
to require buffering the whole message, and yet there was a constraint that
this not be done at encryption time. The OAE1 notion effectively demands
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that decryption not be online, as the authenticity formalization effectively
demands that no information be released until the ciphertext, in its entirety,
is checked for validity.

4. Security needs to be defined for strings of all lengths. The OAE1 definition
inherits from the definition of an online cipher the peculiar characteristic that
the length of the input must be a multiple of n. When you actually describe
a general-purpose scheme you’re going to want to ensure that it works on all
bit strings, or at least all byte strings. So we need a security definition that
is applicable to all bit strings or all byte strings. And saying that you achieve
a rich domain through padding begs the question: what exactly is it that you
are achieving through the use of padding?

5. The reference object is not ideal. Finally, the reference object that OAE1
measures a scheme against is not ideal: one can do better than something
that looks like an ideal online cipher with a small n followed by a bunch of
random-looking bits. We should not be taking such an object as our yardstick.

In order to address these concerns we need to change not only the OAE1
security notion, but to completely revise the basic syntax.

Fig. 2. Operation of an OAE2-secure AE scheme. The plaintext is broken into
segments M = M1M2 · · · Mm of arbitrary and possibly varying lengths. Each Mi is
encrypted to a ciphertext segment Ci of length |Mi| + τ . The key K and nonce N
initialize the process. Decryption reverses the process. If an authenticity error should
arise, it continues for all subsequent blocks. The figure omits associated data.

Refer to Fig. 2. Messages to be encrypted or decrypted will be segmented.
We think of the encryption scheme’s user as selecting the segmentation. To
be fully general, we allow the segments to have varying lengths (although we
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expect that, typically, all segments but the last will have the same length).
Segmenting the plaintext amounts to supporting an API that says: here’s the
first piece of message I’d like to encrypt; and here’s the next piece; and so on,
until one presents the final message chunk. We would normally expect that each
ciphertext segment Ci has a length |Mi| + τ that is a fixed amount greater than
the corresponding plaintext segment. We expect that each plaintext Mi will fit
in memory, but the concatenation of all plaintext segments might not. After
processing a plaintext segment, the encryption algorithm can remember what it
wants by updating its constant-size internal state. The initial state is determined
by the key K and the nonce N .

Decrypting the segmented ciphertext (C1, C2, . . . , Cm) that arose from
encrypting (M1,M2, . . . , Mm) should result in the original segmentation, while
changing the segmentation in any way should result in an authentication failure
from that point on. If a ciphertext segment gets corrupted, this should result in
an authentication failureon trying to decrypt that segment, and decryption of
all future segments should also fail.

Here now is the syntax for what we want. We say that a segmented-AE scheme
is a triple Π = (K, E ,D) where K is a distribution on strings (or the algorithm
that induces it), and E = (E .init, E .next, E .last) and D = (D.init,D.next,D.last)
are triples of deterministic algorithms where E .init: K × N → S and E .next:
S × A × M → C × S and E .last: S × A × M → C and D.init: K × N → S
and D.next: S × A × C → (M × S) ∪ {⊥} and D.last: S × A × C → M ∪ {⊥}.
For simplicity, assume A = M = C = {0, 1}∗ and N ⊆ {0, 1}∗. For generality,
we have allowed a new segment Ai of associated data to be presented alongside
each new segment Mi of plaintext.

How do we define security? The notion we call OAE2 can again be described
with a simple pair of games. The “real” game looks as we just described encryp-
tion: the adversary can segment messages however it likes, it can select arbitrary
nonces, and for each such nonce N and (M1, . . . , Mm) it gets back the cor-
responding segmented ciphertext (C1, . . . Cm). It can repeat N -values in any
manner it likes. For the “ideal” game, which the adversary must distinguish
from the “real” one, the E .next functionality is replaced by a random injective
function f , tweaked as we will describe, mapping �-bit strings to (� + τ)-bit
strings for all �. Now as for the tweaks:the function f used to map the first seg-
ment is tweaked by N , so C1 = fN (M1); the function f used to map the second
segment is tweaked by N and M1, so C2 = fN,M1(M2); the function f used to
map the third segment is tweaked by N , M1, and M2, so C3 = fN,M1,M2(M3);
and so on. The last block is different. It is important to distinguish the last
block from prior ones, as the end of a message is a distinguished status. For the
last block, then, for the ideal functionality corresponding to what is processed
in the “real” scheme using E .last, we set Cm = fN,M1,M2,...,Mm−1,∗(Mm), the
∗ denoting another variant tweak. Throughout, distinct tweaks correspond to
independent random injections. For simplicity, our description has omitted the
associated data.
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Fig. 3. The nested-encryption approach for onion routing. The client shares
a key ki with each onion router ORi. To send a message m to a server, the client
iteratively encrypts it. Each OR will “peel off” (decrypt) a single layer of encryption.
The nested-encryption idea, for the public-key setting, is from Chaum [11].

The development of OAE2 would now continue by exploring definitional vari-
ants, then investigating schemes that meet the notions. I don’t think it particu-
larly desirable to create schemes for a task like this from scratch; better to start
with an NAE or MRAE scheme.

In describing where OAE2 came from, I told it as a story of wanting to fix
the OAE1 definition from FFL. But I could have arrived at the same definition
from other directions. The kind of online AE goal we are after has been known
for a long time. Prior work by Tsang, Solomakhin, Smith [28] and by Bertoni,
Daemen, Peeters, Van Assche [8] gives related notions and schemes. Netflix has
posted a protocol description for an object that does virtually the same thing
as we do [20]. In general, for questions of practical importance in cryptography,
practitioners will often have noticed the problem and posed solutions long before
it gets on the radar of any theory-minded cryptographer.

4 Onion Encryption

The last definitional problem I’d like to describe is that of onion encryption, or
onion-AE. This is recent work with Yusi Zhang [25,26].

The task we address is another type of AE. See Fig. 3. A client (or user) wants
to send a message to a server (or destination), transmitting it over an onion-
routing network, which is a collection of cooperating servers (onion routers). In
the usual solution, the client will iteratively encrypt the message m it wants
to send, once for each intermediate OR (onion router). So, in the figure, the
plaintext m is turned into a ciphertext c = Ek1(Ek2(Ek3(m))). The ORs will
each decrypt the ciphertext they receive, so that, at the end, the plaintext m will
be recovered. The idea goes back to the early development of Tor [13,16,17,27]
and, reaching back further still, to the idea of mixnets, from David Chaum [11].
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As with garbling schemes, nested encryption has been understood as tech-
nique, not a solution to some clearly articulated problem. The question Zhang
and I asked is: just what goal is it that nested encryption aims to solve?

Of course it is easy to answer such questions in vague English. The client is
trying to get some message over to the server in such a way that individual ORs
won’t know the association between the sender and the receiver. They shouldn’t
even know who is the client (except for the initial OR) and who is the destination
(except for the final OR). We want to make it hard for an adversary that has
less than a total view of the network to know who is communicating with whom.
We hope that bogus ciphertexts inserted into the network will not emerge from
the exit node. One can go on in such a vein, and it is not useless, but there is a
large gap between this level of discourse and a cryptographic definition.

We begin, as always, by formalizing the syntax for the object we are after.
We say that an onion-encryption scheme is a triple of algorithms Π = (K, E ,D)
as follows. (a) The key-generation algorithm K is a probabilistic algorithm
that maps a number n (the number of ORs) to a vector of n + 1 strings:
(k0, k1, . . . , kn)� K(n). The first key in the vector is intended for the client; the
next n keys are intended specific the ORs, key ki for router ORi. (b) The encryp-
tion algorithm E is a deterministic algorithm that maps a key k0, a message m,
and the user’s state u to a ciphertext c0 and an updated state u′. It specifies
what the client must do to encrypt a message. It is important that E is stateful:
each time the client encrypts a message, its internal state gets updated. The ini-
tial state is the empty string. (c) The decryption algorithm D is a deterministic
algorithm that maps a key ki, a ciphertext c, and an OR’s current state si to
something that is either a plaintext m′, a ciphertext c′, or the symbol ♦, an
indication of failure. Decryption also produces an updated state s′

i. The decryp-
tion algorithm specifies what an OR must do on receipt of a ciphertext c. Only
ciphertext outputs (or ♦) can be produced using keys from k1, . . . , kn−1, and
only plaintext outputs (or ♦) can be produced using the key kn. Throughout,
plaintexts and ciphertexts are recognizably distinct, the former coming from a
message space of {0, 1}l1 and the latter coming from a ciphertext space of {0, 1}l2

with l2 > l1.
After defining a scheme’s syntax one typically specifies a correctness condi-

tion. It captures the fact that, in the absence of an adversary, everything works
as you expect. Formally, we assert that for every number n and every vector of
strings m ∈ {0, 1}∗∗, if k �K(n) is a vector of keys then the following predicate
CorrectΠ(k,m) is true:

procedure CorrectΠ(k,m)
(k0, k1, . . . , kn) ← k; (m1, . . . , m�) ← m; u, s1, . . . , sn ← ε
for i ← 1 to � do

(ci
0, u) ← E(k0,mi, u)

for j ← 1 to n do (ci
j , sj) ← D(kj , c

i
j−1, sj)

return
∧

1≤i≤�

(mi = ci
n)
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The goal we aim to formalize looks like stateful AE [6,9], but with the decryption
done by the OR network itself. Privacy will be formalized in the tradition of
indistinguishability from random bits. This will make for an easy way to get the
desired anonymity property. The authenticity property we aim for is authenticity
checked at time of exit. One can, alternatively, check authenticity earlier and
repeatedly, at each OR. This notion might be more desirable, but it’s not how
Tor’s relay protocol does things [12,13], so it’s not the approach we take, either.

One can write a pair of games that directly corresponds to what we’ve
sketched. They would look something like this. The “real” game would run
an Initialize routine that, given the number n of ORs, would initialize keys
(k0, k1, . . . , kn)� K(n). The game would support oracle calls of Enc(m) and
Dec(i, c). A call to Enc(m) would compute (c, u) ← E(k0,m, u) then return c. A
call to Dec(i, c) would compute (m, si) ← D(ki, c, si) then return m. In contrast,
in the “ideal” game a call to Enc(m) would return the appropriate number of
random bits, while a call to Dec(i, c) would return the appropriate number of
random bits if i < n, and an indication of invalidity ♦ if i = n.

So far, nothing I’ve said is unexpected or complex. But, left as is, it is also
wrong. If an adversary were to first encrypt a message m for a sequence of n = 3
ORs, getting back a ciphertext c0 ← Enc(m), and if it were to next perform the
sequence of decryption calls c1 ← Dec(1, c0), c2 ← Dec(2, c1), c3 ← Dec(3, c2),
then the adversary would have a trivial way to win: by returning 1 if and only
if c3 = m. Intuitively, this sort of win shouldn’t count, for all the adversary did
was to use the OR network to decrypt a plaintext it knew the decryption of. But
how, precisely, do we forbid the adversary from scoring this sort of win? What
does this sort of win actually mean? Formalizing it is rather complex. The code
gets complicated enough that it’s hard to verify if it’s right—and none to easy to
use, either. Perhaps this is emblematic of a wider problem we face in dealing with
complex cryptographic definitions. We’re pretty good with “simple” definitions,
but as you move up to harder tasks, formalizing things can get unconvincing
and obscure.

Might there be a better way? I’d like to describe the approach that Zhang
and I have been working on [25,26]. It is offered as a general framework for doing
indistinguishability definitions in settings where an adversary must distinguish
a “real” and an “ideal” world. This isn’t much of a constraint, as success-style
games, where the adversary wants to induce some event to happen, can be rewrit-
ten in the real/ideal format. We will think of the real and ideal worlds as being
described by pieces of pseudocode.

In our onion-encryption example, and in other examples of this paper, the
simple indistinguishability-based definition you would like to write down is not
achievable; there exists some simple adversarial attack which would distinguish
between the two worlds. Usually we use our intuition to inform us as to what
restrictions are necessary so as to not credit these trivial attacks. You can either
say “the adversary’s not allowed to do this”—you pose it as a restriction on the
class of acceptable adversaries—or, alternatively, you let the adversary do what
it wants, but, at the end of the game, you have a “finalization procedure” look
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Fig. 4. Oracle silencing. Game G captures the real environment; game H, the ideal
one. Both depend on some scheme Π. An adversary (not shown) makes a sequence of
oracle calls. In the silenced games (G, H) = SilenceC(G, H), responses are suppressed
according to predicate Ψ = FixedC,G(x1, y1, . . . , xk, yk, x), which is true if there exists
a unique y such that ValidC,G(x1, y1, . . . , xk, yk, x, y). The Valid predicate asserts that
there is some Π ∈ C that can give rise to the indicated partial transcript.

back at what transpired and if the adversary misbehaved, you penalize it—you
deny it credit for the win. Bellare, Hofheinz, and Kiltz call these two approaches
exclusion-style definitions and penalty-style definitions [5]. They carefully investi-
gate two versions of each for the problem of IND-CCA secure public-key encryp-
tion (PKE).

I’d like to suggest a third possibility. We put a little bit of smarts in the
oracle itself, so that the oracle recognizes that it’s about to provide the caller an
answer that would give away the show. When this happens, the oracle shuts up.
It returns a distinguished value ⊥. This happens in both the real and the ideal
game. We call this style of game modification oracle silencing. In our early work,
the oracle would shut up just for the one query. Now we’ve been doing things so
that the oracle, once silenced, stays so.

This doesn’t sound like much progress, for you ought to be able to rewrite
an oracle-silencing definition as an exclusion-style or penalty-style one. Maybe
it’s just a matter of personal taste. But we introduce another idea that seems to
combine most naturally with oracle silencing. It is this: that when an oracle is
silenced is not directly specified by the cryptographer creating a definition, but,
instead, it is determined automatically by the correctness requirement.

Usually what’s going on is that the oracle should be silenced if the adversary
has asked a question where the correctness constraint dictates the response. In
the real setting, that is, there’s only one answer possible, as mandated by the
correctness condition. The answer doesn’t depend on the particular protocol Π
that underlies the game, nor does it depend on any coins. It only depends on
the query history and the fact that the underlying protocol is correct. In such a
case, we want to silence the response. See Fig. 4.

A bit more formally, one begins by defining a pair of utopian games G and H.
They are called “utopian” because we expect that an adversary can distinguish
between them, just by exploiting some simple test that ought not be permitted.
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The cryptographer also defines a correctness condition C, which is just the class
of correct schemes. Now we automatically and generically modify G and H,
using C, to get a new pair of games G, H. The modification is to add in a little
“gadget” that takes in the value that is about to be returned to the adversary and
sometimes replaces it by some distinguished symbol ⊥. The silencing function,
which depends on G and C, takes in the transcript that describes the interaction
between the adversary and its oracles. It silences exactly when the transcript
fixes the oracle’s response in the real game. The silencing function (or something
close to it) needs to be efficiently computable: only in this way do we know that
the adversary knows that its query is inappropriate. The adversary’s ability to
distinguish between the silenced games is what we call the INDC measure of
security: indistinguishability up to correctness.

When we carry out the paradigm described for onion encryption, the utopian
games are very simple: they look like the näıve games sketched before. Each game
can be described with about six lines of code. But it is not this pair of games
that the adversary must distinguish. It is the silenced pair of games obtained by
“compiling” the utopian games using the correctness condition earlier described.

One use of INDC security is to justify complicated games: if distinguishing
them is equivalent to distinguishing the pair of games one gets from silencing
utopian games using correctness, this is a demonstration that the games are
in some sense right. Alternatively, INDC security can be used to conveniently
define games described in no other way.

5 Conclusions

I want to wrap up now, making some final comments.

• First, as already mentioned, I strongly advise, when writing definitions, to
completely separate the syntax from the security notion, and to pay much
more attention to the former than people routinely do. Syntax guides security,
and has a profound impact on what security properties we can even express.

• Another point concerns where to find problems in need of definitional work.
An often overlooked source is cryptographic practice itself—cryptographic
practice that hasn’t met up with theory. Often things can be well established
in cryptographic practice without any theoretically minded person noticing,
or perhaps caring, that there is an important problem to address. Both our
second and third examples, online encryption and onion encryption, are cases
of theory seriously lagging practice.

• Relatedly, things that are in need of defining may be sitting in plain view,
seemingly without anyone taking notice. I mentioned that there were more
than a thousand papers using garbled circuits without anyone attending to
the fact that what garbled circuits accomplished, on their own, hadn’t been
defined.

• Definitions can be wrong. When you hear somebody say “it can’t be wrong,
it’s a definition”, challenge this sophistry. Definitions can be wrong for a
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variety of reasons, but the most important is that they fail to model what
you are really wanting or needing to model. When you encounter definitions
you believe to be wrong, develop your arguments and speak out, even though
this can be difficult to do. It can be difficult because lots of people may be
invested in the downstream work that springs from a definition, and calling
a definition into question impugns everything that uses it.

• In the examples given today, and in all of the definitional work I’ve done over
my career, I get the overwhelming sense that I am constructing a definition,
not discovering it. But you hear people speak in the opposite terms, as though
there are these cryptographic definitions out there, waiting to be discovered,
and that our job as cryptographers is to find them. I don’t think the world
works this way. I think we create definitions in order to satisfy the needs
of some particular community, and the value of a definition is the extent to
which it does. The idea is explored in a separate essay [23].

• Definitional work can be practical. Many people assume the opposite. Per-
haps they think that definitional work is impractical because it’s slow, and
practice can’t wait. Definitions usually needs lots of refinement, and frequent
backtracking. Nonetheless, spending the time to hammer out the definitions
and make them beautiful can come to have a large practical payoff.

• Definitional work is dialectical. You might think that by working out the defi-
nitions thoughtfully enough, you will manage to arrive at the right definition.
Being right, it won’t need to evolve. It shouldn’t evolve. But I don’t buy it. My
experience has been that definitional notions evolve much more than people
imagine, and that the definitional process does not really terminate.

• Definitions are fundamentally fictions. We attend to the things that we want
to attend to, and we ignore the rest. The rest hasn’t gone away, and we
do well to remember that. That definitions are fictions does not mean that
we shouldn’t take them seriously. We absolutely should take our definitions
seriously, in the sense of wanting to fully understand their consequences,
relationships, and limitations. But we should not take our definitions seriously
in the sense that we delude ourselves into believing the definition is a genuine
surrogate for the thing we are interested in. They are abstractions—platonic
models of some aim.

• Finally, I’ll comment that part of why I like working on cryptographic defini-
tions is that it seems to involve a unique style of modelling. The creation of
a definition integrates social, technical, and philosophical concerns. The last
figures into the process more than outsiders might imagine; in developing a
definition, philosophical discourse may even dominate discussions. Perhaps
there are other disciplines where modelling has this same character, but I
have yet to encounter them. In most scientific, engineering, and even social-
science disciplines, empiricism plays a major role. Does the rod bend in the
manner predicated by the PDE? Does the economy evolve in the way the
equations predict? In making cryptographic definitions, there is rarely any
experimental or observational aspect; instead, the technical work is entwined
with social, philosophical, and aesthetic considerations. Ultimately, this may
be the aspect of the definitional enterprise that I like most.
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