
OCB: A Block-Cipher Mode of Operation for
Efficient Authenticated Encryption

PHILLIP ROGAWAY

University of California at Davis and Chiang Mai University

MIHIR BELLARE

University of California at San Diego

JOHN BLACK

University of Colorado at Boulder

We describe a parallelizable block-cipher mode of operation that simultaneously provides pri-

vacy and authenticity. OCB encrypts-and-authenticates a nonempty string M ∈ {0, 1}∗ using
d|M |/ne + 2 block-cipher invocations, where n is the block length of the underlying block ci-
pher. Additional overhead is small. OCB refines a scheme, IAPM, suggested by Charanjit Jutla.

Desirable properties of OCB include the ability to encrypt a bit string of arbitrary length into
a ciphertext of minimal length, cheap offset calculations, cheap key setup, a single underlying
cryptographic key, no extended-precision addition, a nearly optimal number of block-cipher calls,
and no requirement for a random IV. We prove OCB secure, quantifying the adversary’s abil-

ity to violate the mode’s privacy or authenticity in terms of the quality of its block cipher as a
pseudorandom permutation (PRP) or as a strong PRP, respectively.

Categories and Subject Descriptors: E.3 [Data Encryption]: Standards

General Terms: Security, Performance, Theory

Additional Key Words and Phrases: AES, authenticity, block-cipher usage, cryptography, encryp-
tion, integrity, modes of operation, provable security, standards

Phillip Rogaway, Department of Computer Science, Engineering II Building, University of

California, Davis, CA 95616 USA; and Department of Computer Science, Faculty of Science,
Chiang Mai University, Chiang Mai 50200 Thailand; email: rogaway@cs.ucdavis.edu, web:

www.cs.ucdavis.edu/∼rogaway

Mihir Bellare, Department of Computer Science and Engineering, University of California at
San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA; email: mihir@cs.ucsd.edu, web:

www-cse.ucsd.edu/users/mihir

John Black, Department of Computer Science, 430 UCB, University of Colorado, Boulder,
CO 80309 USA; email: jrblack@cs.colorado.edu, web: www.cs.colorado.edu/∼jrblack

An earlier version of this paper appears as [Rogaway et al. 2001b].

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 0000-0000/2003/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, M 2003, Pages 1–39.

2 · Phillip Rogaway et al.

1. INTRODUCTION

Background. An authenticated-encryption scheme is a shared-key encryption
scheme whose goal is to provide both privacy and authenticity. The encryption
algorithm takes a key, a plaintext, and an initialization vector (IV), and it returns
a ciphertext. The decryption algorithm takes a key, a ciphertext, and an IV, and
it returns either a plaintext or a special symbol, Invalid. We refer to the IV
as the nonce, to reflect the requirements we will make on it. In addition to the
customary privacy goal, an authenticated-encryption scheme aims for authenticity:
if an adversary should try to create some new ciphertext, the decryption algorithm
will almost certainly regard it as Invalid.

An authenticated-encryption scheme can be constructed by appropriately com-
bining an encryption scheme and a message authentication code (MAC), an ap-
proach used pervasively in practice and in standards. (Analyses of such methods
are provided in [Bellare and Namprempre 2000; Krawczyk 2001].) But an attrac-
tive and long-standing goal has been an authenticated-encryption scheme having
computational cost significantly lower than the cost to encrypt plus the cost to
MAC. The classical approach for trying to do this is to encrypt-with-redundancy,
where one appends a non-cryptographic checksum to the message before encrypt-
ing it, typically with CBC mode. Many such schemes have been broken. Recently,
however, Charanjit Jutla has proposed two authenticated-encryption schemes sup-
ported by a claim of provable security [Jutla 2001a]. Virgil Gligor and Pompiliu
Donescu then described a different authenticated-encryption scheme [Gligor and
Donescu 2002]. We continue in this line of work. See Appendix A for further
history.

OCB mode. This paper describes a new mode of operation, OCB, which refines one
of Jutla’s schemes, IAPM [Jutla 2001a]. OCB (which stands for “offset codebook”)
retains the principal characteristics of IAPM: it is fully parallelizable and adds
minor overhead compared to conventional, privacy-only modes. But OCB combines
the following additional features:

Arbitrary-length messages + minimal-length ciphertexts: Any string M ∈
{0, 1}∗ can be encrypted; in particular, |M | need not be a multiple of the block
length n. What is more, the resulting ciphertexts are as short as possible.
Minimal IV requirements: Like other encryption modes, OCB requires an IV.
The entity that encrypts chooses a new IV nonce for every message with the
only restriction that no IV is used twice. We henceforth refer to the IV as
the nonce.
Nearly optimal number of block-cipher calls: OCB uses d|M |/ne + 2 block-
cipher invocations to encrypt-and-authenticate a nonempty message M .
Single underlying key : The key used for OCB is a single block-cipher key, and
all block-cipher invocations are keyed by this one key.
Efficient offset calculations: As with other recent methods, we require a se-
quence of offsets. We generate them in a particularly cheap way, each offset
requiring a few machine cycles and no extended-precision arithmetic.

Achieving the properties above requires putting together a variety of “tricks” that
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 3

work together in just the right way. Many plausible-looking constructions that we
considered turned out to be wrong.

Performance. Experiments by Lipmaa on a Pentium III processor show that
OCB is about 6.5% slower than the privacy-only mode CBC, and about 54% the
speed of CBC encryption combined with the CBC MAC [Lipmaa 2001]. These
figures assume a block cipher of AES128 [US National Institute of Standards 2001].

In settings where there is adequate opportunity for parallelism, OCB will be
faster than CBC. Parallelizability is important for obtaining the highest speeds
from special-purpose hardware, and it may become useful on commodity proces-
sors. For special-purpose hardware, one may want to encrypt-and-authenticate
at speeds near 10 Gbits/second—an impossible task, with today’s technology, for
modes like CBC encryption and the CBC MAC. (One could always create a mode
that interleaves message blocks fed into separate CBC encryption or CBC MAC
calculations, but that would be a new mode, and one with many drawbacks.) For
commodity processors, there is an architectural trend towards highly pipelined ma-
chines with multiple instruction pipes and lots of registers. Optimally exploiting
such features necessitates algorithms that have plenty to do in parallel.

Security properties. We prove OCB secure, in the sense of reduction-based
cryptography. Specifically, we prove indistinguishability under chosen-plaintext
attack [Bellare et al. 1997; Goldwasser and Micali 1984] and authenticity of cipher-
texts [Bellare and Namprempre 2000; Bellare and Rogaway 2000; Katz and Yung
2000b]. This combination implies indistinguishability under the strongest form of
chosen-ciphertext attack (CCA) and that, in turn, is equivalent to non-malleability
under CCA [Bellare et al. 1998; Bellare and Namprempre 2000; Dolev et al. 2000;
Katz and Yung 2000b; 2000a]. (Non-malleability refers to an adversary’s inability
to modify a ciphertext in a way that makes related the two underlying plaintexts.)
Our proof of privacy assumes that the underlying block cipher is good in the sense
of a pseudorandom permutation (PRP) [Bellare et al. 2000; Luby and Rackoff
1988], while our proof of authenticity assumes that the block cipher is a strong
PRP [Luby and Rackoff 1988]. Our results are quantitative; the security analysis
is in the concrete-security paradigm.

We emphasize that OCB has stronger security properties than standard modes.
In particular, non-malleability and indistinguishability under CCA are not achieved
by CBC, or by any other standard mode, but these properties are achieved by OCB.
We believe that the lack of strong security properties has been a problem for the
standard modes of operation, because many users of encryption implicitly assume
these properties when designing their protocols. For example, it is common to see
protocols that use symmetric encryption in order to “bind together” the parts of a
plaintext, or that encrypt related messages as a way to do a “handshake.” Standard
modes do not support such practices. This fact has sometimes led practitioners to
incorrectly apply the standard modes, or to invent or select wrong ways to try to
encrypt with authenticity (a well-known example is the use of PCBC mode [Meyer
and Matyas 1982] in Kerberos v.4 [Steiner et al. 1988]). We believe that authenti-
cated encryption modes are less likely to be misused because many common ways
of using a mode of operation that are incorrect when the mode provides privacy

ACM Journal Name, Vol. V, No. N, M 2003.

4 · Phillip Rogaway et al.

only become correct when it provides both privacy and authenticity.
By way of comparison, a chosen-ciphertext attack by Bleichenbacher on the

public-key encryption scheme of RSA PKCS #1, v.1.5, motivated the company
that controls this de facto standard to promptly upgrade its scheme [Bleichenbacher
1998; RSA Laboratories 1998]. In this public-key setting, it was even a concern if
mis-implementations could lead to effective attack [Manger 2001]. In contrast, peo-
ple seem to accept as a matter of course symmetric encryption schemes which are
not even non-malleable. This may be changing, as it becomes clear how damaging
and widespread side-channel and chosen-ciphertext attacks can be [Vaudenay 2002;
Black and Urtubia 2002].

2. PRELIMINARIES

Notation. If a and b are integers, a ≤ b, then [a..b] is the set {a, a + 1, . . . , b}.
If i ≥ 1 is an integer then ntz(i) is the number of trailing 0-bits in the binary
representation of i (equivalently, ntz(i) is the largest integer z such that 2z divides i).
So, for example, ntz(7) = 0 and ntz(8) = 3.

A string is a finite sequence of symbols, each symbol being 0 or 1. The string of
length 0 is called the empty string and is denoted ε. Let {0, 1}∗ denote the set of all
strings. If A,B ∈ {0, 1}∗ then A B, or A ‖ B, is their concatenation. If A ∈ {0, 1}∗
and A 6= ε then firstbit(A) is the first bit of A and lastbit(A) is the last bit of A.
Let i, n be nonnegative integers. Then 0i and 1i denote the strings of i 0’s and 1’s,
respectively. Let {0, 1}n denote the set of all strings of length n. If A ∈ {0, 1}∗ then
|A| denotes the length of A, in bits, while ‖A‖n = max{1, d|A|/ne} denotes the
length of A in n-bit blocks, where the empty string counts as one block. For A ∈
{0, 1}∗ and |A| ≤ n, zpadn(A) is the string A 0n−|A|. With n understood we will
write A 0∗ for zpadn(A). If A ∈ {0, 1}∗ and τ ∈ [0..|A|] then A [first τ bits] and
A [last τ bits] denote the first τ bits of A and the last τ bits of A, respectively.
Both of these values are the empty string if τ = 0. If A,B ∈ {0, 1}∗ then A⊕B is
the bitwise xor of A [first ` bits] and B [first ` bits], where ` = min{|A|, |B|} (where
ε⊕A = A⊕ ε = ε). So, for example, 1001⊕11 = 01. If A = an−1 · · · a1a0 ∈ {0, 1}n

then str2num(A) is the number
∑n−1

i=0 2iai. If a ≥ 0 is a number then num2strn(a) is
the n-bit string A such that str2num(A) = a. Let lenn(A) = num2strn(|A| mod 2n).
We omit the subscript when n is understood. Note that if |A| ≥ 2n (which, in
practice, will never happen) then lenn(A) does not encode all of |A| (since we don’t
have enough bits).

If A = an−1an−2 · · · a1a0 ∈ {0, 1}n then the n-bit string an−2an−3 · · · a1a00,
denoted A<<1, is a left shift of A by one bit (the first bit of A disappearing and
a zero coming into the last bit), while A>>1 is the n-bit string 0an−1an−2 . . . a2a1

which is a right shift of A by one bit (the last bit disappearing and a zero coming
into the first bit).

In pseudocode we write “Partition M into M [1] · · ·M [m]” as shorthand for “Let
m = ‖M‖n and let M [1], . . . ,M [m] be strings such that M [1] · · ·M [m] = M and
|M [i]| = n for 1 ≤ i < m.” We write “Partition C into C[1] · · ·C[m]T” as shorthand
for “if |C| < τ then return Invalid. Otherwise, let C = C [first |C| − τ bits],
let T = C [last τ bits], let m = ‖C‖n, and let C[1], . . . , C[m] be strings such
that C[1] · · ·C[m] = C and |C[i]| = n for 1 ≤ i < m.” Recall that ‖M‖n =
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 5

max{1, d|M |/ne}, so the empty string partitions into m = 1 block, that one block
being the empty string.

The field with 2n points. Let GF(2n) denote the field with 2n points. We
interchangeably think of a point a in GF(2n) in any of the following ways: (1) as
an abstract point in a field; (2) as an n-bit string an−1 . . . a1a0 ∈ {0, 1}n; (3) as
a formal polynomial a(x) = an−1xn−1 + · · · + a1x + a0 with binary coefficients;
(4) as an integer between 0 and 2n − 1, where the string a ∈ {0, 1}n corresponds
to the number str2num(a). For example, one can regard the string a = 0125101
as a 128-bit string, as the number 5, as the polynomial x2 + 1, or as an abstract
point in GF(2128). We write a(x) instead of a if we wish to emphasize that we are
thinking of a as a polynomial.

To add two points in GF(2n), take their bitwise xor. We denote this operation by
a⊕ b. To multiply two points in the field, first fix an irreducible polynomial pn(x)
having binary coefficients and degree n: say the lexicographically first polynomial
among the irreducible degree n polynomials having a minimum number of nonzero
coefficients. For n = 128, the indicated polynomial is p128(x) = x128+x7+x2+x+1.
Some other pn(x)-values are x64+x4+x3+x+1 (for n = 64) and x256+x10+x5+x2+1
(for n = 256). To multiply a, b ∈ GF(2n), which we denote a · b, regard a and b as
polynomials a(x) = an−1xn−1 + · · ·+a1x+a0 and b(x) = bn−1xn−1 + · · ·+ b1x+ b0,
form their product c(x) over GF(2), and take the remainder one gets when dividing
c(x) by pn(x).

It is computationally simple to multiply a ∈ {0, 1}n by x. We illustrate the
method for n = 128, in which case multiplying a = an−1 · · · a1a0 by x yields
an−1xn + an−2xn−1 + a1x2 + a0x. Thus, if the first bit of a is 0, then a · x = a<<1.
If the first bit of a is 1 then we must add x128 to a<<1. Since p128(x) = x128 + x7 +
x2 + x + 1 = 0 we know that x128 = x7 + x2 + x + 1, so adding x128 means to xor
by 012010000111. In summary, when n = 128,

a · x =
{

a<<1 if firstbit(a) = 0
(a<<1)⊕ 012010000111 if firstbit(a) = 1

It is similarly easy to divide a ∈ {0, 1}128 by x (i.e., to multiply a by the multi-
plicative inverse of x). If the last bit of a is 0, then a · x−1 is a>>1. If the last bit
of a is 1 then we must add (xor) to a>>1 the value x−1. Since x128 = x7 +x2 +x+1
we have that x−1 = x127 + x6 + x+ 1 = 101201000011. In summary, when n = 128,

a · x−1 =
{

a>>1 if lastbit(a) = 0
(a>>1)⊕ 101201000011 if lastbit(a) = 1

Note that the point huge = x−1 is a large number (when viewed as such); in
particular, it starts with a 1 bit, so huge ≥ 2n−1.

If L ∈ {0, 1}n and i ≥ −1, we write L(i) as shorthand for L · xi. Using the
equations just given, we have an easy way to compute from L the values L(−1),
L(0), L(1), . . ., L(µ), where µ is a small number.

Gray codes. For ` ≥ 1, a Gray code is an ordering γ` = (γ`
0 γ`

1 . . . γ`
2`−1)

of {0, 1}` such that successive points differ (in the Hamming sense) by just one
ACM Journal Name, Vol. V, No. N, M 2003.

6 · Phillip Rogaway et al.

bit. For n a fixed number, OCB makes use of the “canonical” Gray code γ = γn

constructed by γ1 = (0 1) and, for ` > 0,

γ`+1 = (0γ`
0 0γ`

1 · · · 0γ`
2`−2 0γ`

2`−1 1γ`
2`−1 1γ`

2`−2 · · · 1γ`
1 1γ`

0).

It is easy to see that γ is a Gray code. What is more, for 1 ≤ i ≤ 2n − 1,
γi = γi−1 ⊕ (0n−11<<ntz(i)). This makes it easy to compute successive points.

We emphasize these characteristics of the Gray-code values γ1, γ2, . . . , γ2n−1: that
they are distinct and different from 0; that γ1 = 1; and that γi < 2i.

Let L ∈ {0, 1}n and consider the problem of successively forming the strings
γ1 ·L, γ2 ·L, γ3 ·L, . . ., γm ·L. Of course γ1 ·L = 1 ·L = L. Now, for i ≥ 2, assume
one has already produced γi−1 ·L. Since γi = γi−1⊕ (0n−11<<ntz(i)) we know that

γi · L = (γi−1 ⊕ (0n−11<<ntz(i))) · L

= (γi−1 · L)⊕ (0n−11<<ntz(i)) · L

= (γi−1 · L)⊕ (L · xntz(i))

= (γi−1 · L)⊕ L(ntz(i)).

That is, the ith word in the sequence γ1 ·L, γ2 ·L, γ3 ·L, . . . is obtained by xoring the
previous word with L(ntz(i)). Had the sequence we were considering been γ1 ·L⊕R,
γ2 ·L⊕R, γ3 ·L⊕R, . . ., the ith word would be formed in the same way for i ≥ 2,
but the first word in the sequence would have been L⊕R instead of L.

3. THE SCHEME

Parameters. To use OCB one must specify a block cipher and a tag length. The
block cipher is a function E : K × {0, 1}n → {0, 1}n where each E(K, ·) = EK(·)
is a permutation on {0, 1}n. Here K is the set of possible keys (a finite nonempty
set) and n is the block length. We insist that n ≥ 64 and discourage n < 128. The
tag length is an integer τ ∈ [0..n]. By trivial means, the adversary will be able to
forge a valid ciphertext with probability 2−τ . The popular block cipher to use with
OCB is likely to be AES [US National Institute of Standards 2001]. As for the tag
length, a suggested default of τ = 64 is reasonable. Tags of 32 bits are standard in
retail banking. Tags of 96 bits are used in IPSec. Using a tag of more than 80 bits
adds questionable security benefit, though it does lengthen each ciphertext.

We let OCB-E denote the OCB mode of operation using block cipher E and an
unspecified tag length. We let OCB[E, τ] denote the OCB mode of operation using
block cipher E and tag length τ .

Nonces. Encryption under OCB mode requires an n-bit nonce, N . The nonce
would typically be a counter (maintained by the sender) or a random value (selected
by the sender). Security is maintained even if the adversary can control the nonce,
subject to the constraint that no nonce may be repeated within the current session
(that is, during the period of use of the current encryption key). The nonce need
not be random, unpredictable, or secret.

The nonce N is needed both to encrypt and to decrypt. Typically it would be
communicated, in the clear, along with the ciphertext. However, it is out-of-scope
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 7

e

ee

e q q

q q e
e

q

q
e

e

e

e

e
?

?

?

�

?

?

?

�

?

�?

- ?

?

?

?

?

?

�

�

?

?

�

�

?

? ?

?

?

?

�

�

?

?

?

�

�

M[m]

Z[m]

len

L · x−1

EK

T

Z[m]

first τ bitsτ

C[m]

Y [m]

C[1]

Z[1]

EK

Z[1]

M[1]

Z[2]

Z[2]

M[2]

C[2]

EK

Z[m − 1]

Z[m − 1]

EK

C[m − 1]

M[m − 1]

Checksum

N

L

R

EK EK

X[m]

Algorithm OCB.EncK (N, M)

Partition M into M [1] · · ·M [m]
L← EK(0n)
R← EK(N ⊕ L)

for i← 1 to m do Z[i] = γi · L⊕R
for i← 1 to m− 1 do

C[i]← EK(M [i]⊕ Z[i]) ⊕ Z[i]
X[m]← len(M [m])⊕ L · x−1 ⊕ Z[m]
Y [m]← EK(X[m])
C[m]← Y [m]⊕M [m]

C ← C[1] · · ·C[m]
Checksum←

M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]

T ← EK(Checksum⊕ Z[m]) [first τ bits]
return C← C ‖ T

Algorithm OCB.DecK (N, C)

Partition C into C[1] · · ·C[m] T
L← EK(0n)
R← EK(N ⊕ L)

for i← 1 to m do Z[i] = γi · L⊕R
for i← 1 to m− 1 do

M [i]← E−1
K (C[i]⊕ Z[i]) ⊕ Z[i]

X[m]← len(C[m])⊕ L · x−1 ⊕ Z[m]
Y [m]← EK(X[m])

M [m]← Y [m]⊕ C[m]
M ←M [1] · · ·M [m]
Checksum←

M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]

T ′ ← EK(Checksum⊕ Z[m]) [first τ bits]
if T = T ′ then return M

else return Invalid

Fig. 1. OCB encryption. The message to encrypt is M and the key is K. Message M is written

as M = M [1]M [2] · · ·M [m− 1]M [m] where m = max{1, d|M |/ne} and |M [1]| = |M [2]| = · · · =
|M [m − 1]| = n. Nonce N is a non-repeating value selected by the party that encrypts. It,
along with ciphertext C = C[1]C[2]C[3] · · ·C[m− 1]C[m] T , is needed to decrypt. The Checksum
is M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]. Offset Z[1] = L ⊕ R while, for i ≥ 2, Z[i] =

Z[i− 1]⊕L(ntz(i)). String L is defined by applying EK to the fixed string 0n. For Y [m]⊕M [m]
and Y [m] ⊕ C[m], truncate Y [m] if it is longer than the other operand. By C[m] 0∗ we mean

C[m] padded on the right with 0-bits to get to length n. Function len represents the length of its
argument, mod 2n, as an n-bit string.

ACM Journal Name, Vol. V, No. N, M 2003.

8 · Phillip Rogaway et al.

how the nonce is communicated to the party who will decrypt. In particular, we
do not regard the nonce as part of the ciphertext.

Definition of the mode. See Figure 1 for a definition and illustration of OCB.
The figure defines OCB encryption and decryption. The key space for OCB is the
key space K for the underlying block cipher E.

An equivalent description. The following description may clarify what a typ-
ical implementation might do.

Key generation. Choose a random key K
$←K for the block cipher. The key K is

provided to both the entity that encrypts and the entity that decrypts.

Key setup. For the party that encrypts, do any key setup associated to block-
cipher enciphering. For the party that decrypts, do any key setup associated to
block-cipher enciphering and deciphering. Let L ← EK(0n). Let m bound the
maximum number of n-bit blocks that any message which will be encrypted or
decrypted may have. Let µ← dlog2 me. Let L(0)← L and, for i ∈ [1..µ], compute
L(i) ← L(i − 1) · x using a shift and a conditional xor, as described in Section 2.
Compute L(−1) ← L · x−1 using a shift and a conditional xor, as described in
Section 2. Save the values L(−1), L(0), L(1), . . ., L(µ) in a table.

Encryption. To encrypt plaintext M ∈ {0, 1}∗ using key K and nonce N ∈ {0, 1}n,
obtaining a ciphertext C, do the following. Let m ← d|M |/ne. If m = 0 then
let m ← 1. Let M [1], . . . ,M [m] be strings such that M [1] · · ·M [m] = M and
|M [i]| = n for i ∈ [1..m − 1]. Let Offset ← EK(N ⊕ L). Let Checksum ← 0n.
For i ← 1 to m − 1, do the following: let Checksum ← Checksum ⊕ M [i]; let
Offset ← Offset ⊕ L(ntz(i)); let C[i] ← EK(M [i] ⊕ Offset) ⊕ Offset. Now let
Offset ← Offset ⊕ L(ntz(m)). Let Y [m] ← EK(len(M [m]) ⊕ L(−1) ⊕ Offset).
Let C[m] ← M [m] xored with the first |M [m]| bits of Y [m]. Let Checksum ←
Checksum⊕ Y [m]⊕ C[m] 0∗. Let T be the first τ bits of EK(Checksum⊕Offset).
The ciphertext is C = C[1] · · ·C[m − 1]C[m] T . It must be communicated along
with the nonce N .

Decryption. To decrypt ciphertext C ∈ {0, 1}∗ using key K and nonce N ∈ {0, 1}n,
obtaining a plaintext M ∈ {0, 1}∗ or an indication Invalid, do the following.
If |C| < τ then return Invalid (the ciphertext has been rejected). Otherwise
let C be the first |C| − τ bits of C and let T be the remaining τ bits. Let
m← d|C|/ne. If m = 0 then let m ← 1. Let C[1], . . . , C[m] be strings such
that C[1] · · ·C[m] = C and |C[i]| = n for i ∈ [1..m− 1]. Let Offset← EK(N ⊕ L).
Let Checksum← 0n. For i ← 1 to m − 1, do the following: let Offset ← Offset ⊕
L(ntz(i)); let M [i]← E−1

K (C[i]⊕Offset)⊕Offset; let Checksum← Checksum⊕M [i].
Now let Offset← Offset⊕ L(ntz(m)). Let Y [m]← EK(len(C[m])⊕L(−1)⊕Offset).
Let M [m] ← C[m] xored with the first |C[m]| bits of Y [m]. Let Checksum ←
Checksum⊕ Y [m]⊕C[m] 0∗. Let T ′ be the first τ bits of EK(Checksum⊕Offset).
If T 6= T ′ then return Invalid (the ciphertext has been rejected). Otherwise, the
plaintext is M = M [1] · · ·M [m− 1]M [m].
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 9

4. DISCUSSION

OCB has been designed to have a variety of desirable properties. We mention some
of those properties here.

Arbitrary-length messages and minimal ciphertext expansion. One of
the key characteristics of OCB is that any string M ∈ {0, 1}∗ can be encrypted,
and doing this yields a ciphertext C having |M |+ τ bits. That is, the length of the
“ciphertext core”—the portion C = C[1] · · ·C[m] of the ciphertext that excludes
the tag—is the same as the length of the message M . This is better, by up to n
bits, than what one gets with conventional padding. But remember that we do not
regard the nonce as part of the ciphertext. Including it, the amount of information
that needs to be sent to the receiver is |M | + τ + η bits, where η bits are used to
communicate the nonce N . The value of η could be anything in [0..n], depending
on the application.

Single block-cipher key. OCB makes use of just one block-cipher key, K.
While L = EK(0n) functions rather like a key and would normally be computed at
key-setup time, and while standard key-separation techniques can always be used to
obtain many keys from one, the point is that, in OCB, all block-cipher invocations
use the one key K. Thus only one block-cipher key needs to be setup, saving on
storage space and key-setup time.

Weak nonce requirements. We believe that modes of operation that require a
random IV are often misused. As an example, consider CBC mode, where C[i] =
EK(M [i]⊕C[i−1]) and C[0] = IV. Many standards and many books (e.g., Schneier,
Applied Cryptography, 2nd edition, p. 194]) suggest that the IV may be a fixed
value, a counter, a timestamp, or the last block of ciphertext from the previous
message. But if it is any of these things one certainly will not achieve any of the
standard definitions of privacy [Bellare et al. 1997; Goldwasser and Micali 1984].

It is sometimes suggested that a mode which needs a random IV is preferable
to one that needs a nonce: it is said that state is needed for a nonce, but not
for making random bits. We find this argument wrong. First, a random value
of sufficient length can always be used as a nonce, but a nonce cannot be used
as a random value. Second, the manner in which systems provide “random” IVs
is invariably stateful anyway: unpredictable bits are too expensive to harvest for
each IV, so one does this rarely, using state to generate pseudorandom bits from
unpredictable bits harvested before. Third, the way to generate pseudorandom bits
needs to use cryptography, so the prevalence of non-cryptographic pseudorandom
number generators routinely results in implementation errors. Fourth, nonce-based
schemes facilitate simple replay-detection. Finally, nonces can be communicated
using fewer bits than random values.

On-line. OCB encryption is on-line: one can output a stream of ciphertext bits
as a stream of plaintext bits arrive, the output stream having constant latency and
the transformation using constant memory. When one receives an indication that
the plaintext is over, the final chunk of ciphertext is output. One need not know
the length of the plaintext in advance of processing it. This allows the efficient

ACM Journal Name, Vol. V, No. N, M 2003.

10 · Phillip Rogaway et al.

encryption of strings whose representation uses a special character (e.g., a zero-
byte) to indicate the string’s end. An incremental interface (in the style popular
for cryptographic hash functions) could be used to support this functionality.

OCB decryption is likewise on-line, but with an important difference: one can
produce a stream of plaintext bits as the stream of ciphertext bits comes in, but
when the ciphertext stream is finished one may need to “cancel” the plaintext
stream that has issued (having found the ciphertext to be invalid). In such a
case, nothing about the ciphertext (like what was the canceled plaintext) should be
adversarially available beyond an indication of its invalidity. In any authenticated-
encryption scheme, decryption can be on-line only to this extent.

Significance of being efficient. Shaving off a few block-cipher calls or a few
bytes of ciphertext may not seem important. But often one is dealing with short
messages; for example, roughly a third of the messages on the Internet backbone are
43 bytes. If one is encrypting messages of such short lengths, one should be careful
about message expansion and extra computational work since, by percentage, the
inefficiencies can be large.

The argument has been made that making a major effort to save a factor of
two in computational efficiency is marginal in the first place: “Moore’s law” will
soon deliver such an improvement anyway, by way of faster hardware. We are not
persuaded. Along with processors getting faster, security has become increasingly
an issue, and low-power and embedded processors have become more prevalent.
The result is a need to cryptographically process more and more data, and often by
“dumb” execution vehicles. Hardware advances have changed our understanding of
what efficiency entails but, to date, hardware advances have not made cryptographic
efficiency less important.

Endian neutrality. In contrast to a scheme based on mod-p arithmetic (for p a
prime just less than 2n) or mod-2n arithmetic, there is almost no endian-favoritism
implicit in the definition of OCB. (The exception is that, because of our use of
standard mathematical conventions, the left shift used for forming L(i + 1) from
L(i) is more convenient under a big-endian convention, as is the right shift used for
forming L(−1) = L · x−1 from L.)

Optional pre-processing. Implementations can choose how many L(i) values
to precompute. Since only one block-cipher call is needed to compute all of the
L(i) values, plus a shift and a conditional xor for each value, it is feasible to do
no preprocessing: OCB is appropriate even when each session is a single, short
message.

Provable security. Provable security has become a popular goal for practical
protocols. This is because it provides the best way to gain assurance that a crypto-
graphic scheme does what it is should. For a scheme that enjoys provable security
one does not need to consider attacks on the scheme, since successful ones imply
successful attacks on some simpler object.

When we say that “OCB is provably secure” we are asserting the existence of
two theorems. One says that if an adversary A could do a good job at forging ci-
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 11

phertexts with OCB[E, τ] (the adversary does this much more than a 2−τ fraction
of the time) then there would be an adversary B that does a good job at distin-
guishing (EK(·), E−1

K (·)), for a random key K, from (π(·), π−1(·)), for a random
permutation π ∈ Perm(n). The other theorem says that if an adversary A could do
a good job at distinguishing OCB[E, τ]-encrypted messages from random strings,
then there would be an adversary B that does a good job at distinguishing EK(·),
for a random key K, from π(·), for a random permutation π ∈ Perm(n). Theorems
of this sort are called reductions. In cryptography, provable security means giving
reductions (along with the associated definitions).

Provable security begins with Goldwasser and Micali [Goldwasser and Micali
1984]. The style of provable security that we use here—where the primitive is a
block cipher, the scheme is a mode of operation, and the analysis is concrete (no
asymptotics)—is the approach of Bellare and Rogaway [Bellare et al. 1997; Bellare
et al. 1995; Bellare et al. 2000].

It is not enough to know that there is a provable-security result; one should
also understand the definitions and the bounds. We have already sketched the
definitions. When we speak of the bounds we are addressing “how effective is the
adversary B in terms of the efficacy of adversary A” (where A and B are as above).
For OCB, the bounds can be roughly summarized as follows. An adversary can
always forge with probability 1/2τ . Beyond this, the maximal added advantage
is at most σ2/2n, where σ is the total number of blocks the adversary sees. The
privacy bound likewise degrades as σ2/2n. The conclusion is that one is safe using
OCB as long as the underlying block cipher is secure and σ is small compared to
2n/2. This is the same security degradation one observes for CBC encryption and
in the bound for the CBC MAC [Bellare et al. 1997; Bellare et al. 2000]. This kind
of security loss was the main motivation for choosing a block length for AES of
n = 128 bits.

Comparison with Jutla’s bound. More precisely, but still ignoring lower-order
terms, our privacy and authenticity bounds are 1.5 σ2/2n, while Jutla’s authenticity
bound is insignificantly worse at 2σ2/2n and his privacy bound, rescaled to [0, 1],
is insignificantly worse at 3 σ2/2n [Jutla 2001b]. Magnifying the latter difference
is that the privacy results assume different definitions. Jutla adopts the find-then-
guess definition of privacy [Bellare et al. 1997; Goldwasser and Micali 1984], while
we use an indistinguishability-from-random-bits definition. The former captures an
adversary’s inability to distinguish ciphertexts for a pair of adversarially-selected,
equal-length plaintexts. The latter captures an adversary’s inability to distin-
guish a ciphertext from a random string of the same length. Indistinguishability-
from-random-bits implies find-then-guess security, and by a tight reduction, but
find-then-guess secure does not imply indistinguishability-from-random-bits. Still,
Jutla’s scheme probably satisfies the stronger definition, and with similar bounds.

Numerical example to illustrate provable security. Let’s do a small
example to illustrate what, concretely, the provable-security results mean. Suppose
that we are using OCB-AES, tags are 64 bits (or longer), and the adversary has
access to at most 240 bytes of chosen ciphertext before the key is changed (by a
new key-exchange, for example). Then, if AES has its anticipated security, the

ACM Journal Name, Vol. V, No. N, M 2003.

12 · Phillip Rogaway et al.

adversary’s chance to produce a valid forged message (after studying its 1 terabyte
of acquired data) is around 1.5(240−4)2/2128+2−64 < 2−55. In general, the 1.5σ2/2n

formula provides guidance in how long a key can be safely used. The considerations
are application-dependent, but one needs to change keys well before 2n/2 blocks
have been encrypted.

Simplicity. Simplicity has been a central design goal. Some of OCB’s character-
istics that contribute to simplicity are: (1) Short and full final-message-blocks are
handled uniformly, not splitting into separate cases. (2) Only the simplest form
of padding is used: append a minimal number of 0-bits to make a string whose
length is a multiple of n. This method is computationally fastest and helps avoid
a proliferation of cases in the analysis. (3) Only one algebraic structure is used
throughout the algorithm: the finite field GF(2n). (4) In forming the sequence of
offsets, Gray-code coefficients are taken monotonically, starting at 1 and stopping
at m. One never goes back to an earlier offset or forms more offsets than there are
blocks.

Not fixing how the nonce is communicated. We do not specify how the nonce
is chosen or communicated. Formally, it is not part of the ciphertext (though the
receiving party needs it to decrypt). In many contexts, there is already a natural
value to use as a nonce (e.g., a sequence number already present in a protocol flow,
or implicit because the parties are communicating over a reliable channel). Even
when a protocol is designed from scratch, the number of bits needed to communicate
the nonce will vary. In some applications, 32 or even 8 bits is enough. For example,
one might have reason to believe that there are at most 232 messages that will flow
during the connection, or one may communicate only the lowest 8 bits of a sequence
number, counting on the receiver to anticipate the high-order bits.

Not fixing the tag length. The number of bits necessary for the tag vary
according to the application. In a context where the adversary obtains something
quite valuable from a successful forgery, one may wish to choose a tag length of 80
bits or more. In contexts such as authenticating a video stream, where an adversary
would have to forge many frames to have a major impact on the image, an 8-bit
tag may be appropriate. With no universally correct value to choose, it is best to
leave this parameter unspecified.

Short tags seem to be more appropriate for OCB than for some other MACs,
particularly Carter-Wegman MACs. Many Carter-Wegman MACs have the prop-
erty that if you can forge one message with probability δ then you can forge an
arbitrary set of (all correct) messages with probability δ. This does not appear
to be true for OCB, though we have not investigated formalizing or proving such
properties.

Forming R using a block-cipher call. During our work we discovered that
there are methods for authenticated-encryption that encrypt M using d|M |/ne+ 1
block-cipher calls, as opposed to our d|M |/ne+ 2 calls. Shai Halevi has also made
this finding [Halevi 2001]. However, the methods we know to shave off a block-cipher
call either require an unpredictable IV instead of a nonce, or they add conceptual
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 13

and computational complexity to compute the initial offset R by non-cryptographic
means (e.g., using a finite-field multiplication of the nonce and a key variant).

Avoiding mod-2n addition. Our earlier designs included a scheme based on
modular 2n addition (“addition” for the remainder of this paragraph). Basing an
authenticated-encryption scheme on addition is an interesting idea due to Gligor
and Donescu [Gligor and Donescu 2002]. Compared to our GF(2n)-based approach
(“xor” for the remainder of this paragraph), an addition-based scheme might seem
simpler. But the use of addition (where n ≥ 128) has several disadvantages: (1) The
bit-asymmetry of the addition operator implies that the resulting scheme will have a
bias towards big-endian architectures or little-endian architectures; there will be no
way to achieve an endian-neutral scheme. The AES algorithm was constructed to be
endian-neutral and we wanted OCB-AES to inherit this attribute. (2) Addition is
unpleasant for implementations using high-level languages, where one normally has
no access to the add-with-carry instruction the machine may have. (3) Addition
needs more chip area than xor. (4) Some hardware platforms perform addition
more slowly than xor. Experiments on a Pentium 3 revealed that repeated add-
with-carry instructions were slower than repeated xors. (5) The concrete security
bound appears to be worse with addition than xor (though still not bad). The
degradation would seem to be Θ(lg m̄), where m̄ is the maximal message length.
We eventually came to believe that the simplicity benefit of addition was not worth
it and maybe not quite real.

Definition of the checksum. An initially odd-looking aspect of OCB’s defini-
tion is the definition of Checksum = M [1] ⊕ · · ·M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]. In
Jutla’s scheme, where one assumes that all messages are a positive multiple of the
block length, the checksum is the simpler-looking M [1] ⊕ · · ·M [m − 1] ⊕M [m].
We comment that these two definitions are identical in the case that |M [m]| = n.
What is more, the definition Checksum = M [1] ⊕ · · ·M [m − 1] ⊕M [m] 0∗ turns
out to be the wrong way to generalize the Checksum to allow for short-final-block
messages; in particular, the scheme using that checksum is easily attacked.

5. THEOREMS

5.1 Security Definitions

The first provable-security treatment of symmetric encryption is due to Bellare,
Desai, Jokipii and Rogaway [Bellare et al. 1997]. A provable-security treatment
of authenticated encryption was initiated by [Katz and Yung 2000b; Bellare and
Rogaway 2000] and continued by [Bellare and Namprempre 2000]. We build on all
these works but our definitions involve some novel elements.

OCB uses a nonce, and we wish to give the adversary every possible advantage
(more than is available in real life) by allowing it to choose this nonce (though we
forbid the adversary from choosing the same nonce twice). This leads us to in-
troduce a new primitive, that we call a nonce-using symmetric encryption scheme,
and that is syntactically different from a standard symmetric encryption scheme.
We also introduce a new and particularly strong notion of privacy called indistin-
guishability from random strings.

ACM Journal Name, Vol. V, No. N, M 2003.

14 · Phillip Rogaway et al.

Syntax. We extend the syntax of an encryption scheme as given in [Bellare et al.
1997]. A (nonce-using, symmetric) encryption scheme is a triple Π = (K, E ,D) and
an associated number n (the nonce length). Here K is a finite set and E and D are
deterministic algorithms. Encryption algorithm E takes K ∈ K, N ∈ {0, 1}n, and
M ∈ {0, 1}∗, and returns a string C ← EK(N,M). Decryption algorithm D takes
K ∈ K, N ∈ {0, 1}n, and C ∈ {0, 1}∗, and returns DK(N,M), which is either a
string M ∈ {0, 1}∗ or the distinguished symbol Invalid. If C ← EK(N,M) then
DK(N,C) = M .

Privacy. We give a particularly strong definition of privacy, one asserting indistin-
guishability from random strings. This notion is easily seen to imply (the natural
extension to nonce-using schemes of) more standard definitions [Bellare et al. 1997],
and by tight reductions. Consider an adversary A that has one of two types of or-
acles: a “real” encryption oracle or a “fake” encryption oracle. A real encryption
oracle, EK(·, ·), takes as input N,M and returns C ← EK(N,M). Assume that
|C| = `(|M |) depends only on |M |. A fake encryption oracle, $(·, ·), takes as in-
put N,M and returns a random string C

$←{0, 1}`(|M |). Given adversary A and
encryption scheme Π = (K, E ,D), define Advpriv

Π (A) = Pr[K $←K : AEK(·,·) = 1]−
Pr[K $←K : A$(·,·) = 1].

An adversary A is nonce-respecting if it never repeats a nonce: if A asks its oracle
a query (N,M) it will never subsequently ask its oracle a query (N,M ′), regardless
of its coins (if any) and regardless of oracle responses. All adversaries are assumed
to be nonce-respecting.

Authenticity. We extend the notion of integrity of ciphertexts of [Bellare and
Namprempre 2000; Bellare and Rogaway 2000; Katz and Yung 2000b]. Fix an
encryption scheme Π = (K, E ,D) and run an adversary A with an oracle EK(·, ·) for
some key K. Adversary A forges (in this run) if A is nonce-respecting, A outputs
(N,C) where DK(N,C) 6= Invalid, and A made no earlier query (N,M) which
resulted in a response C. Let Advauth

Π (A) = Pr[K $←K : AEK(·,·) forges]. We
stress that the nonce used in the forgery attempt may coincide with a nonce used
in one of the adversary’s queries.

Block ciphers and PRFs. A function family from n-bits to n-bits is a map
E : K × {0, 1}n → {0, 1}n where K is a finite set of strings. It is a block cipher if
each EK(·) = E(K, ·) is a permutation. Let Rand(n) denote the set of all functions
from {0, 1}n to {0, 1}n and let Perm(n) denote the set of all permutations from
{0, 1}n to {0, 1}n. These sets can be regarded as function families by imagining
that each member is specified by a string. For π ∈ Perm(n), let π−1(Y) be the
unique string X such that π(X) = Y . Let

Advprf
E (A) = Pr[K $←K : AEK(·) = 1]− Pr[ρ $← Rand(n) : Aρ(·) = 1]

Advprp
E (A) = Pr[K $←K : AEK(·) = 1]− Pr[π $← Perm(n) : Aπ(·) = 1]

Advsprp
E (A) = Pr[K $←K : AEK(·),E−1

K (·) = 1]−
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 15

Pr[π $← Perm(n) : Aπ(·),π−1(·) = 1]

be defined for a block cipher E and adversary A.

5.2 Theorem Statements

We give information-theoretic bounds on the authenticity and the privacy of OCB.
Proofs are in Appendix 8.

Theorem 5.1. [Authenticity] Fix OCB parameters n and τ . Let A be an
adversary that asks q queries and then makes its forgery attempt. Suppose the q
queries have aggregate length of σ blocks, and the adversary’s forgery attempt has
at most c blocks. Let σ̄ = σ + 2q + 5c + 11. Then

Advauth
OCB[Perm(n),τ] (A) ≤ 1.5 σ̄2

2n
+

1
2τ ♦

The aggregate length of queries M1, . . . ,Mq means the number σ =
∑q

r=1 ‖Mr‖n.
It is standard to pass to a complexity-theoretic analog of Theorem 5.1, but in

doing this one will need access to an E−1 oracle in order to verify a forgery attempt,
which translates into needing the strong PRP assumption. One gets the following.
Fix OCB parameters n and τ , and a block cipher E : K×{0, 1}n → {0, 1}n. Let A
be an adversary that asks q queries and then makes its forgery attempt. Suppose
the q queries have aggregate length of σ blocks, and the adversary’s forgery attempt
has at most c blocks. Let σ̄ = σ + 2q + 5c + 11. Let δ = Advauth

OCB[E,τ] (A) −
1.5 σ̄2/2n − 1/2τ . Then there is an adversary B for attacking block cipher E that
achieves advantage Advsprp

E (B) ≥ δ. Adversary B asks at most q′ = σ + 2q + c + 3
oracle queries and has a running time which is equal to A’s running time plus the
time to compute E or E−1 at q′ points plus additional time which is αnσ̄, where
the constant α depends only on details of the model of computation.

The privacy of OCB is given by the following result.

Theorem 5.2. [Privacy] Fix OCB parameters n and τ . Let A be an adversary
that asks q queries, these having aggregate length of σ blocks. Let σ̄ = σ + 2q + 3.
Then

Advpriv
OCB[Perm(n),τ] (A) ≤ 1.5 σ̄2

2n ♦

As before, it is standard to pass to a complexity-theoretic analog of Theorem 5.2.
Fix OCB parameters n and τ , and a block cipher E : K × {0, 1}n → {0, 1}n. Let A
be an adversary that asks q queries, these having aggregate length of σ blocks.
Let σ̄ = σ + 2q + 3. Let δ = Advauth

OCB[E,τ] (A) − 1.5 σ̄2/2n. Then there is an
adversary B for attacking block cipher E that achieves advantage Advprp

E (B) ≥ δ.
Adversary B asks at most q′ = σ + 2q + 1 oracle queries and has a running time
which is equal to A’s running time plus the time to compute E at q′ points plus
additional time which is αnσ̄, where the constant α depends only on details of the
model of computation.

ACM Journal Name, Vol. V, No. N, M 2003.

16 · Phillip Rogaway et al.

Algorithm 64 B 256 B 1 KB 4 KB

OCB encrypt 24.7 (395) 18.5 (296) 16.9 (271) 16.7 (267)

ECB encrypt 15.1 (241) 15.0 (239) 14.9 (238) 14.9 (238)

CBC encrypt 15.9 (254) 15.9 (254) 15.9 (255) 15.9 (256)

CBC mac 19.2 (307) 16.3 (261) 15.5 (248) 15.3 (246)

Fig. 2. Performance results from Lipmaa [Lipmaa 2001], in cycles per byte (cycles per 16-byte
block) on a Pentium III. The block cipher is AES128. Code is written in assembly.

6. PERFORMANCE

Abstract accounting. OCB uses d|M |/ne + 2 block-cipher calls to encrypt a
nonempty message M . (The empty string takes three block-cipher calls.)

We compare this with CBC encryption and CBC encryption plus a CBC MAC.
Namely, “basic” CBC encryption, where one assumes a random IV and a message
which is a multiple of the block length, uses |M |/n block-cipher calls. (A more fair
comparison uses some padding regime and sets IV = EK′(N), so both schemes use
a nonce IV). If one combines basic CBC encryption with a CBC MAC, say MACing
the ciphertext (including the IV), then CBC-encryption will use a number of block-
cipher calls as just discussed, while the CBC MAC will use at least d|M |/ne + 1
block-cipher calls (possibly more, depending on padding conventions and what is
done to ensure security across messages of varying lengths). So the total number
of calls for CBC encryption with a CBC MAC will be at least 2d|M |/ne + 1, and
typically a bit more.

As with any mode, OCB has overhead beyond the block-cipher calls. Per block,
this overhead is about four n-bit xor operations, plus associated logic. The work
for this associated logic will vary according to whether or not one precomputed
L(i)-values and many additional details.

Though some or all of the needed L(i)-values are likely to be precomputed, com-
puting all of them “on the fly” is not inefficient. Starting with 0n we form successive
offsets by xoring the previous offset with L, 2 · L, L, 4 · L, L, 2 · L, L, 8 · L, and
so forth. So half the time we use L itself; a quarter of the time we use 2 · L; one
eighth of the time we use 4 ·L; and so forth. Thus the expected number of times to
multiply by x in order to compute an offset is at most

∑∞
i=1 i/2i+1 = 1. Each a · x

instruction requires an n-bit shift and a conditional 32-bit xor. Said differently, for
any m > 0, the total number of a ·x operations needed to compute γ1 ·L, γ2 ·L, . . . ,
γm · L is

∑m
i=1 ntz(i), which is less than m.

Experimental results. In Table 2 we report, with permission, some experi-
mental results by Helger Lipmaa [Lipmaa 2001]. On a Pentium III, in optimized
assembly, Lipmaa implemented OCB encryption, ECB encryption, CBC encryp-
tion, and the CBC MAC. The last three modes were implemented in their “raw”
forms, where one does no padding and assumes that the message acted on is a
positive multiple of the block length. For CBC encryption, the IV is fixed. The
underlying block cipher is AES128.

Focusing on messages of 1 KByte, OCB incurs about 6.4% overhead compared to
CBC encryption, and the algorithm takes about 54% of the time of a CBC encryp-
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 17

tion + CBC MAC. Lipmaa points out that overhead is so low that, in his exper-
iments, an assembly AES128 with a C-code CBC-wrapper is slightly slower than
the same AES128 with an assembly OCB-wrapper. Lipmaa’s (size-unoptimized)
code is 7.2 KBytes, which includes unrolling AES128 (2.2 KBytes) three times.

Some aspects of the experiments above are unfavorable to OCB, making the
performance estimates conservative. In particular, the “raw” CBC MAC needs
to be modified to correctly handle length-variability; when combined with CBC
encryption, the CBC MAC should be taken over the full ciphertext, including the
nonce, which would add an extra block-cipher call; and an extra block-cipher call
would normally be performed by CBC to correctly compute the IV from a nonce.

The results above are for a serial execution environment. In settings with plenty
of registers and multiple instruction pipes, OCB, properly implemented, will be
faster than CBC.

7. AFTERWARDS

After the initial publication of OCB many individuals pointed out that often times
when one is trying to encrypt a message with authenticity there is additional data,
such as a message header, that should be authenticated but not encrypted. The
associated data should be bound to the ciphertext but should not increase its length.
This problem of authenticated-encryption with associated-data has been formally
defined in [Rogaway 2002], and an extension to OCB has been given there that
allows the binding-in of arbitrary associated data while retaining OCB’s efficiency
characteristics.

Richard Schroeppel has described to us a nice implementation trick [Schroeppel
2001] that obviates the utility of the Gray-code ordering used in OCB. The method
is to precompute the sequence L̂(0), L̂(1), L̂(2), L̂(3), · · · = L, 3L, 7L, 15L, · · · instead
of L(0), L(1), L(2), L(3), · · · = L, 2L, 4L, 8L, · · ·. Then notice that values of the se-
quence L, 2L, 3L, 4L, 5L, · · · can be efficiently enumerated using the observation
that iL = (i− 1)L⊕ L̂(ntz(i)) for any i ≥ 2.

OCB has become an optional algorithm in a draft IEEE 802.11 standard for the
security of wireless LANs. There is also a patent pending on OCB. See the first
author’s web page for current information.

8. PROOFS

8.1 Structure of the Proofs

Our proof of Theorem 5.1 is based on three lemmas. The first, the structure lemma,
relates the authenticity of OCB to three functions: the M-collision probability,
denoted Mcolln(·), the MM-collision probability, denoted MMcolln(·, ·), and the
CM-collision probability, denoted CMcolln(·, ·). We state this lemma and then
explain its purpose and the functions to which it refers.

Lemma 1. [Structure lemma] Fix OCB parameters n and τ . Let A be an
adversary that asks q queries and then makes its forgery attempt. Suppose the q
queries have aggregate length of σ blocks, and the adversary’s forgery attempt has
at most c blocks. Let σ̄ = σ + 2q + 5c + 11. Let Mcolln(·), MMcolln(·, ·) and

ACM Journal Name, Vol. V, No. N, M 2003.

18 · Phillip Rogaway et al.

CMcolln(·, ·) be the M-, MM-, and CM-collision probabilities. Then

Advauth
OCB[Perm(n),τ](A) ≤ max

m1,...,mq∑
mi=σ

mi≥1

 ∑
r∈[1..q]

Mcolln(mr)+

∑
1≤r<s≤q

MMcolln(mr,ms) +
∑

r∈[1..q]

CMcolln(c,mr)

 +
σ̄2

2n+1
+

1
2τ ♦

What this lemma does. The structure lemma provides a recipe for measuring
the maximal forging probability of an adversary attacking the authenticity of OCB:
compute the M-, MM- and CM- collision probabilities, and then put them together
using the formula of the lemma.

Informally, Mcolln(m) measures the probability of running into trouble when the
adversary asks a single query of the specified length. Trouble means the occur-
rence of any collision in the associated block-cipher-input values. This includes
the “special” input 0n (used to define L = EK(0n) and N ⊕ L (used to define
R = EK(N ⊕ L)). Informally, MMcolln(m, m̄) measures the probability of run-
ning into trouble when the adversary asks some two oracle queries of the specified
lengths. Trouble means that a block-cipher input associated to the first message
coincides with a block-cipher input associated to the second message. Informally,
CMcolln(c, m̄) measures the probability of running into trouble when the adversary
tries to forge some particular ciphertext C of the specified block length c, there
having been an earlier query of some particular message M of the specified block
length m, it receiving some particular response. This time trouble basically refers
to the final block-cipher input for the forgery attempt, X[c + 1], coinciding with
some earlier block-cipher input.

The structure lemma simplifies the analysis of OCB in two ways. First, it allows
one to excise adaptivity as a concern. Dealing with adaptivity is a major compli-
cating factor in proofs of this type. Second, it allows one to concentrate on what
happens to fixed pairs of messages. It is easier to think about what happens with
two messages than what is happening with all q + 1 of them.

The M- and MM-collision probability. We next define the M-collision prob-
ability and the MM-collision probability, and then state our upper bound on these
functions.

Definition 8.1. [M- and MM-collision probabilities] Fix n > 0 and let M =
M [0] · · ·M [m + 1] and M̄ = M̄ [0] · · · M̄ [m̄ + 1] be strings of at least 2n bits, where

each M [i] and M̄ [j] has n bits. Choose L, R, R̄
$←{0, 1}n and then associate to M

ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 19

and M̄ the points

X[−1] = 0n

X[0] = M [0]⊕ L X̄[0] = M̄ [0]⊕ L
X[1] = M [1]⊕ γ1 · L⊕R X̄[1] = M̄ [1]⊕ γ1 · L⊕ R̄
X[2] = M [2]⊕ γ2 · L⊕R X̄[2] = M̄ [2]⊕ γ2 · L⊕ R̄

...
...

X[m− 1] = M [m− 1]⊕ γm−1 · L⊕R X̄[m̄− 1] = M̄ [m̄− 1]⊕ γm̄−1 · L⊕ R̄
X[m] = M [m]⊕ (γm ⊕ huge) · L⊕R X̄[m̄] = M̄ [m̄]⊕ (γm̄ ⊕ huge) · L⊕ R̄
X[m + 1] = M [m + 1]⊕ γm̄ · L⊕R X̄[m̄ + 1] = M̄ [m̄ + 1]⊕ γm · L⊕ R̄

and the multisets

X0 = {X[−1], X[0], X[1], . . . , X[m], X[m + 1] }

X = {X[0], X[1], . . . , X[m], X[m + 1] }

X̄ = { X̄[0], X̄[1], . . . , X̄[m̄], X̄[m̄ + 1] }

Let Mcolln(M) denote the probability that some string is repeated in the multiset
X0, and let MMcolln(M,M̄) denote the probability that some element occurs in
both X and X̄ . When m and m̄ are numbers, let Mcolln(m) denote the maximal
value of Mcolln(M) over all strings M ∈ ({0, 1}n)m+2 and let MMcolln(m, m̄)
denote the maximal value of Mcolln(M,M̄) over all M ∈ ({0, 1}n)m+2 and M̄ ∈
({0, 1}n)m̄+2 such that M [0] 6= M̄ [0].

Think of M [0] as a synonym for the nonce N , think of M [m] as a generalization
of len(M [m]) (where the adversary can effectively control M [m] as opposed to
len(M [m]) to influence X[m]), and think of M [m+1] as a synonym for Checksum,
which we likewise let the adversary control. One similarly understands M̄ [0], M̄ [m̄],
and M̄ [m̄ + 1]. The needed bound is as follows.

Lemma 2. [Bound on the M- and MM-collision probability]

Mcolln(m) ≤
(

m + 3
2

)
· 1
2n

and MMcolln(m, m̄) ≤ (m + 2)(m̄ + 2)
2n

The CM-collision probability. The CM-collision probability is defined in
Figure 3. The following lemma tells us how large it can possibly be.

Lemma 3. [Bound on the CM-collision probability] Assume c, m̄ ≤ 2n−2.
Then

CMcolln(c, m̄) ≤ 2c + 3m̄ + 9
2n

Concluding the authenticity theorem. To prove Theorem 5.1, combine
Lemmas 1, 2, and 3. Let Π = OCB[Perm(n), τ]. Given the aggregate block length σ
and the bound c on the length of the forgery attempt, one must bound the maximum

ACM Journal Name, Vol. V, No. N, M 2003.

20 · Phillip Rogaway et al.

10 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

11 L
$←{0, 1}n; π(0n)← L

20 X̄[0]← N̄ ⊕ L; Ȳ [0]← R̄
$←{0, 1}n

21 for i← 1 to m̄ do Z̄(i)← γi · L⊕ R̄
22 for i← 1 to m̄− 1 do { X̄[i]← M̄ [i]⊕ Z̄[i]; Ȳ [i]← C̄[i]⊕ Z̄[i] }
23 X̄[m̄]← len(M̄ [m̄])⊕ huge · L⊕ Z̄[m̄] ; Ȳ (m̄)← C̄[m̄] 0∗ ⊕ M̄ [m̄] 0∗

24 Checksum′ ← M̄ [1]⊕ · · · ⊕ M̄ [m̄− 1]⊕ C̄[m̄] 0∗ ⊕ Ȳ [m̄]
25 X̄[m̄ + 1]← Checksum′ ⊕ Z̄[m̄]
26 for i← 0 to m̄ + 1 do π(X̄[i])← Ȳ [i]

30 X[0]← N ⊕ L
31 if N 6= N̄ and X[0] ∈ Domain(π) then bad ← true

32 if N = N̄ then R← R̄ else R
$←{0, 1}n

33 π(X[0])← R
34 for i← 1 to c do Z[i]← γi · L⊕R
35 for i← 1 to c− 1 do {
36 Y [i]← C[i]⊕ Z[i]

37 if Y [i] ∈ Range(π) then X[i]← π−1(Y [i]) else X[i]
$←{0, 1}n

38 π(X[i])← Y [i]; M [i]← X[i]⊕ Z[i] }
39 X[c]← len(C[c])⊕ huge · L⊕ Z[c]

40 if X[c] ∈ Domain(π) then Y [c]← π(X[c]) else Y [c]
$←{0, 1}n

41 π(X[c])← Y [c]
42 Checksum←M [1]⊕ · · · ⊕M [c− 1]⊕ C[c] 0∗ ⊕ Y [c]
43 X[c + 1]← Checksum⊕ Z[c]
44 if X[c + 1] ∈ Domain(π) then bad ← true

Fig. 3. Defining the CM-collision probability. The function CMcolln(N̄, M̄, C̄, N, C) is

defined as the probability that bad gets set to true when executing this game. The value
CMcolln(c, m̄) is the maximal value of CMcolln(N̄, M̄, C̄, N, C) over all m̄-block M̄ and C̄,
and all c-block C such that N 6= N̄ or C 6= C̄.

possible value of

Advauth
Π (A) ≤ max

m1,...,mq∑
mi=σ

mi≥1

 ∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr, ms) +

∑
r∈[1..q]

CMcolln(c, mr)

 +
σ̄2

2n+1
+

1

2τ

≤ max
m1,...,mq∑

mi=σ
mi≥0

 ∑
r∈[1..q]

(mr + 3)2

2n+1
+

∑
1≤r<s≤q

(mr + 2)(ms + 2)

2n
+

∑
r∈[1..q]

(
2c + 3mr + 9

2n

) +
(σ + 2q + 5c + 11)2

2n+1
+

1

2τ

ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 21

One can bound the first sum by letting m1 = σ and letting the remaining mi = 0;
one can bound the second sum by letting each mi = σ/q; and one can bound the
third sum by letting m1 = σ and letting the remaining mi = 0. These choices can
be justified by the technique of Lagrange multipliers. This gives

Advauth
Π (A) ≤

0.5(σ + 3)2 + 4.5q

2n
+

0.5q2(σ/q + 2)2

2n
+

2c + 3σ + 9 + q(2c + 9)

2n
+

0.5(σ + 2q + 5c + 11)2

2n
+

1

2τ

≤
0.5(σ + 3)2 + 4.5q + 0.5(σ + 2q)2 + 2c + 3σ + 9 + 2cq + 9q + 0.5(σ + 2q + 5c + 11)2

2n
+

1

2τ

≤
0.5(σ + 3)2 + 0.5(σ + 2q)2 + 0.5(σ + 2q + 5c + 11)2 + (3σ + 2cq + 2c + 13.5q + 9)

2n
+

1

2τ

≤
1.5 (σ + 2q + 5c + 11)2

2n
+

1

2τ

≤
1.5 σ̄2

2n
+

1

2τ

The fourth inequality can be justified by checking that 0.5(σ +3+(2q +5c+8))2−
0.5(σ + 3)2) already exceeds 3σ + 2cq + 2c + 13.5q + 9. This completes the proof.

Privacy. Privacy is obtained rather easily en route to proving authenticity. The
is because of the following result, which closely follows the first half of the proof of
the structure lemma.

Lemma 4. [Privacy lemma] Fix OCB block length n and tag length τ , and let
Π = OCB[Perm(n), τ]. Let A be an adversary that asks q queries, these having
aggregate block length of σ blocks. Let Mcolln(·) and MMcolln(·, ·) be the M- and
MM-collision probabilities. Then

Advpriv
Π (A) ≤ (σ + 2q + 1)2

2n+1
+

max
m1,...,mq∑

mi=σ
mi≥1

 ∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)


Combining Lemmas 2 and 4 gives Theorem 5.2. Namely,

Advpriv
Π (A) ≤ (σ + 2q + 1)2

2n+1
+ max

m1,...,mq∑
mi=σ

mi≥0

 ∑
r∈[1..q]

(mr + 3)2

2 · 2n

 +

max
m1,...,mq∑

mi=σ
mi≥0

 ∑
1≤r<s≤q

(mr + 2)(ms + 2)

2n


and we bound the two sums exactly as before, giving

Advpriv
Π (A) ≤ 0.5(σ + 2q + 1)2

2n
+

0.5(σ + 3)2 + 4.5q

2n
+

0.5q2(σ/q + 2)2

2n

ACM Journal Name, Vol. V, No. N, M 2003.

22 · Phillip Rogaway et al.

≤ 0.5(σ + 2q + 1)2 + 0.5(σ + 3)2 + 4.5q + 0.5(σ + 2q)2 + 4.5q

2n

≤ 1.5 (σ + 2q + 3)2

2n

≤ 1.5 σ̄2

2n

The third inequality can be justified by noting that 0.5(σ + 3 + 2q)2 − 0.5(σ + 3)2

exceeds 4.5q.

8.2 Proof of the Structure Lemma (Lemma 1)

Let A be a (computationally unbounded) adversary that attempts to violate the
authenticity of Π = OCB[Perm(n), τ]. Without loss of generality, A is deterministic.
The adversary is given an oracle for OCB.Encπ(·, ·). We must bound the probability
that A, after adaptively using this oracle q times, on messages with aggregate
length σ blocks, produces a properly forged ciphertext having at most c blocks.
This forgery probability is denoted Advauth

Π (A).

Game A. One can conceive of A interacting with OCB.Encπ(·, ·) and then produc-
ing a forgery attempt as A playing a certain game, game A, as defined in Figures 4
and 5. Rather than choose π

$← Perm(n) all at once, this game defines the val-
ues of π(x) point-by-point, as needed. We use the notation Domain(π) for the
set of values x ∈ {0, 1}n such that π(x) 6= undefined. By Domain(π) we mean
{0, 1}n \ Domain(π). Similarly, Range(π) is the set of y ∈ {0, 1}n such that there
exists an x ∈ {0, 1}n for which π(x) = y, and Range(π) = {0, 1}n \ Range(π).

An inspection of game A makes clear that it supplies to A a perfect simulation
of OCB.Encπ(·, ·). Game A simulates OCB in a somewhat unusual way, not only
defining π point-by-point, but, when a value π(x) is needed, for some new x, we get
this value, in most cases, not by choosing y

$← Range(π), as would seem natural,
but by choosing y

$←{0, 1}n, setting π(x) to y if y is not already in the range of π,
and “changing our minds,” setting π(x) $← Range(π), otherwise. In the latter case,
a flag bad is set to true. The flag bad is also set to true when the adversary
successfully forges. Consequently, upperbounding the probability that bad gets set
to true in game A serves to upperbound the adversary’s forging probability.

Game A′. We begin by making a couple of quite trivial changes to game A.
First, instead of setting C[m] = M [m] ⊕ Y [m] (in line 24 of game A), we set
C[m] = M [m] 0∗ ⊕ Y [m], instead. That is, we imagine returning the “full” final-
ciphertext-block instead of the truncated final-ciphertext-block. Clearly the extra
bits given to the adversary can not make worse an optimal adversary’s chance of
successful forgery. Second, instead of returning (in line 30 of game A) a tag T
which is the first τ bits of Y [m + 1], we return the full tag, Y [m + 1]. Once again,
the extra bits provided to the adversary can only improve an optimal adversary’s
chance of success. Let game A′ denote this new, “easier” game. We will bound the
probability that bad gets set to true in game A′.
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 23

Initialization:
01 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

02 L
$←{0, 1}n; π(0n)← L

When A asks query (N, M): //q such queries will be asked
10 Partition M into blocks M [1] · · ·M [m]

11 X[0]← N ⊕ L; Y [0]
$←{0, 1}n

12 if X[0] ∈ Domain(π) then { bad ← true; Y [0]← π(X[0]) } else

13 if Y [0] ∈ Range(π) then { bad ← true; Y [0]
$← Range(π) }

14 π(X[0])← Y [0]

15 for i← 1 to m do Z[i]← γi · L⊕ Y [0]
16 for i← 1 to m− 1 do {
17 X[i]←M [i]⊕ Z[i]; Y [i]

$←{0, 1}n
18 if X[i] ∈ Domain(π) then { bad ← true; Y [i]← π(X[i]) } else

19 if Y [i] ∈ Range(π) then { bad ← true; Y [i]
$← Range(π) }

20 π(X[i])← Y [i]; C[i]← Y [i]⊕ Z[i] }

21 X[m]← len(M [m])⊕ huge · L⊕ Z[m]; Y [m]
$←{0, 1}n

22 if X[m] ∈ Domain(π) then { bad ← true; Y [m]← π(X[m]) } else

23 if Y [m] ∈ Range(π) then { bad ← true; Y [m]
$← Range(π) }

24 π(X[m])← Y [m]; C[m]←M [m]⊕ Y [m]

25 Checksum←M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]

26 X[m + 1]← Checksum⊕ Z[m]; Y [m + 1]
$←{0, 1}n

27 if X[m + 1] ∈ Domain(π) then { bad ← true; Y [m + 1]← π(X[m + 1]) } else

28 if Y [m + 1] ∈ Range(π) then { bad ← true; Y [m + 1]
$← Range(π) }

29 π(X[m + 1])← Y [m + 1]; T ← Y [m + 1] [first τ bits]
30 return C← C[1] · · ·C[m] T

Fig. 4. Game A, part 1. This game provides adversary A a perfect simulation of
OCB[Perm(n), τ].

Game B. Next we eliminate from game A′ the statement which immediately follows
bad being set to true in each of lines 12, 13, 18, 19, 22, 23, 27, 28. The else
statements are also eliminated. This new game, game B, is shown in Figure 6. This
new game is different from game A′, and an adversary A having queries answered
according to game B will not be seeing the same view as one whose queries are
answered according to A′. Still, game B has been constructed so that it behaves
identically to game A′ until the flag bad is set to true. Only at that point do
the two games diverge. As a consequence, regardless of the behavior of A, the
probability that bad will get set to true when A plays game B is identical to
the probability that bad gets set to true when A plays game A′. Now we are
interested in upperbounding the probability of forgery in game A, which we do by
upperbounding the probability that bad gets set to true in game A′, which is just
the probability that bad gets set to true in game B.

Note that we are not claiming that the probability of the adversary forging in
game B (meaning that bad gets set to true at line 65 of game B) is the same as

ACM Journal Name, Vol. V, No. N, M 2003.

24 · Phillip Rogaway et al.

When A makes forgery attempt (N, C):
50 Partition C into C[1] · · ·C[c] T

51 X[0]← N ⊕ L; if X[0] ∈ Domain(π) then Y [0]← π(X[0]) else Y [0]
$← Range(π)

52 π(X[0])← Y [0]
53 for i← 1 to c do Z[i]← γi · L⊕ Y [0]
54 for i← 1 to c− 1 do {
55 Y [i]← C[i]⊕ Z[i]

56 if Y [i] ∈ Range(π) then X[i]← π−1(Y [i]) else X[i]
$←Domain(π)

57 π(X[i])← Y [i]; M [i]← X[i]⊕ Z[i] }

58 X[c]← len(C[c])⊕ huge · L⊕ Z[c]

59 if X[c] ∈ Domain(π) then Y [c]← π(X[c]) else Y [c]
$← Range(π)

60 π(X[c])← Y [c]
61 Checksum←M [1]⊕ · · · ⊕M [c− 1]⊕ C[c] 0∗ ⊕ Y [c]
62 X[c + 1]← Checksum⊕ Z[c]

63 if X[c + 1] ∈ Domain(π) then Y [c + 1]← π(X[c]) else Y [c + 1]
$← Range(π)

64 T ′ ← Y [c + 1] [first τ bits]
65 if T = T ′ then bad ← true

Fig. 5. Games A, A′ B, B′, and C, part 2.

the probability of the adversary forging in A′ (meaning that bad gets set to true
in the last line of that game). Claims of this sort are tempting to make, but they
are untrue.

Bounding Y -collisions in Game B. We next bound the probability that bad
will be set to true in any of lines 13, 19, 23, or 28 of game B. In each of these
lines, a random n-bit string was just chosen and then it is tested for membership
in the growing set Range(π). In the course of game B the size Range(π) starts off
at 0 and then grows one element at a time until it reaches a final size of σ + 2q + 1
elements. Therefore the probability that, in growing Range(π), there is a repetition
as we add in random points is at most (1+2+ · · ·+σ+2q)/2n ≤ (σ+2q+1)2/2n+1.
We note this for future reference:

Pr[A causes bad to be set in any of lines 13, 19, 23 or 28 of game B] ≤

(σ + 2q + 1)2

2n+1
. (1)

Having bounded the probability that bad will be set in the four indicated lines,
we may imagine eliminating these four lines, forming a new game, game B′. The
probability that bad is set in game B is at most the computed bound more than
than the probability that bad is set in game B′. Thus we may continue the analysis
using game B′ as long as we compensate the final bound by adding in the term
given by Equation (1).

Game C. In game B′, consider the distribution on strings returned to the ad-
versary in response to a query (N, M), where m = ‖M‖n. The adversary learns
C = C[1] · · ·C[m− 1]C[m] Y [m + 1]. Since each block of this string is a uniform
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 25

Initialization:
01 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

02 L
$←{0, 1}n; π(0n)← L

When A asks query (N, M): //q such queries will be asked
10 Partition M into blocks M [1] · · ·M [m]

11 X[0]← N ⊕ L; Y [0]
$←{0, 1}n

12 if X[0] ∈ Domain(π) then bad ← true

13 if Y [0] ∈ Range(π) then bad ← true

14 π(X[0])← Y [0]
15 for i← 1 to m do Z[i]← γi · L⊕ Y [0]
16 for i← 1 to m− 1 do {
17 X[i]←M [i]⊕ Z[i]; Y [i]

$←{0, 1}n
18 if X[i] ∈ Domain(π) then bad ← true

19 if Y [i] ∈ Range(π) then bad ← true

20 π(X[i])← Y [i]; C[i]← Y [i]⊕ Z[i] }
21 X[m]← len(M [m])⊕ huge · L⊕ Z[m]; Y [m]

$←{0, 1}n
22 if X[m] ∈ Domain(π) then bad ← true

23 if Y [m] ∈ Range(π) then bad ← true

24 π(X[m])← Y [m]; C[m]←M [m] 0∗ ⊕ Y [m]
25 Checksum←M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]

26 X[m + 1]← Checksum⊕ Z[m]; Y [m + 1]
$←{0, 1}n

27 if X[m + 1] ∈ Domain(π) then bad ← true

28 if Y [m + 1] ∈ Range(π) then bad ← true

29 π(X[m + 1])← Y [m + 1]
30 return C← C[1] · · ·C[m] Y [m + 1]

Fig. 6. Game B, part 1.

random value xor’ed with some other, independent value, we have that C is uni-
formly distributed and independent of the query M , apart from its length. As a
consequence, when a query of N,M is made, where M has m blocks, we can return
a random answer C (of nm + n bits) and do no more at that time. Later, when the
adversary is done making its q queries, we can set the remaining random values,
make the associated assignments to π, and set the flag bad, as appropriate. This
is what has been done in Game C of Figure 7. From the adversary’s point of view,
game B′ and game C are identical. Furthermore, the probability that bad gets set
to true is identical in the two games.

Game D. We have reduced the problem of upperbounding the forging probability
to the problem of upperbounding the probability that bad gets set to true in
game C. This probability is over the coins used in line 11 of game C (which defines
the Cr-values) and over the additional coins used subsequently in the program.
We must show that, over this sequence of coins (remember that the adversary is
deterministic) the flag bad is rarely set.

We will show something stronger: that even if one fixes all of the coins used in
line 11 (the Cr-values) and takes the probability over just the remaining coins, still
the probability that bad gets set to true is small. The virtue of this change is that

ACM Journal Name, Vol. V, No. N, M 2003.

26 · Phillip Rogaway et al.

When A asks its r-th query, (Nr, Mr): //r will range from 1 to q
10 Partition Mr into blocks Mr[1] · · ·Mr[mr]

11 Cr[1], . . . , Cr[mr], Yr[m + 1]
$←{0, 1}n

12 return Cr ← Cr[1] · · ·Cr[mr] Yr[mr + 1]

When A is done making oracle queries:
20 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

21 L
$←{0, 1}n; π(0n)← L

30 for r ← 1 to q do {
31 Xr[0]← Nr ⊕ L; Yr[0]

$←{0, 1}n
32 for i← 1 to mr do Zr[i]← γi · L⊕ Yr[0]
33 for i← 1 to mr − 1 do { Xr[i]←Mr[i]⊕ Zr[i]; Yr[i]← Cr[i]⊕ Zr[i] }
34 Xr[mr]← len(M [mr])⊕ huge · L⊕ Zr[mr] ; Yr[mr]← Cr[mr]⊕Mr[mr] 0

∗

35 Checksumr ←Mr[1]⊕ · · · ⊕Mr[mr − 1]⊕ Cr[mr] 0
∗ ⊕ Yr[mr]

36 Xr[mr + 1]← Checksumr ⊕ Zr[mr] }

37 X ← (X1[0], X1[1], . . . , X1[m1 + 1], . . . , Xq[0], Xq[1], . . . , Xq[mq + 1])
38 Y ← (Y1[0], Y1[1], . . . , Y1[m1 + 1], . . . , Yq[0], Yq[1], . . . , Yq[mq + 1])
39 if some string is repeated in X ∪ {0n} then bad ← true

40 for i← 1 to |X | do π(X [i])← Y[i]

Fig. 7. Game C, part 1. This game provides adversary A with the same view as game B, and

sets bad with the same probability. But it defers some random choices.

it effectively eliminates the q interactive queries from the game. Namely, since the
adversary A is deterministic and each response Cr has been fixed, the adversary
can be imagined to “know” all of the queries N1,M1, . . . , Nq,Mq that it would
ask and all of the answers C1, . . . ,Cq that it would receive. All the adversary has
left to do is to output the forgery attempt (N,C T). This value too is now pre-
determined, as our adversary is deterministic. So the adversary is effectively gone,
and we are left to claim that for any N1,M1, . . . , Nq,Mq, C1, . . . ,Cq, N, C, T , the
flag bad will rarely be set if we run game C starting at line 20. The new game is
called game D. It depends on N1,M1, . . . , Nq,Mq, C1, . . . ,Cq, N,C, T , which are
now just constants. The constants are not quite arbitrary: the Nr-values are still
required to be distinct. The lengths of M1, . . . ,Mq are m1, . . . ,mq blocks. The
length of C is c blocks.

The Mcolln and MMcolln terms. At this point we make the observation that
bad will be set to true in line 40 of game D if and only if either

There is some r ∈ [1..q] such that there is a repetition in the multiset

{0n, Xr[0], Xr[1], . . . , Xr[mr]}

There is some pair r, s ∈ [1..q], where r < s, such that {Xr[0], . . . Xr[mr+1]}
has some a point in common with {Xs[0], . . . Xs[ms + 1]}.

ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 27

20 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

21 L
$←{0, 1}n; π(0n)← L

30 for r ← 1 to q do {
31 Xr[0]← Nr ⊕ L; Yr[0]

$←{0, 1}n
32 for i← 1 to mr do Zr[i]← γi · L⊕ Yr[0]
33 for i← 1 to mr − 1 do { Xr[i]←Mr[i]⊕ Zr[i]; Yr[i]← Cr[i]⊕ Zr[i] }
34 Xr[mr]← len(M [mr])⊕ huge · L⊕ Zr[mr] ; Yr[mr]← Cr[mr]⊕Mr[mr] 0

∗

35 Checksumr ←Mr[1]⊕ · · · ⊕Mr[mr − 1]⊕ Cr[mr] 0
∗ ⊕ Yr[mr]

36 Xr[mr + 1]← Checksumr ⊕ Zr[mr] }
37 X ← (X1[0], X1[1], . . . , X1[m1 + 1], . . . , Xq[0], Xq[1], . . . , Xq[mq + 1])
38 Y ← (Y1[0], Y1[1], . . . , Y1[m1 + 1], . . . , Yq[0], Yq[1], . . . , Yq[mq + 1])
39 for i← 1 to |X | do π(X [i])← Y[i]
40 if some string is repeated in X ∪ {0n} then bad ← true

50 X[0]← N ⊕ L; if X[0] ∈ Domain(π) then Y [0]←π(X[0]) else Y [0]
$← Range(π)

51 π(X[0])← Y [0]
52 for i← 1 to c do Z[i]← γi · L⊕ Y [0]
53 for i← 1 to c− 1 do {
54 Y [i]← C[i]⊕ Z[i]

55 if Y [i] ∈ Range(π) then X[i]← π−1(Y [i]) else X[i]
$←Domain(π)

56 π(X[i])← Y [i]; M [i]← X[i]⊕ Z[i] }
57 X[c]← len(C[c])⊕ huge · L⊕ Z[c]

58 if X[c] ∈ Domain(π) then Y [c]← π(X[c]) else Y [c]
$← Range(π)

59 π(X[c])← Y [c]
60 Checksum←M [1]⊕ · · · ⊕M [c− 1]⊕ C[c] 0∗ ⊕ Y [c]
61 X[c + 1]← Checksum⊕ Z[c]

62 if X[c + 1] ∈ Domain(π) then Y [c + 1]← π(X[c]) else Y [c + 1]
$← Range(π)

63 T ′ ← Y [c + 1] [first τ bits]
64 if T = T ′ then bad ← true

Fig. 8. Game D. This game depends on N1, . . . , Nq , M1, . . . , Mq , C1, . . . , Cq , Y1[m1 + 1], . . .,
Yq [mq + 1], N , C = C[1] · · ·C[c] and T .

The probability of this event is at most∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms) (2)

by our definition of Mcolln and MMcolln. Therefore the probability that bad is set
to true in line 40 of Game D is at most the expression above. We are left now to
focus on the probability that bad gets set to true in line 64 of Game D (Figures 8
and 5).

Game E. We modify the second half of game D (lines 20–39 are unchanged). First,
we simplify lines 50, 55 and 58, and 62 by choosing a random value in {0, 1}n
as opposed to a value in the co-range, co-domain, co-range, and co-range of π,
respectively. By similar reasoning to that used before, this new game may decrease

ACM Journal Name, Vol. V, No. N, M 2003.

28 · Phillip Rogaway et al.

50 X[0]← N ⊕ L
51 if N 6= Nr for any r and X[0] ∈ Domain(π) then bad ← true

52 if N = Nr for some r then Y [0]← Yr[0] else Y [0]
$←{0, 1}n

53 π(X[0])← Y [0]
54 for i← 1 to c do Z[i]← γi · L⊕ Y [0]
55 for i← 1 to c− 1 do {
56 Y [i]← C[i]⊕ Z[i]

57 if Y [i] ∈ Range(π) then X[i]← π−1(Y [i]) else X[i]
$←{0, 1}n

58 π(X[i])← Y [i]; M [i]← X[i]⊕ Z[i] }
59 X[c]← len(C[c])⊕ huge · L⊕ Z[c]

60 if X[c] ∈ Domain(π) then Y [c]← π(X[c]) else Y [c]
$←{0, 1}n

61 π(X[c])← Y [c]
62 Checksum←M [1]⊕ · · · ⊕M [c− 1]⊕ C[c] 0∗ ⊕ Y [c]
63 X[c + 1]← Checksum⊕ Z[c]
64 if X[c + 1] ∈ Domain(π) then bad ← true

Fig. 9. Game E, part 2. The first half of this game is lines 20–39 of Game D.

the probability that bad gets set to true, but by an amount that is at most

(c + 2)(σ + 2q + c + 3)
2n

Second, we modify the game so as to “give up” (set bad) if the condition of line 62
is satisfied. In doing this, we may again decrease the probability that bad will
be set to true. But the decrease is at most 1/2τ since, when the else clause
of the new line 62 is executed (that is, Y [m + 1] $←{0, 1}n), T will equal T ′ with
probability exactly 1/2τ . Finally, we modify the game to give up (set bad) whenever
N 6∈ {N1, . . . , Nq} but X[0] = N ⊕L is already in Domain(π) when this is checked
at line 50. The new game is called game E and it is shown in Figure 9. We note
for future reference:

Pr[bad gets set in game D]

≤ Pr[bad gets set in game E] +
(c + 2)(σ + 2q + c + 3)2

2n
+

1
2τ

(3)

Game F. We now examine game E and relate it to a final game, F. If bad is set
to true in game E the reason is either that X[0] = N ⊕ L was found to be in the
domain of π even though N is a new nonce, or else X[c + 1] was found to be in the
domain of π when this was checked. In the latter case, how did X[c + 1] come to
be in the domain of π? At least one of the following must be true:

X[c + 1] = 0n. (The value 0n was added to the domain of π at line 21.)
For some r ∈ [1..q], for some j ∈ [0..mr + 1], X[c + 1] = Xr[j]. (These values
were added to the domain of π at line 39.)
For some i ∈ [0..c], X[c + 1] = X[i]. (These values were added to the domain
of π at lines 53, 57, and 61).

ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 29

When bad is set to true we will assign responsibility for this event to exactly one
index r ∈ [1..q]. We say that the responsible index is r where:

If N is a new nonce and X[0] ∈ Domain(π) at line 51, then the responsible
index is the least r ∈ [1..q] such that Xr[j] = X[0] for some j. Otherwise,
If X[c + 1] = 0n, then the responsible index is r = 1. Otherwise,
If there is an r ∈ [1..q] such that, for some j ∈ [0..mr + 1], X[c + 1] = Xr[j],
then the responsible index is the least such value r. Otherwise,
The responsible index is r = 1. (This last case can happen when X[c + 1] =
X[i] for some i ∈ [0..c].)

Partition the coins used in the running of game E into: the coins s0 used in
the initialization step (line 21); the coins s1, . . . , sq used for processing message
M1, . . . ,Mq, respectively (line 31); and the coins s used to process the forgery at-
tempt C (lines 52, 57, and 60). Suppose we eliminate the for statement at line 30,
and execute lines 31–36 for some specific value of r. Call this game Er. We make the
crucial observation that if bad is set to true in game E using coins (s0, s1, . . . , sq, s)
then bad will still be set to true in game Er using coins (s0, sr, s) when the re-
sponsible index is r. This follows from our definition of the responsible index. The
only observation that is needed is that when X[c + 1] = X[i] for some i ∈ [0..c],
then, considering the least such i, if X[i] was selected by assigning to it an already-
selected Xs[j]-value, then the third case in the definition of the responsible index
will result in the selection of an index r that forces bad to true.

By what we have said, one can bound the probability that bad gets set to true in
game E by summing the probabilities that bad gets set to true in game Er, where
r ∈ [1..q]. Game Er is precisely the game that was used to define the CMcolln; in
particular, the probability that bad is set in Er is CMcolln(c,mr). We conclude
that the probability that bad is set to true in game Er is at most CMcolln(c,mr).
Thus the probability that bad gets set to true in game E is at most

q∑
r=1

CMcolln(c,mr) (4)

Summing Equations (1), (2), (3) and (4) gives that the adversary’s chance of forgery
is at most

∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms) +
q∑

r=1

CMcolln(c,mr) +

(σ + 2q + 1)2 + 2(c + 2)(σ + 2q + c + 3)
2n+1

+
1
2τ

Using that (σ + ∆)2 − σ2 ≥ 2σ∆ and (σ + ∆)2 − σ2 ≥ ∆2, we can increase σ
by a small amount in order to compensate for the lower-order terms and clean up
the expression. Namely, increasing σ by 2q + 1 is enough to take care of the first
addend, while increasing σ by c + 2 plus 2(c + 2) plus

√
2(c+3) is enough to take

care of the second addend. So increasing σ by 2q + 5c + 11 will take care of both.
Letting σ̄ = 2q + 5c + 11 we thus have that the adversary’s chance of forgery is at

ACM Journal Name, Vol. V, No. N, M 2003.

30 · Phillip Rogaway et al.

most ∑
1≤r<s≤q

MMcolln(qr, qs) +
q∑

r=1

CMcolln(c, qs) +
σ̄2

2
· 1
2n

+
1
2τ

This completes the proof of the structure lemma.

8.3 Proof of the M- and MM-Collision Bounds (Lemma 2)

We assume that m, m̄ < 2n−2, since the specified probability upper bound is mean-
ingless (it exceeds 1) otherwise. According to remarks we have made earlier, this
ensures that γ1, . . . , γmax{m,m̄},huge are distinct nonzero field elements.

We begin with the first inequality. There are m + 3 points in the set X0, and we
claim that for any two of them, the probability that they coincide is at most 1/2n.
This is enough to show the first inequality, that the probability of a collision within
X0 is at most

(
m+3

2

)
· 2−n. There are a few cases to consider. Below, remember

that L and R are random, and everything else is constant. The probabilities are
over L,R. In the following, we let i, i′ ∈ [1..m− 1], i 6= i′.

Pr[X[−1] = X[0]] = Pr[0n = M [0]⊕ L] = 1/2n.
Pr[X[−1] = X[i]] = Pr[0n = M [i]⊕ γi · L⊕R] = 1/2n.
Pr[X[−1] = X[m]] = Pr[0n = M [m]⊕ (γm ⊕ huge) · L⊕R] = 1/2n.
Pr[X[−1] = X[m + 1]] = Pr[0n = M [m + 1]⊕ γm · L⊕R] = 1/2n.
Pr[X[0] = X[i]] = Pr[M [0]⊕ L = M [i]⊕ γi · L⊕R] = 1/2n.
Pr[X[0] = X[m]] = Pr[M [0]⊕ L = M [m]⊕ (γm ⊕ huge) · L⊕R] = 1/2n.
Pr[X[0] = X[m + 1]] = Pr[M [0]⊕ L = M [m + 1]⊕ γm · L⊕R] = 1/2n.
Pr[X[i] = X[i′]] = Pr[M [i] ⊕ γi · L = M [i′] ⊕ γi′ · L] = Pr[M [i] ⊕M [i′] =
(γi ⊕ γi′) · L] = 1/2n because γi 6= γi′ .
Pr[X[i] = X[m]] = Pr[M [i] ⊕ γi · L ⊕ R = M [m] ⊕ (γm ⊕ huge) · L ⊕ R] =
Pr[M [i]⊕γi ·L = M [m]⊕ (γm⊕huge) ·L] = Pr[M [i]⊕M [m] = (γm⊕huge⊕
γi) · L] = 1/2n because γi ⊕ γm 6= huge. The reason that γi ⊕ γm 6= huge
is that huge begins with a 1 in bit position 1, while neither γi nor γm do,
because i, m ≤ 2n−2 and γi < 2i, γm ≤ 2m.
Pr[X[i] = X[m + 1]] = Pr[M [i] ⊕ γi · L ⊕ R = M [m + 1] ⊕ γm · L ⊕ R] =
Pr[M [i]⊕M [m + 1] = (γi ⊕ γm) · L] = 1/2n.
Pr[X[m] = X[m+1]] = Pr[M [m]⊕(γm⊕huge)·L⊕R = M [m+1]⊕γm·L⊕R] =
Pr[M [m]⊕M [m + 1] = huge · L] = 1/2n.

This completes the first inequality.
For the second inequality, we wish to show that for any point in X and any point

in X̄ , the probability that they coincide is at most 2−n. The result follows, since
there are at most (m + 2)(m̄ + 2) such pairs. Remember, below, that L, R and R̄
are random, and everything else is constant. We let i ∈ [1..m−1] and j ∈ [1..m̄−1].
As before, γ1, . . . , γm,huge are distinct nonzero points.

Pr[X[0] = X̄[0]] = Pr[M [0] ⊕ L = M̄ [0] ⊕ L] = 0, since M [0] 6= M̄ [0] by
assumption.
Pr[X[0] = X̄[j]] = Pr[M [0] ⊕ L = M̄ [j] ⊕ γj · L ⊕ R̄] = 1/2n due to the
influence of R̄.
Pr[X[0] = X̄[m̄] = Pr[M [0] ⊕ L = M̄ [m̄] ⊕ (γm̄ ⊕ huge) · L ⊕ R̄] = 1/2n due

ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 31

to the influence of R̄.
Pr[X[0] = X̄[m̄ + 1] = Pr[M [0]⊕ L = M̄ [m̄ + 1]⊕ γm̄ · L⊕ R̄] = 1/2n due to
the influence of R̄.
Pr[X[i] = X̄[j]] = Pr[M [i] ⊕ γi · L ⊕ R = M̄ [j] ⊕ γj · L ⊕ R̄] = 1/2n due to
the influence of R̄.
Pr[X[i] = X̄[m̄]] = Pr[M [i]⊕γi ·L⊕R = M̄ [m̄]⊕ (γm̄⊕huge) ·L⊕ R̄] = 1/2n

due to the influence of R̄.
Pr[X[i] = X̄[m̄ + 1] = Pr[M [i]⊕ γi ·L⊕R = M̄ [m̄ + 1]⊕ γm̄ ·L⊕ R̄] = 1/2n

due to the influence of R̄.
Pr[X[m] = X̄[m̄] = 1/2n, as before, due to the influence of R̄.
Pr[X[m] = X̄[m̄ + 1] = 1/2n for the same reason.
Pr[X[m + 1] = X̄[m̄ + 1] = 1/2n for the same reason.

The remaining cases follow by symmetry. This completes the proof.

8.4 Proof of the CM-Collision Bound (Lemma 3)

Proof. At the top level, we consider two cases: N 6= N̄ and N = N̄ . The
second of these will be analyzed by breaking into four subcases.

Case 1: N 6= N̄ . In this case there are two ways for bad to be set to true: it
can happen at line 31 or line 44 in the game that defines the CMcolln collision
probability (Figure 3). Let us first calculate the probability that bad is set to true
at line 31, which is

Pr[bad is set at line 31] = Pr[N ⊕ L ∈ {0n, X̄[1], . . . , X̄[m̄ + 1]}]

Notice that the point X̄[0] = N̄ ⊕ L in the domain of π has been omitted from
set B = {0n, X̄[1], . . . , X̄[m̄], X̄[m̄ + 1]}, and we know this point is different from
N ⊕ L since N 6= N̄ . The probability above is taken over L and R̄, where each
X̄[i] implicitly depends on both. We claim that for each of the m̄ + 2 values in B,
the probability that N ⊕L is equal to this particular value is exactly 1/2n. This is
verified by:

Pr[N ⊕ L = 0n] = 1/2n because of the random L.
For any j ∈ [1..m̄−1], Pr[N⊕L = X̄[j]] = Pr[N⊕L = M̄ [j]⊕γj ·L⊕R̄] = 1/2n

because of the random R̄.
Similarly, Pr[N ⊕ L = M̄ [m̄] ⊕ (γm̄ ⊕ huge) · L ⊕ R̄] = 1/2n because of the
random R̄.
Similarly, Pr[N⊕L = M̄ [m̄+1]] = Pr[N⊕L = Checksum′⊕γm̄ ·L⊕R̄] = 1/2n

because of the random R̄.
We conclude that

Pr[bad is set at line 31] ≤ m̄ + 2
2n

(5)

We next show that

Pr[X[c] ∈ Domain(π) at line 40] ≤ c + m̄ + 3
2n

(6)

ACM Journal Name, Vol. V, No. N, M 2003.

32 · Phillip Rogaway et al.

For this, let us define S to be

S = {0n, X̄[0], X̄[1], . . . , X̄[m̄ + 1], X[0], X[1], . . . , X[c− 1]}

This is the domain of π at the time that line 40 is executed. The set has c + m̄ + 3
points and we shall use the sum bound to see that the probability that X[m] is one
of these is at most (c + m̄ + 3)/2n. Namely,

Pr[X[c] = 0n] = Pr[len(C[c]) ⊕ (γm ⊕ huge) · L ⊕ R = 0n] = 1/2n as the
right-hand side of the equality sign does not depend on R.
Pr[X[c] = X̄[0]] = Pr[len(C[c])⊕ (γc⊕ huge) ·L⊕R = N̄ ⊕L] = 1/2n for the
same reason.
For j ∈ [1..m̄−1], Pr[len(C[c])⊕(γc⊕huge) ·L⊕R = M̄ [j]⊕γj ·L⊕R̄] = 1/2n

for the same reason.
Pr[X[c] = X̄[m̄]] = Pr[len(C[c])⊕ (γc⊕huge) ·L⊕R = M̄ [m̄]⊕ (γm̄⊕huge) ·
L⊕ R̄] = 1/2n for the same reason.
Pr[X[c] = X̄[m̄ + 1]] = Pr[len(C[c])⊕ (γc⊕ huge) ·L⊕R = Checksum′⊕ γm̄ ·
L⊕ R̄] = 1/2n for the same reason.
Pr[X[c] = X[0]] = Pr[len(C[c])⊕ (γc⊕ huge) ·L⊕R = N ⊕L] = 1/2n for the
same reason.
For i ∈ [1..c− 1], X[i] is determined in one of two possible ways: either it is
a value already placed into the Domain(π) (the then clause at line 37 was
executed) or else it is a randomly selected value in {0, 1}n (the else clause
was executed). In the former case, the sum bound has already accounted for
the probability of a collision with X[i]. In the latter case, the chance of the
random value colliding with X[c] = len(C[c])⊕ (γc ⊕ huge) · L⊕R is 1/2n.

Equation (6) has now been established.
Next we observe that

Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c] 6∈ Domain(π) at line 40] ≤

c + m̄ + 4
2n

(7)

The reason is that, when the conditioning event happens, Y [c] is selected as a
random point in {0, 1}n at line 40, which results in Checksum being a random
value independent of the points in the domain of π, which results in X[c + 1] being
a random value independent of the points in the domain of π. Since the domain of
π has at most 1 + (m̄ + 2) + (c + 1) = c + m̄ + 4 points at this time, Equation (7)
follows. Now, summing Equations (5), (6) and (7) gives us that

Pr[bad gets set | Case 1] ≤ 3m̄ + 2c + 9
2n

(8)

Case 2A: N = N̄ and c 6= m̄. The next case we consider is when N = N̄ and
c 6= m̄. Redefine S to be

S = {0n, X̄[0], . . . , X̄[m̄ + 1], X[1], . . . , X[c− 1]}
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 33

This is Domain(π) at the time line 40 is executed. We show that

Pr[X[c] ∈ S | Case 2a] ≤ c + m̄ + 2
2n

(9)

To show this, one has as before to go through the c + m̄ + 2 points of S:
Pr[X[c] = 0n] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = 0n] = 1/2n.
Pr[X[c] = N ⊕ L] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = N ⊕ L] = 1/2n.
For j ∈ [1..m̄ − 1], Pr[X[c] = X̄[j]] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R =
M̄ [j]⊕ γj ·L⊕R] = Pr[len(C[c])⊕ M̄ [j] = (γj ⊕ γc ⊕ huge) ·L] = 1/2n since
γj ⊕ γc 6= huge. The reason that γj ⊕ γc 6= huge is that γj < 2j ≤ 2m̄ ≤
2·2n−2 = 2n−1, so γj begins with a 0-bit; and γc < 2c ≤ 2m̄ ≤ 2·2n−2 = 2n−1,
so γc begins with a 0-bit; so the xor of γj and γc begins with a 0-bit, while
huge begins with a 1-bit, so they are certainly unequal.
Pr[X[c] = X̄[m̄]] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = len(M̄ [m̄]) ⊕ (γm̄ ⊕
huge) · L ⊕ R] = Pr[len(C[c]) ⊕ len(M̄ [m̄]) = (γc ⊕ γm̄) · L] = 1/2n since
γc 6= γm̄ (since c 6= m̄).
Pr[X[c] = X̄[m̄ + 1]] = Pr[len(C[c])⊕ (γc⊕ huge) ·L⊕R = Checksum′⊕ γm̄ ·
L⊕R] = Pr[len(C[c])⊕Checksum′ = (γc ⊕ huge ⊕ γm̄) ·L] = 1/2n as before.
For i ∈ [1..c − 1], either X[i] was selected as a value already in Domain(π),
in which case the sum bound has already accounted for the probability of a
collision with X[c], or else X[i] was selected as a new random value, in which
case it has a 1/2n chance of colliding with X[c].

We have established (9). Next, as before, if X[c] 6∈ S then Y [c] is chosen at random,
making Checksum random, and making X[c + 1] random. Thus

Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c] 6∈ Domain(π) at line 40] ≤

c + m̄ + 3
2n

(10)

since the size of the domain of π at line 44 is at most c+m̄+3. Adding Equations (9)
and (10) we have that

Pr[bad gets set | Case 2A] ≤ 2c + 2m̄ + 5
2n

(11)

Case 2B: N = N̄ and c = m̄ and ∃ a, a < c, s.t. C[a] 6= C̄[a]. In this case, let
a ≥ 1 be the smallest index such that C[a] 6= C̄[a]. We claim that Y [a] is almost
certainly not in the range of π when this point is examined at line 37, when i = a.
In fact, we claim something stronger: that Y [a] is almost certainly different from
every point in

S = {L, Ȳ [0], . . . , Ȳ [c + 1], Y [1], . . . , Y [a− 1], Y [a + 1], . . . , Y [c− 1]}

In particular,

Pr[Y [a] ∈ S] ≤ c + m̄

2n
(12)

This is verified by going through each point in S, exactly as before. This time, for
each point in S except Ȳ [a], the probability that this point coincides with Y [a] is

ACM Journal Name, Vol. V, No. N, M 2003.

34 · Phillip Rogaway et al.

exactly 1/2n. The probability that Ȳ [a] = Y [a] is 0, since C[a] 6= C̄[a].
Now we modify the game which defines CMcolln so that X[a] is always selected

at random from {0, 1}n. If we bound the probability that bad gets set in this
new game and then add to it the bound of Equation (12), the result bounds the
probability that bad gets set in Case 2B. From now on in this case analysis, assume
this new game.

Next we claim that X[c] is almost certainly different from X[a]:

Pr[X[c] = X[a]] =
1
2n

(13)

This is clear because, in the modified game we have described, X[a] is now chosen
at random, independent of X[c] = len(C[c])⊕ (huge ⊕ γc) · L⊕R.

We may now modify the game once again so that Y [c] is selected at random even
in the case that X[c] = X[a]. Bounding the probability of bad being set in the
new game, and adding in the bound of (13), serves to bound the probability of bad
being set in the prior game.

Now we can look at the probability that X[c + 1] ∈ Domain(π) when this is
checked in the modified game. At this point the domain of π contains the 2c + 3
points

Domain∗ = {0n, X̄[0], . . . , X̄[m̄ + 1], X[1], . . . , X[a], . . . , X[c]}

We want to know the probability that X[c + 1] = Checksum ⊕ γc · L ⊕ R is in
this set. The value Checksum now contains the point X[a], which, in the modified
game, has just been selected at random and independent of all points in Domain∗

with the exception of X[a] itself. So for each of these 2c + 2 points, the probability
that it coincides with X[c + 1] is 1/2n. For the one remaining point X[a], note
that Pr[X[c + 1] = X[a]] = 1/2n, as the probability can be rewritten as Pr[γc ·
L ⊕ R = Checksum′], where Checksum′ (which is Checksum without the X[a]) is
independent of L and R. Thus

Pr[X[c + 1] ∈ Domain(π) in the modified game] ≤ c + m̄ + 3
2n

(14)

Summing Equations (12), (13), and (14), we conclude that

Pr[bad gets set | Case 2B] ≤ 2c + 2m̄ + 4
2n

(15)

Case 2C: N = N̄ and c = m̄ and C[i] = C̄[i] for all 1 ≤ i < c and |C[c]| =
|C̄[c]|. In this case, necessarily C[c] 6= C̄[c]. Note that Checksum has a known value,
which is different from Checksum′, being exactly Checksum′⊕C̄[c] 0∗⊕C[c] 0∗. The
values M [1], . . . ,M [c−1] are likewise known, being identical to M̄ [1], . . . , M̄ [c−1],
respectively. We are interested in

Pr[X[c + 1] ∈ {0n, X[0], . . . , X[c], X̄[c + 1]}

One goes through each of the points, as before, and sees that the probability that
X[c + 1] = Checksum ⊕ γc · L ⊕ R is any one of them is 1/2n, except for the last
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 35

point, for which the probability that they coincide is 0. Thus

Pr[bad gets set | Case 2C] ≤ c + 2
2n

(16)

Case 2D: N = N̄ and c = m̄ and C[i] = C̄[i] for all 1 ≤ i < c and |C[c]| 6=
|C̄[c]|. For this case, we first claim that X[c] is almost certainly not in the domain
of π when this is inspected at line 40 of Figure 3. The method is as before. The
point X[c] is certain to be different from X̄[c], and its chance of coinciding with
any of the c+2 points in {0n, X[0], X[1], . . . , X[c− 1], X̄[c+1]} is easily verified to
be 1/2n. Thus

Pr[X[c] ∈ Domain(π) at line 40] ≤ c + 2
2n

(17)

Proceeding as before,

Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c] 6∈ Domain(π) at line 38] ≤ c + 3
2n

(18)

since c + 3 bounds the size of the domain when line 44 is executed, and the con-
ditioning event ensures a random value for X[c + 1] which is independent of these
points. Summing the bounds of Equation (17) and (18) gives

Pr[X[c + 1] ∈ Domain(π) at line 44] ≤ 2c + 5
2n

(19)

Conclusion. Taking the maximum from Equations (8), (11), (15), (16), and (19)
we have

Pr[bad gets set] ≤ 3m̄ + 2c + 9
2n

which is the lemma.

8.5 Proof of the Privacy Bound (Lemma 4)

The proof is straightforward compared to authenticity, so we quickly go though it.
We begin by following the proof of the Structure Lemma (Appendix 8.2). Games A
to D are defined as before, except that

The second half of each game is omitted, since there is no forgery attempt in
this context.
Return the truncated final-ciphertext-blocks, instead of the full final-ciphertext
blocks, as the games specify.

Focus on the (modified) game C, where we have now returned to the adversary A
a random string of |Mr| + τ bits whenever a query Mr is asked. Furthermore,
the behavior of game C coincides with the behavior of the original game A unless
the flag bad is set to true, at which point the two games diverge. Thus we can
bound Advpriv

OCB[Perm(n),τ](A) by bounding the probability that the flag bad is set
to true in (the modified) game C, which is at most the probability that it gets set

ACM Journal Name, Vol. V, No. N, M 2003.

36 · Phillip Rogaway et al.

in Game D. From the same reasoning as in the structure lemma, this is at most

(σ + 2q + 1)2

2n+1
+ max

m1,...,mq∑
mi=σ

mi≥1

 ∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)


which is precisely the bound given by the the lemma.

ACKNOWLEDGMENTS

At CRYPTO ’00, Virgil Gligor described [Gligor and Donescu 2000a] to Rogaway,
Charanjit Jutla gave a rump-session talk on [Jutla 2000a], and Elaine Barker an-
nounced a first modes-of-operation workshop organized by NIST. These events in-
spired [Rogaway 2000], which evolved into the current work. After the first work-
shop NIST made a second call for proposals, and OCB took its final form in response
to this call [Rogaway et al. 2001a]. We appreciate NIST’s effort to solicit and eval-
uate modern modes of operation. Elaine Barker, Morris Dworkin, and Jim Foti are
among those involved.

We received useful feedback from Michael Amling, Paulo Barreto, Johan H̊astad,
Hugo Krawczyk, Helger Lipmaa, David McGrew, Silvio Micali, Ilya Mironov,
Alberto Pascual, Bart Preneel, Tom Shrimpton, and David Wagner. Special thanks
to Michael and Ilya for their careful proofreading, and Helger for doing a state-of-
the-art assembly implementation and providing associated timing data. Deepest
thanks to Ted Krovetz who provided an implementation and performance figures.
Thanks to the anonymous referees for their comments.

This work was carried out while Rogaway was on leave of absence from UC Davis,
visiting the Department of Computer Science, Faculty of Science, Chiang Mai Uni-
versity.

Mihir Bellare received support from NSF grant CCR-0098123, NSF grant ANR-
0129617, and an IBM Faculty Partnership Development Award.

John Black received support from NSF CAREER award CCR-0133985 and the
University of Colorado. Part of this work was carried out while John was at the
University of Nevada, Reno.

REFERENCES

An, J. and Bellare, M. 2001. Does encryption with redundancy provide authenticity? In

Advances in Cryptology — EUROCRYPT 2001, B. Pfitzmann, Ed. Lecture Notes in Computer
Science, vol. 2045. Springer-Verlag, 512–528. See www-cse.ucsd.edu/users/mihir.

Aoki, K. and Lipmaa, H. 2000. Fast Implementations of AES Candidates. In The Third Advanced

Encryption Standard Candidate Conference. National Institute of Standards and Technology,

New York, NY, USA, 106–120. See www.tml.hut.fi/∼helger.

Bellare, M., Desai, A., Jokipii, E., and Rogaway, P. 1997. A concrete security treatment
of symmetric encryption: Analysis of the DES modes of operation. In Proceedings of 38th

Annual Symposium on Foundations of Computer Science (FOCS 97). ACM Press, 394–403.
See www.cs.ucdavis.edu/∼rogaway.

Bellare, M., Desai, A., Pointcheval, D., and Rogaway, P. 1998. Relations among
notions of security for public-key encryption schemes. In Advances in Cryptology —

CRYPTO ’98, H. Krawczyk, Ed. LNCS, vol. 1462. Springer-Verlag, 232–249. See
www.cs.ucdavis.edu/∼rogaway.

Bellare, M., Guérin, R., and Rogaway, P. 1995. XOR MACs: New methods for message

authentication using finite pseudorandom functions. In Advances in Cryptology — CRYPTO

ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 37

’95, D. Coppersmith, Ed. Lecture Notes in Computer Science, vol. 963. Springer-Verlag, 15–28.

See www.cs.ucdavis.edu/∼rogaway.

Bellare, M., Kilian, J., and Rogaway, P. 2000. The security of the cipher block chaining

message authentication code. Journal of Computer and System Sciences (JCSS) 61, 3 (Dec.),

362–399. Earlier version in CRYPTO ’94. See www.cs.ucdavis.edu/∼rogaway.

Bellare, M. and Namprempre, C. 2000. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In Advances in Cryptology — ASIACRYPT

’00, T. Okamoto, Ed. Lecture Notes in Computer Science, vol. 1976. Springer-Verlag, 531–545.

See www-cse.ucsd.edu/users/mihir.

Bellare, M. and Rogaway, P. 2000. Encode-then-encipher encryption: How to exploit nonces or

redundancy in plaintexts for efficient encryption. In Advances in Cryptology — ASIACRYPT

’00, T. Okamoto, Ed. Lecture Notes in Computer Science, vol. 1976. Springer-Verlag, 317–330.
See www.cs.ucdavis.edu/∼rogaway.

Black, J. and Urtubia, H. 2002. Side-channel attacks on symmetric encryption schemes: the

case for authenticated encryption. In Proceedings of the 11th USENIX Security Symposium.
USENIX, 327–338. See www.cs.colorado.edu/∼jrblack/.

Bleichenbacher, D. 1998. Chosen ciphertext attacks against protocols based on the RSA en-

cryption standard PKCS #1. In Advances in Cryptology — CRYPTO ’98, H. Krawczyk,
Ed. Lecture Notes in Computer Science, vol. 1462. Springer-Verlag, 1–12. See www.bell-

labs.com/user/bleichen.

Dolev, D., Dwork, C., and Naor, M. 2000. Non-malleable cryptography. SIAM

Journal on Computing 3, 2, 391–497. Earlier version appeared at STOC ’91. See
www.wisdom.weizmann.ac.il/∼naor/.

Gligor, V. and Donescu, P. 1999. Integrity-aware PCBC encryption schemes. In Security

Protocols, 7th International Workshop, B. Christianson, B. Crispo, J. A. Malcolm, and M. Roe,
Eds. Lecture Notes in Computer Science, vol. 1796. Springer-Verlag, 153–171.

Gligor, V. and Donescu, P. 2000a. Fast encryption and authentication: XCBC encryption and

XECB authentication modes. Manuscript, Aug 18. See www.eng.umd.edu/∼gligor.

Gligor, V. and Donescu, P. 2000b. Fast encryption and authentication: XCBC en-
cryption and XECB authentication modes. Contribution to NIST, Oct 27, 2000. See
csrc.nist.gov/encryption/aes/modes.

Gligor, V. and Donescu, P. 2000c. Fast encryption and authentication: XCBC encryption and
XECB authentication modes. Contribution to NIST, Mar 30, 2001, rev. Apr 20, 2001. See
csrc.nist.gov/encryption/aes/proposedmodes.

Gligor, V. and Donescu, P. 2002. Fast encryption and authentication: XCBC encryption and

XECB authentication modes. In Fast Software Encryption, 8th International Workshop, FSE
2001, M. Matsui, Ed. Lecture Notes in Computer Science, vol. 2355. Springer-Verlag, 92–108.

See www.ece.umd.edu/∼gligor/.

Goldwasser, S. and Micali, S. 1984. Probabilistic encryption. Journal of Computer and System
Sciences 28, 270–299.

Halevi, S. 2001. An observation regarding Jutla’s modes of operation. Cryptology ePrint archive,

reference number 2001/015, submitted Feb 22, 2001, revised Apr 2, 2001. See eprint.iacr.org.

Jutla, C. 2000a. Encryption modes with almost free message integrity. Cryptology ePrint archive,
reference number 2000/039, Aug 1, 2000. See eprint.iacr.org.

Jutla, C. 2000b. Encryption modes with almost free message integrity. Contribution to NIST.

Undated manuscript, appearing Oct 2000 at csrc.nist.gov/encryption/modes/workshop1.

Jutla, C. 2001a. Encryption modes with almost free message integrity. In Advances in Cryptol-

ogy — EUROCRYPT 2001, B. Pfitzmann, Ed. Lecture Notes in Computer Science, vol. 2045.

Springer-Verlag.

Jutla, C. 2001b. Encryption modes with almost free message integrity. Con-
tribution to NIST. Undated manuscript, posted May 24, 2001 at NIST web site

csrc.nist.gov/encryption/modes/proposedmodes.

ACM Journal Name, Vol. V, No. N, M 2003.

38 · Phillip Rogaway et al.

Katz, J. and Yung, M. 2000a. Complete characterization of security notions for probabilis-

tic private-key encryption. In Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing (STOC 2000). ACM Press, 245–254.

Katz, J. and Yung, M. 2000b. Unforgeable encryption and adaptively secure modes of operation.

In Fast Software Encryption, 7th International Workshop, FSE 2000, B. Schneier, Ed. Lecture

Notes in Computer Science, vol. 1978. Springer-Verlag, 284–299.

Krawczyk, H. 2001. The order of encryption and authentication for protecting communications
(or: How secure is SSL?). In Advances in Cryptology — CRYPTO 2001, J. Kilian, Ed. Lecture

Notes in Computer Science, vol. 2139. Springer-Verlag, 310–331.

Lipmaa, H. 2001. Personal communications. July 2001. Further information available at
www.tml.hut.fi/∼helger.

Luby, M. and Rackoff, C. 1988. How to construct pseudorandom permutations from pseudo-

random functions. SIAM Journal of Computing 17, 2 (Apr.), 373–386.

Manger, J. 2001. A chosen ciphertext attack on RSA optimal asymmetric encryption padding

OAEP as standardized in PKCS#1 v2.0. In Advances in Cryptology — CRYPTO ’01, J. Kilian,
Ed. Lecture Notes in Computer Science, vol. 2139. Springer-Verlag, 230–238.

Meyer, C. H. and Matyas, S. M. 1982. Cryptography: A New Dimension in Computer Data

Security. John Wiley and Sons, New York.

Preneel, B. 1998. Cryptographic primitives for information authentication — State of the art.

In State of the Art in Applied Cryptography, COSIC ’97. Lecture Notes in Computer Science,
vol. 1528. Springer-Verlag, 49–104.

Rogaway, P. 2000. OCB mode: Parallelizable authenticated encryption. Contribu-

tion to NIST, Oct 16, 2000 (Preliminary version of the OCB algorithm). See
csrc.nist.gov/encryption/modes/workshop1.

Rogaway, P. 2002. Authenticated-encryption with associated-data. In ACM Conference on

Computer and Communications Security (CCS-9). ACM Press, 196–205.

Rogaway, P., Bellare, M., Black, J., and Krovetz, T. 2001b. OCB: A block-cipher mode

of operation for efficient authenticated encryption. In ACM Conference on Computer and
Communications Security (CCS-8). ACM Press, 196–205.

Rogaway, P., Bellare, M., Black, J., and Krovetz, T. 2001a. OCB mode. Contribution to

NIST, Apr 1, 2001, revised Apr 18, 2001. See csrc.nist.gov/encryption/modes/proposedmodes.

RSA Laboratories. 1998. PKCS #1: RSA encryption standard, Version 1.5, PKCS #1:
RSA cryptography specifications, Version 2.0, Sep 1998, B. Kaliski and J. Staddon. See
www.rsasecurity.com/rsalabs/pkcs/pkcs-1.

Schroeppel, R. 2001. Personal communications.

Steiner, J., Neuman, C., and Schiller, J. 1988. Kerberos: an authentication service for open

network systems. In Proceedings of the Winter 1988 Usenix Conference. USENIX Association,
191–201.

US National Institute of Standards. 2001. Specification for the Advanced Encryption Stan-

dard (AES). Federal Information Processing Standards Publication 197. Based on J. Daemen

and V. Rijmen, AES Proposal: Rijndael. Sep 3, 1999. See www.nist.gov/aes.

Vaudenay, S. 2002. Security flaws induced by CBC padding — applications to SSL, IPSEC,
WTLS. . .. In Advances in Cryptology — EUROCRYPT ’02, L. Knudsen, Ed. Lecture Notes in

Computer Science, vol. 2332. Springer-Verlag, 534–546. See /lasecwww.epfl.ch/∼vaudenay/.

A. BRIEF HISTORY

Jutla, gligor-donescu, rogaway. An April ’99 paper by Gligor and Donescu
gives an authenticated-encryption scheme called PCBC [Gligor and Donescu 1999].
Though the mode is not correct, as pointed out by Jutla [Jutla 2000a], it may have
contributed to the subsequent development of correct modes. Jutla’s paper [Jutla
2000a] gives the first correct schemes, IACBC and IAPM. Shortly after that pa-
per appeared, Gligor and Donescu described a different scheme, XCBC [Gligor and
ACM Journal Name, Vol. V, No. N, M 2003.

OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption · 39

Donescu 2000a], which is similar to IACBC. The most conspicuous difference be-
tween XCBC and IACBC is the former’s use of mod-2n addition where the latter
uses xor or mod-p addition, for p a prime just less than 2n.

A first call by NIST for modes of operation brought contributions [Gligor and
Donescu 2000b; Jutla 2000b] based on [Gligor and Donescu 2000a; Jutla 2000a], and
a contribution by Rogaway [Rogaway 2000] that built on [Jutla 2000a]. In [Jutla
2000b], Jutla employs a Gray-code ordering for combining basis offsets, a refinement
independently introduced, along with further tricks, in [Rogaway 2000].

A second call by NIST gave rise to [Gligor and Donescu 2000c; Jutla 2001b;
Rogaway et al. 2001a], which were revisions to [Gligor and Donescu 2000b; Jutla
2000b; Rogaway 2000], respectively. In [Jutla 2001b], Jutla emphasized IAPM over
IACBC, and he adopted “lazy mod-p addition” as described in [Rogaway 2000].
In [Gligor and Donescu 2000c], Gligor and Donescu describe four authenticated-
encryption modes, one of which, XECBS-XOR, is parallelizable. The modes adopt
some features introduced in [Rogaway 2000] to deal with messages of arbitrary
length and to use a single block-cipher key. In [Rogaway et al. 2001a], Rogaway
et al. settled on one mechanism to make offsets (three are described in [Rogaway
2000]) and made further refinements to [Rogaway 2000].

Briefly comparing OCB and IAPM, the latter uses two separate keys and is
defined only for messages that are a multiple of the block length. Once a padding
regime is included, say obligatory 10∗ padding, ciphertexts will be longer than
OCB’s by 1 to n bits. IAPM supports offset-production using either lazy mod-p
addition or an xor-based scheme. The latter is not competitive with OCB in terms
of key-setup costs.

An earlier version of this paper was published as [Rogaway et al. 2001b].
The history above ignores associated patent applications.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, M 2003.

