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REAL-WORLD CRYPTO

Practice-Oriented Provable Security and 
the Social Construction of Cryptography

Phillip Rogaway | University of California, Davis

Practice-oriented provable security serves as the backdrop for what might be called a constructionist 
view of cryptography—that cryptographic work isn’t a consequence of what a disciplinary community 
aims to study so much as a refl ection of its own sensibilities.

C ryptographers used to associate provable security
with public-key cryptography, asymptotic analy-

ses, and ine�  cient proof-of-concept designs. � ese 
associations are outdated, undermined by the devel-
opment of practice-oriented provable security by Mihir 
Bellare and  me. 

Here I tell the story of practice-oriented provable 
security from a rather personal and sociological per-
spective. My aim is to use the area’s emergence to bol-
ster the claim that, overwhelmingly, cryptography is 
socially constructed.

Constructionism and Realism 
What does it mean to say that cryptography is socially 
constructed? To say that some thing, C, is socially con-
structed emphasizes that C need not be as it is today. 
It’s not determined by the nature of mathematical truth 
or physical reality. Rather, C exists in its present form 
because of social or historical forces. For cryptography, 
the relevant forces are to be found in the cryptographic 
community’s disciplinary culture.

Constructionism isn’t the only view of why a � eld 
is the way it is. A di� erent explanation is scienti� c real-
ism. In that view, C is the way it is because it’s true (or 
at least a good and ever-improving approximation to 

what’s true). � ere wasn’t a lot of choice in the ma� er. 
Physicists arrived at the notion of quarks, for example, 
because they’re real. � ey were discovered. Nobody 
invented quarks, contrary to the provocative title of 
Andrew Pickering’s Constructing Quarks.1Another com-
munity of physicists—maybe aliens on some distant 
planet—would have come to similar ideas in their own 
development of particle physics.

Although most scientists subscribe to realist views, 
many who study the history and sociology of science 
embrace constructionist views, at least to some extent.

� e case for constructionism in theoretical physics 
can seem a stretch, but the case for constructionism in 
technology isn’t controversial. Technology, a� er all, is 
the business of the synthetic, and our artifacts aren’t just 
metaphorically constructed, they’re literally constructed.

But cryptography is a bit of a problem child, because 
parts of it seem to rest squarely in engineering and are 
clearly constructed (nobody would claim that AES, the 
Advanced Encryption Standard, is anything but con-
struction), while other parts of the � eld—potentially 
including all of provable security—might seem be� er 
understood as scienti� c realism.

It’s hard to ascertain the extent to which crypto-
graphers hold realist versus constructionist views. 
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Usually such matters are only vaguely implied by techni-
cal work. One case where an author’s view is made clear 
is Oded Goldreich’s essay “On Post-Modern Crypto-
graphy.”2 The piece is decidedly realist. Goldreich’s 
essay emphatically asserts that “cryptographic research is 
indeed part of science.” He regards this as the dominant 
view among cryptographers.

In contrast, I claim that cryptography, even in its 
most pure and scientific persona, is quite strongly con-
structed. I use the story of practice-oriented provable 
security to make this case.

Provable Security
Provable security began around 1982, most especially 
with the landmark paper of Shafi Goldwasser and Silvio 
Micali, “Probabilistic Encryption.”3 The authors were 
only graduate students at the time, yet their paper laid 
the foundation for the definition-based, reduction- 
centered approach to cryptography. It has come to be 
called provable security.

The provable-security approach begins with a pre-
cise definition of the problem at hand. This entails spec-
ifying what the adversary is allowed to do and when it 
is deemed successful. A protocol is then given for the 
problem. Almost invariably, that protocol will rely on 
some other, lower-level protocol. That lower-level pro-
tocol aims to solve a different, hopefully more basic 
cryptographic aim. That aim too is defined, specifying 
what that kind of adversary can do and when it suc-
ceeds. Good protocols are those for which reasonable 
adversaries are rarely successful. Evidence of security 
for the higher-level protocol takes the form of a reduc-
tion: one shows how to transform an adversary attacking 
the higher-level protocol into an adversary attacking the 
lower-level one. A belief that the lower-level protocol 
does its job thus engenders a belief that the higher-level 
protocol does its job.

Provable security has had a profound impact on 
cryptography. Roughly half of all academic work in 
the field follows this course. For developing the idea of 
provable security and for numerous contributions in 
this domain, Goldwasser and Micali shared the 2012 
Turing Award.

Two-Hat Approach
I came to cryptography just after the advent of prov-
able security. It was a wonderful time to be at MIT 
and studying under Micali. The cryptographic papers 
then emerging from MIT’s cryptographers were beau-
tiful, visionary creations. One has only to reread some 
of their titles (or phrases therein) to relive a bit of the 
otherworldliness of that time: “How to Play Mental 
Poker” (1982), “A Paradoxical Solution to the Signature 
Problem” (1984), “Proofs that Yield Nothing but Their 

Validity” (1986), “How to Play ANY Mental Game” 
(1987). The MIT cryptographers seemed to live in a 
playful world of unbridled imagination.

As I saw it, at least, cryptography at MIT in the 
1980s didn’t much countenance pragmatic concerns. 
The field was a branch of theoretical computer science. 
The culture of the leading theory conferences, STOC 
(Symposium on the Theory of Computing) and FOCS 
(Foundations of Computer Science), was the culture we 
lived. While a word or two might be uttered in a paper 
to play up some conceivable application, genuinely 
practical considerations would have to wait for some 
less ecstatic day. Philosophy and beauty had primacy 
over utility in determining what work was good to do.

After MIT, fellow graduate student Bellare and I 
went off to IBM. I thought it would be a good place to 
inject into practice some of the wonderful ideas from 
crypto theory—ideas like secure multiparty computa-
tion, where entities could collaborate to compute func-
tions in ways that would protect the privacy of each 
party’s contribution. I thought I’d spend two or three 
years bringing the science of cryptography to crypto-
illiterate practitioners.

The idea was as naive as it was arrogant. In my 
defense, I believe that many other people had similar 
delusions, and do to this day. In grandiloquent terms, 
I imagined the practical denouement of cryptographic 
work to arise like this: Provable-security would provide 
the needed paradigms, techniques, and viewpoints. 
These ideas would then get picked up, refined a bit, 
and concretely embodied. Finally, they would become 
objects of material culture that companies like IBM 
could sell.

The science → technology → society model is 
sometimes called the “conveyor-belt” or “linear- 
development” model. The idea is nicely captured in the 
creepy slogan of the 1933 World’s Fair: Science Finds, 
Industry Applies, Man Conforms. It’s a highly inaccu-
rate view of how science, technology, and society inter-
act, yet it provides the implicit framework under which 
many scientists situate their work.

I soon realized that nobody at IBM was actually 
trying to inject some worked-out crypto theory into 
the compliant body of cryptographic practice. For 
one thing, cryptographic practice was in many ways 
far ahead of theory, attending to problems we had 
never even heard of. To deal with the gap, Bellare and 
I observed our colleagues taking what we came to call 
the two-hat approach. You could wear your theory hat, in 
which case you’d try to write a nice paper for a theory or 
cryptography conference; or you could wear your prac-
tice hat, in which case you’d use intuition or cleverness 
to try to design, attack, or refine some real-world thing 
that, against all odds, had found its way to you.
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Bellare and I didn’t like this approach. The problem 
was that when wearing the practice hat, you had to aban-
don not just your theory-rooted knowledge but, worse, 
the most basic theory-rooted sensibility: the belief that 
one should formalize any complex problem before con-
structing or analyzing a solution. We weren’t willing to 
do this. Yet people around us were in need of solutions 
to problems that contemporary theory hadn’t seen and 
seemingly couldn’t touch.

The Kerberos Problem
The first set of questions I heard concerned some-
thing called Kerberos—an authentication service that 
had come from MIT. It was embarrassing to have just 
come from there yet not to have heard of the thing. 
But it turned out that no MIT cryptographer had been 
involved in Kerberos’ creation. The irony of this contin-
ues to astound me.

At the center of Kerberos is a six-flow protocol 
among three parties. It’s pretty complicated, involving 
nonces, time stamps, tickets, and a variety of shared 
keys. Two of the parties, however, don’t yet share a key, 
and it’s the protocol’s job to see that they get issued 
one—a short-lived session key.

Kerberos is an elaboration and refinement of an 
earlier three-party protocol for entity authentication 
and key distribution created by Roger Needham and 
Michael Schroeder.4 Besides that protocol and the Ker-
beros protocol, there turned out to be a veritable zoo 
of protocols like this—as well as techniques for break-
ing them or proving them secure (for various notions 
of secure, formalized and not). The techniques were 
mostly logical or algebraic in character, effectively 
abstracting the cryptography as some sort of black-box 
encryption. The lineage of ideas goes back to Danny 
Dolev and Andrew C. Yao,5 although the most popular 
approach, when I got to IBM, seemed to be BAN logic, 
named for a fascinating paper by Michael Burrows, 
Martín Abadi, and Needham.6 By the early 1990s, many 
people were doing this kind of work. Few of them were 
a part of the cryptographic community I knew.

I was shocked to learn of the existence of a sort of 
“shadow” cryptographic community—an academic 
community that did cryptography, at least in any catho-
lic understanding of the word, but wasn’t represented 
at the main cryptography conferences. Most people 
involved didn’t even call themselves cryptographers. 
Had they accepted an oddly narrow and societally con-
structed view of what a cryptographer does?

Bellare and I wanted to figure out what this Kerberos 
really was. We read all the papers we could find, but they 
never came close to actually defining the goal. It was 
frustrating. At some point, I remember reading a paper 
on Kerberos by Bill Bryant.7 It was, believe it or not, a 

four-act, two-person play. One character, Athena, was 
described as an up-and-coming system developer. The 
other character, Euripides, was a good-natured adver-
sary. Repeatedly, Athena would refine her protocol and 
explain her thinking to Euripides. He would promptly 
attack the thing and send Athena back to work. After 
a tiresome number of such scenes, Euripides offers no 
more complaints and Kerberos is born.

I appreciated the author trying to communicate his 
idea in this nonstandard way. But the kind of iterative, no-
assurance-except-so-and-so-didn’t-break-it approach is 
exactly what the cryptographic community had learned 
to avoid. The play seemed to celebrate an approach I had 
thought one was supposed to be ashamed of.

By now convinced that IBM and its friends at the 
Open Software Foundation were spending gazil-
lions of dollars on something utterly foundationless, I 
arranged to meet Jeff Schiller, a leading figure behind 
Kerberos, on one of my visits back to MIT. I explained 
that the problem Kerberos solved was without foun-
dation and pointed out that even if one implemented 
Kerberos using a “semantically secure” encryption 
scheme, still it might be trivial to break. The under-
lying problem, I said, was that encryption was never 
the right tool for entity authentication. My recollec-
tion is that I was perfectly cordial and reasonable, but 
Schiller must have thought otherwise, as he apparently 
called up Micali just after we talked to ask what kind of 
lunatic he had trained.

In the end, Bellare and I found the problem addressed 
by Kerberos to be too complex to deal with at that time 
(we would come back to three-party key distribution 
a few years later). Happily, a paper had just come out 
that offered up a simpler scenario. Ray Bird and his col-
leagues at IBM considered two-party entity authentica-
tion, again in the symmetric (shared-key) setting.8 They 
brought to our attention the idea of instances, sessions, 
and interleaving attacks. There weren’t any definitions 
in their paper, but Bellare and I saw that one could now 
provide definitions and proofs.

The model we developed, shown in Figure 1, puts the 
adversary at center stage. It communicates with a set of 
oracles. These interact with the adversary— not, at least 
directly, with one another. Oracles reify instances, with 
oracle Õi

t  modeling instance t of party i. Oracles are 
stateful, each initialized to have whatever long-lived keys 
the corresponding party should hold. Each oracle com-
putes messages according to the protocol under study.

The adversary communicates with its oracles using 
a repertoire of queries that model its real-world capa-
bilities. Here’s an example. A Send query, directed to 
an oracle, lets the adversary see how an instance will 
respond if sent some message. A Reveal query, again 
directed to an oracle, causes it to relinquish its session 
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key. A Corrupt query, now directed to all oracles cor-
responding to some party i, provides the adversary all 
state information in all those oracles. Finally, a Test 
query returns either the session key that an oracle holds 
or, alternatively, a random key drawn from some speci-
fied distribution.

To define key distribution, we had to formalize what 
it means for an oracle to come to have some session 
key with (just) some communication partner. Thus a 
notion of partnering is needed, a way to know which 
oracle is paired with which. One also needs a notion of 
freshness for the session key. A session key held by some 
oracle is fresh if the adversary hasn’t learned it by triv-
ial means—for example, using a Reveal query on the 
oracle’s partner.

A protocol’s security is measured by associating a 
real-valued advantage to any adversary. The advantage 
measures the adversary’s ability to predict if the string 
returned by the Test query is a fresh session key or, 
instead, a randomly chosen key.

After defining mutual authentication and authenti-
cated key exchange, we showed how to achieve these 
aims from simpler cryptographic tools. A theorem says 
that if the tools do their jobs well, then the high-level 
protocol does its job well.

I was excited about this paper. We took a com-
plicated problem that a large community of people 
wanted solved and brought provable security to it in 
a completely practical way. But it would take years for 
the idea to catch on. Theorists thought the problem 
alien and uninteresting; practitioners felt the same way 
about cryptographic definitions and proof. Still, by now 
numerous papers have used the Bellare-Rogaway model 
to formalize and prove security for entity authentication 
and key distribution aims. Using this framework, real-
world protocols, including Kerberos, SSH, and TLS, 
have been analyzed or refined.

Message Authentication Codes
As a graduate student, I had heard of blockciphers like 
DES, the Data Encryption Standard, but I understood 
that cryptographic theory didn’t deal with such objects. 
They were foundationless, and this was thought to be 
infectious: anything built from a confusion/diffusion 
primitive would again lack foundation.

Bellare and I believed that blockcipher-based con-
structions could be made rigorous. We decided to start 
with message authentication codes (MACs). These are 
short strings (usually 4 to 16 bytes) that you attach to 
a message so that a party with whom you share a secret 
key can verify the message’s origin.

From a theory point of view, constructing MACs 
seemed to be a non-problem: starting with a one-way 
function, you could make a pseudorandom function, 

which is always a good MAC. But that kind of answer 
is completely unresponsive to the practical task at 
hand. For one thing, it would lead to ludicrously inef-
ficient MACs.

From a practical point of view, the problem would 
also seem to be solved: you can use the CBC-MAC (the 
cipher block chaining message authentication code) 
shown in Figure 2. Given a blockcipher E and a key K 
for it, you can process the input M = M1 ··· Mm as shown 
to make a MAC T. The method is simple and widely 
standardized.

But there wasn’t any proof that the method worked, 
and there were other problems, too. The CBC-MAC 
doesn’t work if the messages have varying lengths. Also, 
the serial nature of the CBC-MAC precludes its use at 
very high speeds. 

Bellare and I wanted to prove that the CBC-MAC 
of a secure blockcipher is secure (assuming all messages 
processed are the same length). But we thought, at first, 
that proving something like this would be impossible. 
Blockciphers are finite functions (the most popular one 
at the time, DES, maps 56 + 64 bits to 64 bits). In a finite 
function, no security parameter is present, so one can’t 
formalize security in the way it had always been done. 
The notion of “polynomial time” becomes meaningless. 
There will always be an efficient adversary—indeed a 
constant-time one—that breaks the blockcipher. Corre-
spondingly, there will always be a constant-time adver-
sary that breaks the CBC-MAC.

Fortunately, we soon figured out that what’s written 
in the last paragraph is rubbish. While the individual 
claims are correct, they simply don’t support a conclu-
sion of the inapplicability of provable security.

We started by formulating, without asymptotics, the 
security of a blockcipher E. Syntactically, a block cipher 
E maps a k-bit key K and an n-bit plaintext X to an n-bit 
ciphertext Y = EK(X). Each K induces a permutation 
on n-bit strings. To measure security, an adversary 𝒜 

Figure 1. To define entity authentication and key distribution, an adversary is 
imagined to communicate with a collection of oracles, each of which models a 
particular instance of a particular entity. 
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is provided an oracle that responds to each query X 
either with Y = EK(X) or, alternatively, with π(X), for a 
random permutation π on n-bit strings. The adversary, 
after interacting with one of these two oracles, outputs 
a bit to indicate its guess as to which. The advantage
Adv E

prp ( )� garnered by 𝒜 in attacking E is the probabil-
ity that its prediction is correct (by convention, linearly 
rescaled to land in [0, 1] or [–1, 1]). In the viewpoint 
of practice-oriented provable security, one is now done 
defining a blockcipher’s security: the association of an 
adversary to a real number measuring its efficacy is a 
definition of security. The notion of blockcipher secu-
rity just described is security in the sense of a pseudo
random permutation, or PRP.

Similarly, we can define the quality of a MAC. Syn-
tactically, a MAC F takes a key K and a message M and 
returns, deterministically, an n-bit string T. An adversary 
ℬ is given access to an oracle. The oracle is initialized 
with a random key K. Thereafter, it applies the MAC, 
keyed by K, to each message asked. In the end, the adver-
sary outputs a pair (M,T). The adversary is said to forge 
if M was never asked of the oracle yet T is the right MAC 
for it (with respect to the hidden key K). The adversary’s 
advantage AdvF

mac( )ℬ  is the probability that it forges.
Bellare, Joe Kilian, and I proved the security of the 

CBC-MAC.9 The proof seemed hard in 1994, but sub-
sequent ideas have made it easy. Let F be the CBC-MAC 
of an n-bit blockcipher. Suppose you have an adversary 
ℬ that computes F on q strings, each of them mn-bits, 
and then, sometimes, it forges a message of this same 
length. Then you can use ℬ to break the blockcipher E. 
Specifically, you can turn ℬ into an adversary 𝒜 where
Adv AdvE F

nm qprp mac( ) ( ) /≥ − 2 22 2� ℬ . The efficiency of 
𝒜 is close to the efficiency of ℬ.

The great thing about having an explicit formula like 
this is that it lets you figure out what your results mean 

for practice. If, for example, ℬ attacks the CBC-MAC of 
AES (a 128-bit blockcipher) using a billion messages of 
1 Kbyte each, then it will have a chance of forgery that’s 
at most 2–55 more than the insecurity of AES. That’s a 
useful thing to be able to say.

Still, the real significance of our work wasn’t that 
it analyzed the CBC-MAC but that it helped bring 
symmetric cryptography into the provable- security 
fold. Our paper, and others we wrote around the 
same time, demonstrated that blockciphers, and 
other finite functions, make a perfectly good starting 
point for doing reductions. What’s more, reductions 
could serve as a tool for understanding or improving 
crypto graphic practice.

Interlude
The original approach to provable-security crypto-
graphy aimed to study abstract security relationships 
among asymptotically defined objects. One would make 
claims like “a one-way function implies a pseudorandom 
generator.” The choice of what to use as a starting point 
and what to reach as an endpoint was based mostly on 
aesthetic considerations. Later, many problems that fell 
under the provable-security scalpel were quite specula-
tive or imaginative. This is fun and good, but it’s also good 
to develop tools and techniques likely to be deployed.

Practice-oriented provable security would therefore 
take a different tack. We would be guided by practical 
considerations about what problems to address. This 
can’t be done with only one’s imagination as a guide. We 
would study the concrete security relationships among 
what were often finitary objects. The efficiency of reduc-
tions would be emphasized. We would try to build use-
ful objects out of whatever cryptographic practice 
brought to the table.

The traditional provable-security ethos tended to 
nudge theorists away from useful questions—even, on 
occasion, getting things backward from a practical point 
of view. Consider the problem of creating a secure PRP 
out of a one-way function (for example, multiplication 
of large prime numbers). It’s a fascinating thing to try 
to do. But if you actually need a one-way function for 
cryptographic practice, as UNIX systems did with the 
“crypt” library call, the natural approach is to make 
one out of a blockcipher—the exact opposite of the 
problem theorists had studied.

Authenticated Encryption
The first formalization for encryption, due to Goldwas-
ser and Micali (GM), was in the public-key setting.3 
More from a lack of interest than for technical reasons, it 
would take 15 years for GM’s paper to get adapted to the 
shared-key setting. This happened in a 1997 paper by 
Bellare, Anand Desai, Eron Jokipii, and me (BDJR).10

Figure 2. Constructing a message authentication code (MAC). Given a 
blockcipher E and a key K for it, you can process the input M = M1 ··· Mm as 
shown to create the MAC T. 
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In BDJR, encryption is performed by a probabilis-
tic algorithm ε that maps a key K and a plaintext M to 
a ciphertext C. Decryption deterministically recovers 
M from K and C. To formalize security, an adversary 
𝒜 is given access to one of two types of oracles. Both 
begin by choosing a random key K. A real encryption 
oracle then responds to each query M by encrypting 
it, returning a ciphertext C←  (K, M)$ε . The dollar sign 
is a reminder that the encryption process depends on 
random coins. In contrast, a fake encryption oracle 
responds to each query M by encrypting the same 
number of zero bits: C←  (K, 0|M|)$ε . Adversary 𝒜’s 
advantage is a real number that measures how well it 
can distinguish the two types of oracles. Formally, it’s 
the probability that 𝒜 answers 1 given the real encryp-
tion oracle minus the probability that 𝒜 answers 1 
given the fake encryption oracle.

There are a lot of ideas implicit in a definition like 
the one just given. Let me identify two. First, we under-
stood that, to be secure, encryption had to be probabilis-
tic. GM had explained that a good encryption algorithm 
couldn’t be deterministic, because it would, in that case, 
reveal repetitions in plaintexts. Second, we understood 
that encryption deals only with privacy. Other tools 
should handle other aims, like authenticity. If some-
one told me in the mid-1990s that they had designed 
a symmetric encryption scheme that also guaranteed 
authenticity, I might have advised them not to call it 
encryption, because achieving authenticity wasn’t what 
“encryption” ought to do.

Writing BDJR, we didn’t make a conscious choice 
on either matter: we didn’t see any alternative. Ludwik 
Fleck, an early contributor to the sociology of science, 
wrote that “Once a structurally complete and closed 
system of opinions consisting of many details and rela-
tions has been formed, it offers enduring resistance to 
anything that contradicts it.”11 One form of resistance is 
invisibility. Fleck explains that “What does not fit into 
the system remains unseen.”

If the goal of a notion of symmetric encryption was 
to create an abstraction boundary useful for applied 
cryptography, then the BDJR definition falls short. 
Here are three reasons why.

First, users of encryption often assume it provides a 
lot more than privacy. They assume it provides authen-
ticity, invalid ciphertexts being rejected. The design-
ers of Kerberos, for example, implicitly assumed this. 
Experience makes clear that users will misuse any tool  
that provides less than they expect. Second, users of 
encryption often need to authenticate stuff that isn’t 
being encrypted. A typical example is a message header 
in a networking protocol. The header should be authen-
ticated, so that routing information can be verified by 
the receiver, but it can’t be encrypted, as intermediate 

routers need to use the header and don’t have the key. 
Such considerations suggest that, when encrypting a 
payload, one should authenticate something else on the 
side, and bind together the two.

Third, the use of random bits is problematic. Imple-
menters and protocol designers routinely fail to provide 
adequately random bits. Wrong advice about initial-
ization vectors (IVs) is common—for example, it has 
often been claimed, wrongly, that a counter will work 
for the IV of CBC mode. Generating an adequately 
good approximation of random bits can be costly or 
impossible— and it usually requires cryptography. Peo-
ple routinely get it wrong. In practice, trading random-
ness for a nonce—something, like a counter, that’s used 
at most once for a given key—is a big win.

We can reformulate encryption in a way that 
reflects all three concerns, a line of work that my col-
leagues and I carried out between 2000 and 2006. Let 
me sketch what’s now a standard notion for symmetric 
encryption—authenticated encryption (AE) or, to be 
more explicit, authenticated encryption with associated 
data (AEAD).

We begin with syntax. Encryption is now a deter-
ministic and stateless mechanism that takes a key K, a 
nonce N, associated data A, and a plaintext M. It returns 
a ciphertext C = ε(K,N,A,M). Decryption, again deter-
ministic and stateless, transforms a key K, nonce N, 
associated data A, and a ciphertext C to either a string-
valued plaintext M =𝒟(K,N,A,C) or else ⊥ (bottom), 
an indication of invalidity.

A security definition captures the intent that encryp-
tion should protect the privacy of M and the authen-
ticity of N, A, and C. To formalize this, the adversary 
is presented with a pair of oracles. There are two pos-
sibilities. The first is to give the adversary “real” encryp-
tion and decryption oracles. The oracles are initialized 
with a random key K. Then, when the adversary asks 
an encryption query of (N,A,M), it gets the ciphertext  
C ← ε(K,N,A,M). For simplicity, assume |C| = |M| + τ 
for some constant τ, the ciphertext expansion. When the 
adversary asks the decryption oracle (N,A,C), it gets 
plaintext M ← 𝒟(K,N,A,C). This value might be ⊥, to 
indicate invalidity.

Alternatively, the adversary might be given “fake” 
encryption and decryption oracles. The former, pre-
sented with (N,A,M), returns |M| + τ random bits 
(where |M| denotes the length of M). The later, pre-
sented (N,A,C), returns ⊥. 

To keep the adversary from trivially winning and 
to ensure that nonces have their intended semantics, 
we add in the restriction that the adversary may not 
repeat a nonce N in any encryption query, nor may it 
ask a decryption query of (N,A,C) after having asked an 
encryption query (N,A,M) that returned C.
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One of the advantages of regarding AEAD as a single 
conceptual primitive is that one can now try to optimize 
efficiency characteristics of a scheme for it while insist-
ing on a proof with good bounds. Efficiency has been a 
key consideration in AEAD schemes like GCM12 and 
OCB.13 The latter, pictured in Figure 3 without its AD, 
uses a tweakable blockcipher (TBC). TBCs, formalized 
by Moses Liskov, Ronald Rivest and David Wagner,14 
are like conventional blockciphers except for the inclu-
sion of the tweak (shown as a superscript). Each tweak 
T names a permutation %EK

T  that’s essentially indepen-
dent of the others. For OCB, the TBC is realized from a 
conventional blockcipher, typically AES, in such a way 
that the overhead is tiny. In the end, OCB using AES 
executes at nearly the same speed as counter mode 
(CTR) with AES, a basic blockcipher mode that pro-
vides no authenticity.

AEAD has taken off, supplanting classical modes 
of operation like CBC and replacing the conventional 
understanding of what a symmetric encryption scheme 
should deliver. Numerous AEAD schemes have been 
devised, and several have been standardized. TLS ver-
sion 1.3 will allow only AEAD, which should put an end 
to the long sequence of cryptographic attacks on the 
record protocol of SSL/TLS. A competition for AEAD 
schemes, CAESAR, drew 57 submissions from around 
the world. At the time of this writing, there remain 15 
third-round candidates. The competition should con-
clude in 2018.

AEAD continues to evolve. Recent work on online 
and misuse-resistant AE highlight the unsettledness that 
pervades any active field. The first aims to achieve best-
possible security for a single, constant-memory pass 
over the inputs. The second aims to achieve strong secu-
rity even if nonces get reused. There remains contention 
around how to define these ideas, and how expensive 
achieving them needs be.

The success of AEAD doesn’t just stem from improv-
ing speed: it stems from finding an abstraction bound-
ary that’s easier to correctly use. To a significant extent, 
cryptography has been a search for desirable abstraction 
boundaries. And it’s not mathematical or scientific truth 
that helps you find good abstraction boundaries. They 
are drawn by those who work in a field to advance it in 
a chosen direction.

Further Evidence
I’ve been using anecdotes from my own research to 
illustrate how one branch of cryptography took the 
form that it did more as a matter of human agency than 
scientific necessity. There are many other ways to sup-
port this claim. Let me mention two: regional differ-
ences and the inessential partitioning of the field.

First, geography correlates with the style of crypto-
graphy a person will do. While the provable security tra-
dition has had an enormous influence on cryptography 
in the US, it dominates far less in Europe. Symmetric 
cryptanalysis never really caught on among US academ-
ics but has flourished in Europe, Israel, and Japan. The 
character of cryptography in the US flows mostly from 
the theory community, but in Europe, cryptography has 
been more strongly shaped by combinatorics, coding 
theory, and electrical engineering. Institutional tradi-
tions and the interests of funding agencies have been 
formative in shaping what is done where. This argues 
for constructionism.

Second, consider the peculiar fact that cryptography- 
based privacy research is mostly done outside the main-
stream cryptographic community. Artifacts like Tor 
aren’t studied by people in the crypto community so 
much as those in the privacy-enhancing technologies 
(PETs) community. Different people, conferences, and 
sensibilities are involved. Yet there’s no good reason 
why this should be so, and it’s easy to imagine a differ-
ent timeline in which the crypto and PETs communities 
are one, privacy playing a much larger role in defining 
crypto’s course.

Platonism versus Formalism
In the philosophy of mathematics, the distinction 
between Platonism and formalism mirrors the divide 
between realism and constructionism.

The Platonist views mathematical truth as something 
“out there.” The mathematicians’ job is to find this truth 
and communicate it to colleagues. In contrast, the for-
malist sees math as the invention of humans. We fashion 
axioms and definitions and explore the world that we 
thereby create. What is “out there” is that which we put.

Philip Davis and Reuben Hersh say that “the typi-
cal working mathematician is a Platonist on weekdays 
and a formalist on Sundays. That is, when he is doing 

Figure 3. OCB mode authenticated encryption using a tweakable blockcipher 
Ẽ . Using the key K and nonce N, plaintext M = M1 ··· Mm is encrypted to a 
ciphertext C = C1 ··· Cm T that ensures both privacy and authenticity.
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mathematics he is convinced that he is dealing with an 
objective reality whose properties he is attempting to 
determine. But then, when challenged to give a philo
sophical account of this reality, he finds it easiest to pre
tend that he does not believe in it after all.” 15

For those doing rigorous work in cryptography, the 
claim above rings true (apart from the suggestion that 
we don’t work on weekends!). In proving a theorem, 
and even in devising a definition or scheme, a crypto
grapher feels more a seeker of truth than the inventor of 
artifice. But this feeling is probably wrong, and perhaps 
it’s wrong in an ironic way, for in cryptography, artifice 
is actually a goal. 

R ecognizing the extent to which a field is constructed 
can be liberating. When you internalize that a belief 

like “secure encryption must be probabilistic” is pure 
construction, it opens the door to many interesting 
research directions. When disciplinary assumptions lose 
some of their authority, the resulting freedom creates an 
atmosphere where invention can thrive.

Recognizing cryptographic work as a social con
struction allowed Bellare and me to overcome the two
hat predicament. It was predicated on a wrong belief: 
that you couldn’t meld the needs of practice with the 
essential characteristics of theory. But you could. We 
could ditch the two hats in favor of one.

In the end, the cryptographic community isn’t fol
lowing some predestined journey of discovery; we are 
engaged in an ongoing dialectic. That dialectic continu
ally refines, reformulates, and answers anew the most 
basic question of any field: what are our basic aims, and 
how are we going to get there? 
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