
A Software�Optimized Encryption Algorithm

Phillip Rogaway� and Don Coppersmith�

� Department of Computer Science� Engineering II Building� University of California�
Davis� CA ������ U�S�A� rogaway�cs�ucdavis�edu

� IBM T�J� Watson Research Center� PO Box 	�
� Yorktown Heights� NY ����
�
U�S�A� copper�watson�ibm�com

Abstract� We describe a software�ecient encryption algorithm named
SEAL ���� Computational cost on a modern �	�bit processor is about �
clock cycles per byte of text� The cipher is a pseudorandom function
family� under control of a key ��rst pre�processed into an internal table�
it stretches a �	�bit position index into a long� pseudorandom string�
This string can be used as the keystream of a Vernam cipher�

Key words� Cryptography� Encryption� Fast encryption� Pseudoran�
dom function family� Software encryption� Stream cipher�

To appear in J� of Cryptology� Full version of ����� Last revised September ��� �		
�

� Introduction

Encrypting Fast In Software� Encryption must often be performed at high
data rates� a requirement sometimes met with the help of supporting crypto�
graphic hardware� Unfortunately� cryptographic hardware is often absent and
data con�dentiality is sacri�ced because the cost of software cryptography is
deemed to be excessive�

The computational cost of software cryptography is a function of the under�
lying algorithm and the quality of its implementation� But regardless of imple�
mentation� a cryptographic algorithm designed to run well in hardware will not
perform in software as well as an algorithm optimized for software execution�
The hardware�oriented Data Encryption Algorithm DES� is no exception� Of�
ten what is needed is a well�designed� software�optimized encryption method for
today�s general purpose computers�

To this end� we have designed SEAL Software Encryption Algorithm�� SEAL
is a pseudorandom function family� under control of a key� �rst preprocessed
into a set of tables� SEAL stretches a ���bit �position index� into a keystream of
essentially arbitrary length� One then encrypts by XORing this keystream with
the plaintext� in the manner of a Vernam cipher� As with any Vernam cipher it
is imperative that the keystream only be used once�

On a modern ���bit processor SEAL can encrypt messages at a rate of about �
clock cycles per byte of text� In comparison� the DES algorithm is more than ��
times as expensive� Even a Cyclic Redundancy Code CRC� is more costly�

Related Work� We are not the �rst to realize the value of software�optimized
cryptography� In �		� Merkle described the utility of software�oriented cryptog�
raphy and he proposed a suite of three software�e�cient algorithms ���� One of
them� called �Khufu�� is a block cipher which is similar in spirit to SEAL�

An earlier software�oriented block cipher than Khufu is FEAL ����� But this
algorithm and its variants have not proven to be particularly secure see ��� for
history and attacks�� Nor is it all that fast�

RC� is a popular� software�e�cient stream cipher designed by Rivest �����
It is fast� though less fast than SEAL� RC� is a software�e�cient block cipher�
It too was designed by Rivest ����� Some other software�e�cient ciphers include
Blow�sh��
� and WAKE ��	��

History And Naming� The full name of the cipher described in this paper
is SEAL ���� An earlier version of this cipher was described in �		� ���� and
denoted SEAL ���� Though SEAL ��� is the �rst modi�cation to SEAL ��� which
the authors have described� a variant known as SEAL ��� had already appeared
in the literature �
�� it was identical to SEAL ��� apart from using NIST�s revised
Secure Hash Algorithm SHA��� instead of the original one SHA� ����� While
SEAL ��� retains that change� the more signi�cant adjustment is responsive to
an attack by Handschuh and Gilbert ���� See Section � for further information
on their attack and the di�erences between SEAL ��� and SEAL ����

In this paper the name SEAL� by itself� always refers to SEAL ����

� Characteristics of the Cipher

Key characteristics and design choices of SEAL are explained below�

Preprocessing The Key� In typical applications requiring fast software cryp�
tography� data encryption is required over the course of a communication session
to a remote partner� or over the course of a login session to a particular machine�
In either case the key a which protects the session is determined at session setup�
Typically this session setup takes at least a few milliseconds and is not a time�
critical operation� It is therefore acceptable� in most applications� to spend some
number of milliseconds to map the short� key a to a less concise� representation
of the cryptographic transformation specialized to this key� Our cipher has this
characteristic� As such� SEAL is an inappropriate choice for applications which
require rapid key�setup�

Length�Increasing Pseudorandom Function � Variable Output And

Key Lengths� The function SEAL is a type of cryptographic object called a
pseudorandom function family PRF�� Such objects were �rst de�ned in ���� SEAL
is a length�increasing PRF� under control of a ����bit key a� SEAL maps a ���bit
string n to an L�bit string SEALa� n� L�� The number L can be made as large or
as small as is needed for a target application� but output lengths ranging from
a few bytes to a few thousand bytes are anticipated� An arbitrary length key a�

can be used as the key for SEAL simply by selecting a � SHA��a���

�

As a pseudorandom function family� SEALa� �� L� should �look like a random
function� if a is random and unknown� The meaning of this is as follows� First a
key a is taken at random from f�� �g���� Next the adversary is given� at random�
either a black�box for the function SEALa� �� L� or else a black�box for a truly
random function R��� Either maps �� bits to L bits� The adversary�s job is to
guess which type of box she has� Say that the adversary wins if she correctly
guesses �Random� or �Pseudorandom�� Our goal is that for any reasonable
adversary� she should not win with probability signi�cantly greater than ����
Though we will not attempt to de�ne �reasonable� or �signi�cant�� we aim to
defeat adversaries with substantial computational resources and cleverness�

A PRF can be used to make a good stream cipher� In a stream cipher the
encryption of a message depends not only on the key a and the message x but
also on the message�s �position� n in the data stream� This position is often a
counter sequence number� which indicates which message is being enciphered�
The encryption of string x at position n is given by hn� x�SEALa� n� L�i� where
L � jxj� In other applications n might indicate the address of a piece of data on
disk�

Target Platforms� Execution vehicles that should run the algorithm well in�
clude the Intel���TM�Intel���TM�PentiumTM processors� and contemporary ���bit
RISC machines� Because of the particular challenges involved in having a cipher
run well on the ��������Pentium� and because of the pervasiveness of this pro�
cessor family� we have optimized our cipher with the characteristics of this pro�
cessor familyparticularly in mind� By doing well on these di�cult�to�optimize�for
vehicles we expect to do well on any modern ���bit processor�

Some of the relevant limitations of the ��������Pentium are a small register
set� a two�operand instruction architecture� and a small �rst level cache� Here
is some further detail which was important in design choices� These processors
have � general registers including the register normally used as a stack pointer��
Most instructions work on two operands A � A op B� instead of three A �
B op C�� The ��� has an � KByte on�chip cache for data and instructions� while
the Pentium has an � KByte data cache and an � KByte instruction cache�
Cache misses can be expensive� The ��� and Pentium processors use a ��stage
instruction pipeline� and if the base register for an address calculation is the
destination register of the preceding instruction� an extra cycle will be consumed�
The Pentium processor has dual instruction pipes� one of which runs a very
limited instruction set� It was not a design goal for the cipher to exhibit an
instruction dependency structure which would allow us to always �ll both pipes�

Table�Driven Cipher� One early decision was whether to make the cipher
a straight�line program of logical operations like MD� ���� or SHA�� ����� or
to drive it instead by the use of a large table like Khufu or a software DES��
instead� The table�driven approach was selected because we felt that it would
lead to a faster and easier�to�design cipher� With the table�driven algorithm we
could get very rapid di�usion and there would be less temptation to produce a
cipher whose most e�cient implementation used self�modifying code�

�

In view of the size of the �rst�level cache� and the fact that servers may want
to store in second�level cache the representation of the encryption transformation
of tens of clients� it was decided that we should not be too generous with the
size of the tables that we used� We would settle on a total size for all tables of
��� KBytes�

procedure Initialize�n� �� A�B�C�D� n�� n�� n�� n��

A� n� R�����
B � �n iii
��R���� ���
C � �n iii ���� R���� 	��
D� �n iii 	���R���� ���

for j � � to 	 do

P � A � �x�fc� B � B � T �P���� A� A iii ��
P � B � �x�fc� C � C � T �P���� B � B iii ��
P � C � �x�fc� D� D� T �P���� C � C iii ��
P � D � �x�fc� A� A� T �P���� D � D iii ��

�n�� n�� n�� n��� �D� B� A� C��

P � A � �x�fc� B � B � T �P���� A� A iii ��
P � B � �x�fc� C � C � T �P���� B � B iii ��
P � C � �x�fc� D � D� T �P���� C � C iii ��
P � D � �x�fc� A� A� T �P���� D� D iii ��

Fig� �� Initialization of �A�B�C�D� n�� n�� n�� n�� from �n� ��� This initialization de�
pends on a�derived tables T and R�

� De�nition of the Cipher

Notation� We call a ���bit string a �word� and an ��bit string a �byte�� The
empty string is denoted �� We write numbers in hexadecimal by preceding them
with ��x� and then using the symbols �a���f� to represent decimal numbers
������ respectively� By y iii t we denote a right circular shift of the word y by t
bits� in other words� the i�th bit of y iii t is y�i�t� mod ��� Similarly� y hhh t denotes
a left circular shift of y by t bits� By ��� ��� and ��� we denote bitwise AND�
OR� and XOR� by A we denote the complement of A� By A � B we denote
the sum� ignoring the carry� of the unsigned integers A and B� this is the sum
mod ��� of numbers A and B� By �k� we denote the concatenation operator� By
odd�� we mean the predicate which is true if and only if its argument is an odd
number�

�

function SEAL�a� n�L�

y � ��

for �� � to � do

Initialize�n��� A�B�C�D� n�� n�� n�� n���

for i� � to �� do

P � A � �x�fc� B � B � T �P���� A� A iii �� B � B �A��

Q� B � �x�fc� C � C � T �Q���� B � B iii �� C � C � B��

P � �P �C� � �x�fc� D� D � T �P���� C � C iii �� D� D� C��

Q� �Q�D� � �x�fc� A� A� T �Q���� D � D iii �� A� A�D��

P � �P �A� � �x�fc� B � B � T �P���� A� A iii ��	

Q� �Q�B� � �x�fc� C � C � T �Q���� B � B iii ���

P � �P �C� � �x�fc� D� D � T �P���� C � C iii ��

Q� �Q�D� � �x�fc� A� A� T �Q���� D � D iii ���

y � y k B�S��i��� k C�S��i��� k D�S��i�	� k A�S��i�����

if jyj � L then return �y�y� � � � yL������

if odd�i� then �A� B� C� D�� �A� n�� B � n�� C � n�� D� n����

else �A� B� C� D�� �A� n�� B � n�� C � n�� D � n���

Fig� �� Cipher mapping ���bit position index n to L�bit string SEAL�a� n�L� under the
control of a�derived tables T � R� and S�

Output Length� Recall that we think of SEAL as producing variable�length
output� Let L be the number of output bits desired� We assume a large bound
on L� say L � �� � ���� � �� So at most �� KBytes may be produced per index�

Mapping The Key To The Tables� Our �rst task is to specify the tables
T � R� and S� all of which depend only on the key a� The key a is used only to
de�ne these three tables�

We specify the tables using a function G� For a a ����bit string and i an
integer� � � i � ���� Gai� is a ����bit value� The function G is just the com�
pression function of the Secure Hash Algorithm SHA�� ����� For completeness�
its de�nition is given in Appendix A�

Let us re�index G to construct a function � whose images are ���bit words
instead of ����bit ones� The function � is de�ned by �ai� � Hi

i mod 	 where

H	j
� kH	j�

� kH	j�
� kH	j�

� kH	j�
� � Gaj�� for j � bi��c�

Thus a table of � �values is exactly a table for G�values read left�to�right�
top�to�bottom�

Now de�ne

T �i� � �ai� for all � � i � ����
S�j� � �a�x���� � j� for all � � j � ���� and
R�k� � �a�x���� � k� for all � � k � ����

�

Four words of the array R are required for each kilobyte or fraction of a kilobyte�
of SEALa� n� L�� Thus if one has a bound Lmax on the maximal possible value
of L then it is adequate to compute R�k� for � � k � �dLmax���	�e� For the
maximalpermitted output length of �� KBytes one needs to calculate the SHA��
compression function ��
 times�

The Pseudorandom Function� Given the number L� the tables T � R� and
S determined by a�� and a ���bit position index n� the algorithm of Figure �
stretches n to an L�bit pseudorandom string y�

The algorithm uses a routine Initialize which� using tables T and R� maps n
and � to the words A�B�C�D� n�� n�� n�� n�� That procedure is given in Figure ��

The outer loop of Figure � is to be broken by line �� when enough output
bits have been collected�

Terminology� For purposes of subsequent discourse� a round refers to the
execution of any one of lines ��� in Figure �� while an iteration is the execution
of all of the lines ����� associated to a given value of i� Thus there are eight
rounds in each iteration�

� Explanations and Design Heuristics

Some of the structure of SEAL may be made less mysterious by the general
explanations of this section and the speci�c attacks of Section �� The following
general heuristics were employed�

� Using a large� secret� key�derived �S�box� the � KByte table T ��

� Alternating arithmetic operations which don�t commute addition mod ���

and bitwise XOR��

� Using internal state maintained by the cipher and not directly manifest in
the output data stream the registers n�� n�� n�� n���

� Using simple� well�known methods where adequate using SHA�� to gen�
erate the tables��

Somewhat more speci�c heuristics�

� Varying the round function according to the round number e�g�� alternat�
ing use of P and Q��

� Varying the iteration function according to the iteration number e�g��
n�� n�� or n�� n�� in line ��� and S����values associated to the iteration��

The attention to the parity of the round and iteration number may help against
attacks which play o� successive rounds or successive iterations�

Details of the method used to produce the tables T � R and S the use of
SHA��� the indexing method� etc�� are not believed to be particularly impor�
tant� we think of these tables as �random� no design rules are built into their
construction� and we expect that any good pseudorandom generator applied to
the key should work �ne�

�

Details of the function Initialize are believed to be of secondary importance�
We want A� B� C� D� n�� n�� n� and n� to be unpredictable functions n� ���

Each of the �nal instruction on lines ��� helps to di�use information in A� B�
C and D� An earlier version of the cipher made analogous register modi�cations
in lines ��� but the statements would seem to have less value there and so they
were removed to save cost�

Some performance�related explanations are given below�

� The divisions by � are not to be implemented by divisions or shifts� we
are simply indexing into T in units of bytes instead of words� This is more
e�cient on some platforms which may penalize for �scaling� word o�sets�
and no less e�cient on any platformwe considered� In a high�level language
these divisions might be implemented as a cast�

� On all processors we know of there is no performance di�erence between
using addition and XOR� and so there is no performance reason to favor
the latter�

� On our target two�operand machine architectures it is the same cost to
compute P � P�A� � �x
fc and then fetch T �P��� as it would be to fetch
T �A � �x
fc����� This is because the computation of T �A � �x
fc����� to
preserve A� must begin by movingA into a temporary register� That move
is the same cost as adding A to register P �

� The state of P and Q is not maintained across iterations simply because
machines with only � registers will need to use the registers holding P
and Q at the end of the iteration� We did not want to spend the extra
cycles to write P and Q to memory and then read them back�

� Operations are arranged so that in the clock cycle immediately following
a table lookup there is always something worthwhile to do which does not
depend on the value which is retrieved�

� Design Process

A brief description of the design process which has led to SEALmay be considered
relevant or interesting to some�

SEAL ���� The project began in the summer of �		� in response to the perception
of increasing customer needs for software�e�cient cryptography� Goals of the
design were �rst enumerated in a presentation of October �		�� Goals evolved as
we learned more� there was never any �xed or formal statement of requirements�

Merkle�s cipher Khufu was identi�ed as the most relevant prior art� We chose
it as our starting point and searched for ways that would lead to something even
faster�

A design �philosophy� emerged� We thought it better to do exceptionally well
in environments having a particular set of minimal environmental characteristics
than to do reasonably well across a wider range of environments� Our chosen
set of operating characteristics became� a ���bit machine with at least eight

general purpose registers� a cache of at least � KBytes� and a usage scenario
which partitions encryption into a performance non�critical key setup followed
by repeated and performance�critical encipherment of a reasonably large number
of bytes�

We didn�t care about the syntactic avor of the cipher we would produce!
even whether it was a block cipher or something else seemed irrelevant� except
insofar as this might in uence the cipher�s speed�

The �rst suggestion March �		�� was for a block cipher� but soon we devel�
oped a basic �structure� for a pseudorandom function family which was going
to be faster� This structure consisted of having four registers A� B� C� D�� each
of which would modify a �neighboring� register as a result of a single lookup in
a key�derived table� After some number of such register modi�cations we would
�peel o�� the current value of the four registers and append them to the growing
keystream� This process would then be repeated�

A total of nine designs were considered between March �		� and October
�		�� Each revision was aimed to improve speed or perceived strength� Rogaway
would prepare a speci�cation and Coppersmith would attack it� Attacks were
considered far enough to make clear what was their main idea� not to assess
their exact e�cacy� Rogaway would then study the attack� try to identify some
essential weakness it exploited� and then modify the cipher without decreasing
its speed� to try to foil any similar cleverness�

The inner loop Figure �� was the subject of almost all of our e�ort� Very
little attention was paid to Initialize Figure �� or to the table generation method�

The design progressed entirely on paper� No statistical tests or other experi�
ments were performed during the design of the cipher� Our proposal� SEAL ����
was �rst described in December �		� �����

SEAL ���� In �		� Handschuh and Gilbert ��� described an attack on a simpli�ed
version of SEAL ���� and an attack on SEAL ��� itself� They require about ���

�samples�� each ��words long� to distinguish SEAL ��� from a random function�
Their attack is responsible for the main change between SEAL ��� and SEAL ����
That change requires the use of two new XORs for each � words of output� as
we now explain�

Refer to Line �� of Figure �� The corresponding line in SEAL ��� had been� if
oddi� then A� C�� A� n�� C � n�� else A� C�� A� n�� C � n��� Now
we modify all four registers� A�B�C�D� instead of just the two registers A�C�
This better obscures relationships between the A�B�C�D� and A�� B�� C�� D��
values of successive iterations� Without the change there is a useful property
on D�C�� D��� say� which does not depend on any of n�� n�� n�� n�� see ���� Un�
published predecessors of SEAL ��� resembled SEAL ��� in modifying each of
A�B�C�D� at the end of an iteration� removing the modi�cations to B and D
was a poorly�chosen optimization�

The other di�erence between SEAL ��� and SEAL ��� is that in SEAL ��� and
SEAL ���� table generation uses SHA�� in lieu of the older SHA�

Statistical Tests� In response to a referee�s request we subjected SEAL to a

�

battery of statistical tests developed byMarsaglia ���� We computed the �� MByte
string y � SEALa� �� L�kSEALa� �� L�k � � �kSEALa� �����	� L� for a �xed key a
and L � �� � � i�e�� �� bytes�� None of the �� tests in ��� revealed statistical
anomalies in y� In a second experiment we computed the ����� MByte string
z � SEALa� �� L�kSEALa� �� L�k � � �kSEALa� ���� L�� where L � �� � ���� � �
i�e�� �� KBytes�� Again� none of the �� tests revealed statistical anomalies in z�

� Illustrative Attacks

This section illustrates some attack ideas which were important to SEAL�s evo�
lution� We describe three attacks on a simpli�ed version of our cipher� This
simpli�ed cipher� WEAK� is show in Figure ��

function WEAK�a� n�

y � ��

Initializea�n� �� A�B�C�D� � � ���

for i� � to �� do

P � A � �x�ff� B � B � T �P �� A� A iii �� B � B �A��

P � B � �x�ff� C � C � T �P �� B � B iii �� C � C � B��

P � C � �x�ff� D � D� T �P �� C � C iii �� D� D� C��

P � D � �x�ff� A� A� T �P �� D � D iii �� A� A�D��

P � A � �x�ff� B � B � T �P �� A� A iii ��	

P � B � �x�ff� C � C � T �P �� B � B iii ���

P � C � �x�ff� D � D� T �P �� C � C iii ��

P � D � �x�ff� A� A� T �P �� D � D iii ���

y � y k B � S��i��� k C � S��i��� k D� S��i�	� k A� S��i�����

return y�

Fig� �� The cipher WEAK� attacks on which are given in the text� Under the control of
a�derived tables T � R and S �computed exactly as with SEAL� this cipher maps ���bit
position index n to �	
�word string WEAK�a� n��

Assemble a list of T �	� op T �
� values� A simple attack on WEAK is based
on the observation that each of A� B� C and D is modi�ed only two times
using T � and the net�change due to this pair of T �dependent modi�cations is
almost directly visible to the adversary�

In this and all subsequent attacks we �x an unknown� key a and provide
the adversary sample output strings� each of the form y � WEAKa� n�� The
adversary will not need to know the n which produced each string y�

	

Fix one of the strings y the adversary collects and let us write y � y�y�y� � � �
for its words� For concreteness� let us now �x our attention on the change that
register B undergoes during the second iteration i � �� of the algorithm� This
change in B is manifest apart from S��� and S���� in y� and y�� In particular�
it is easy to verify by tracing through the de�nition of WEAK that

��
y� � S��� � T �P�� � y� � S���� iii 	

�
iii 	 � T �P	�

�
iii 	 � y� � S���

for some P�� P	 � f�� � � � � ���g� Distribute iii over � and collect up constants
and we get that

y� � y� iii ��� � y� iii �
� � c � T �P�� iii ��� � T �P	� iii 	�

for some constant c� In other words� up to some constant c the adversary can
directly �see� in the y�s the XOR of a shifted version of pairs of words of T �

To distinguish the output of WEAK from truly random data� simply compute
the value of y� � y� iii ��� � y� iii �
� for each output word y which is seen�
If the strings are pseudorandom then this word will take on only ��� possible
values� not ���� From the birthday problem we will be able to make a good
prediction of random�pseudorandom using about �� strings y� just by guessing
pseudorandom if we see a collision in the y� � y� iii ��� � y� iii �
���values
in a sample of this size�

Sorting on bits of yj� Let us go a bit further with the above attack� We
witness

y� � y� iii ��� � y� iii �
� � c � T �P�� iii ��� � T �P	� iii 	�

where P� is the o�set into T which is the value of P determined in line �� and
P	 is the o�set into T which is the value of P determined in line �� The thing
to notice is that we can tell when two strings y and y� have corresponding P�
and P �

� which agree� Simply sort the y�values into ��� buckets� depending on the
value of the last 	 bits of y�� All the strings in a given bucket receive the same
P� value� Thus for the strings y of a given bucket

y� � y� iii ��� � y� iii �
�

assumes only ��� di�erent values� and these values� apart from a shift� are the
entries of T � This forms the basis of a way to reconstruct T �

Guess and verify a correlation between i and T �i�� This next attack is
based on the fact that because T is small and �randomly�generated� it is not
unlikely that there will be substantial correlations between some bit or small
set of bits� of i and some particular bit of T �i�� For example� although the least
signi�cant bit of i is expected to agree with the 	�th bit of T �i� on ��� out of
��� words� the standard deviation is ��� so it would not be strange if these two
bits agreed ��� times� or �
��

��

Let us index the bits of a word x by x��x�� � � � x���� Suppose that the least
signi�cant bit bit ��� of i happens to be correlated to the 	�th bit 	� of T �i��
Suppose too that the most signi�cant bit of i bit �� happens to be correlated to
the ���th bit of T �i�� As an example� maybe i��� � T �i��� ��" of the time� while
i�� �� T �i���� ��" of the time� The adversary will be able to spot correlations
like this� based on a sample of y�values�

Once again� focus on the net change to a particular register which occurs
during a particular iteration� To be concrete� let us see how D changes during
iteration i � �� First� in line �� D is modi�ed by a T �value which depends on C�
While we don�t know what this C�value is� after C is shifted 	 places to the
right and XORed with the modi�ed D�value the net change to bit 	 of D is
biased according to the direction of the correlation between the least signi�cant
bit of i and T �i���!in our example� line � preserves bit 	 ��" of the time and
complements bit 	 ��" of the time assuming C is uniformly distributed�� Next�
on line �� D is shifted 	 places to the right� This moves the bit in question into
position D���� On line
 register D is XORed with a table value which depends
on C� But this value of C is manifest in the output stream after it has been
shifted and masked by the constant S���� Thus if the ���th bit of T �i� is correlated
with the most signi�cant bit of i� the change to bit �� of D which line
 causes
will be correlated to bit �� due to the right shift of C in line
� of y	� Finally�
in line �� the bit in question is shifted into position �
� We conclude that if the
initial assumption is correct then there will be a statistical correlation between
y���� y���
 and y	���� This observation can form the basis of a statistical test
which looks for �oddities� in the table T �

� Performance

To get a rough sense of the expected performance of SEAL� we count clock cycles
relative to an abstract machine model� Assume a two�operand machine with ���
bit words and at least
 general purpose registers� Assume that in a single clock
cycle we can execute a single addition� logical and� logical exclusive or� data
movement� or rotate� Then counting instructions reveals that� if we encrypt long
strings with SEAL� we spend about � clock cycles per byte� Experimental results
on a real machine see below� are in line with such an estimate�

Some of the e�ciency of SEAL stems from the fact that its inner�loop uses
only ��
� table lookups per byte of output� By way of comparison� a software
DES implementation typically uses �� table lookups per byte�

Bosselaers has recently provided us with experimental results on the perfor�
mance of various cryptographic algorithms ���� We reproduce some of his data
in Figure �� quoting his �gures for the ciphers SEAL� RC�� RC�� and DES� as
well as the hash function MD�� For each of these algorithms Bosselaers wrote a
highly optimized assembly language implementation for the Pentium processor�
Performance of the code was then measured on a 	� MHz machine� For all of the
algorithms shown� code and data were resident in on�chip cache� The cost of key
setup is ignored� The SEAL �gures are for encrypting ���� bytes of data� They

��

assume a little�endian convention for XORing the plaintext with SEAL�s output�
The last column in the table gives the speed of SEAL divided by the speed of
the indicated algorithm�

Algorithm Mbit�s Relative speed

SEAL ��
 ���
RC� ��� ��

RC���	��	 �
�� ��	
DES ���� ����
MD� ����� ���

Fig� �� Timing �gures reported by Bosselaers ��� The platform is a �� MHz Intel Pen�
tium processor� and the implementations are in optimized assembly language�

Bosselaers reports that his SEAL implementation uses �
�
 clock cycles to
encrypt ���� bytes� This comes to ���� cycles�byte� or �	� Mbit�s with a 	� MHz
processor� A total of ���� instructions are executed to produce these ���� bytes
of output ���� instructions�byte�� but ���
 of these instructions execute con�
currently with the remaining �����

A straightforward implementation of SEAL in the language �C� runs at
��� Mbit�s on an SGI Indy with a ��� MHz MIPS ���� Processor this is a
low�end workstation with a RISC CPU�� Compilation was under the Gnu com�
piler gcc with optimization�� and the code computed �n

n��SEALa� n� L� for a
�xed value of a� L � ���� � �� and a large value of M � The cost of key setup was
ignored� The experimental regime ignores the performance penalty which will be
incurred if the plaintext� ciphertext� or internal tables of SEAL are out of cache�

The experiments above had SEAL produce output of ���� bytes� which is
an advantageous value for the cipher� When SEAL must produce fewer bytes of
output a larger fraction of time is spent on Initialize� For the �C� code mentioned
above� producing ��� bytes was �" slower per byte� than producing ���� bytes�
Producing ��� bytes was �
" slower� Producing output just more than a multiple
of ���� bytes is also a sub�optimal case for SEAL performance� since little bene�t
is made of the �nal call to Initialize�

Key�setup in SEAL has a cost comparable to computing SHA�� on about
�� KBytes of data� this is estimated to be ����� msec on a 	� MHz Pentium ����
In the design of SEAL no attention was paid to minimizing key�setup time� If this
is at issue in a target application for SEAL one should select a di�erent method
for generating SEAL�s tables e�g�� using RC� or RC� ���� ����� or abandon the
use of SEAL entirely�

Roe ���� did timing studies of �C� implementations of various cryptographic
algorithms� including SEAL ���� He used a SUN Sparc and a DEC Alpha� In
his experiments on a Sun Sparc� SEAL ��� ran ���� ���
� ����� and ��� times
faster than RC�� RC�������� DES� and MD�� respectively� In his experiments

��

on a DEC Alpha� SEAL ��� ran
��� ����� ���	� and ��	� times faster than RC��
RC�������� DES� and MD�� respectively� The data indicates a greater speed
advantage for SEAL ��� than does the data reported by ���� Probably Roe�s �C�
code was not uniformly optimized for all of the algorithms�

	 Concluding Remarks

It should be emphasized that using SEAL in the expected way does nothing to
provide for data authenticity� Many applications which require data privacy also
require data authenticity� Such applications should accompany SEAL�encrypted
data by a message authentication code MAC�� Techniques for fast MAC gener�
ation are an active area of research�

SEAL is endian�neutral� and yet an endian convention is needed to interopera�
bly encrypt using SEAL� One possibility is to allow encryption with either endian
convention� but to include information in SEAL�encrypted ciphertext which un�
ambiguously indicates the endian convention employed�

It is easy to modify SEAL to get a cipher optimized for ���bit architectures�
The tables would be twice as wide and Initialize would be slightly changed�
SEAL has the unusual attribute that doubling the word size� and making natural
changes in the cipher�s de�nition� would nearly double the cipher�s speed� It is
unclear whether security would be impacted by the longer word length�

For purposes of possible export approval in various countries� an intentionally
weakened version of SEAL can easily be obtained simply by modifying the key
generation process� For example� instead of mapping variable�length key a� to
underlying ����bit SEAL key a according to a � SHA��a��� one could instead
select a � SHA��MASK� SHA��a���� where MASK is a �xed ����bit mask whose
Hamming weight can be adjusted to adjust the security of the cipher�

One thing that the present paper has helped to bring out is the usefulness of
designing encryption primitives to be PRFs instead of block ciphers or stream
ciphers� A PRF may be easier to use than a stream cipher because there are
no synchronization requirements beyond communicating the index� and easier
to make software�e�cient than a block cipher�

Acknowledgments

Special thanks to the two anonymous referees for their �ne comments and sug�
gestions� and to Antoon Bosselaers for his comments and timely performance
data and for his permission to report some of that data here�� Thanks also to
Uri Blumenthal and Mike Roe for their performance information�

This work was supported in part by NSF CCR�	�������

References

�� E� Biham and A� Shamir� Di�erential Cryptanalysis of the Data Encryption Stan�
dard� Springer�Verlag� �����

��

	� A� Bosselaers� personal communications� September ����� Article to appear�

�� A� Bosselaers� R� Govaerts and J� Vandewalle� Fast hashing on the Pentium� Ad�
vances in Cryptology � CRYPTO ��
� Lecture Notes in Computer Science�
Vol� ����� Springer�Verlag� ����� pp� 	�
���	�

�� O� Goldreich� S� Goldwasser� and S� Micali� How to construct random functions�
Journal of the ACM� Vol� ��� No� �� ��
�� pp� 	���	���

�� H� Handschuh and H� Gilbert� �� cryptanalysis of the SEAL encryption algo�
rithm� Fast Software Encryption� Lecture Notes in Computer Science� Vol� �	���
Springer�Verlag� ����� pp� ���	�

�� G� Marsaglia� The Marsaglia random number CDROM with the DIEHARD bat�
tery of tests of randomness� Distributed by the author �geo�stat�fsu�edu� from
Florida State University� �����

�� A� Menezes� P� van Oorschot� and S� Vanstone� Handbook of Applied Cryptogra�
phy� CRC Press� �����

� R� Merkle� Fast software encryption functions� Advances in Cryptology �
CRYPTO ���� Lecture Notes in Computer Science� Vol� ���� Springer�Verlag�
����� pp� ��������

�� National Bureau of Standards� Federal Information Processing Standards Publi�
cation ��� Data encryption standard� January �����

��� National Institute of Standards� U�S� Department of Commerce� FIPS Publication
�
���� Secure hash standard� April ��� ���� �supersedes FIPS PUB �
���

��� A� P�tzmann and R� A�mann� Ecient software implementation of �generalized�
DES� SECURICOM ���
�th Worldwide Conference on Computer and Communi�
cations Security and Protection� March �����

�	� R� Rivest� The MD� message digest algorithm� RFC ��	� �Internet Request for
Comments�� April ���	�

��� R� Rivest� unpublished work� �A description of RC� appears in B� Schneier� Ap�
plied Cryptography� Second Edition� Protocols� Algorithms� and Source Code in
C� John Wiley � Sons� Inc�� ������

��� R� Rivest� The RC� encryption algorithm� Fast Software Encryption� Lecture
Notes in Computer Science� Vol� ���
� Springer�Verlag� ����� pp�
�����

��� M� Roe� Performance of block ciphers and hash functions � one year later� Fast
Software Encryption� Lecture Notes in Computer Science� Vol�
��� Springer�
Verlag� ����� pp� ������	�

��� P� Rogaway and D� Coppersmith� A software�optimized encryption algorithm�
Fast Software Encryption� Lecture Notes in Computer Science� Vol�
��� Springer�
Verlag� ����� pp� ������ �Earlier version of this paper��

��� B� Schneier� Description of a new variable�length key� ���bit block cipher �Blow�
�sh�� Fast Software Encryption� Lecture Notes in Computer Science� Vol�
���
Springer�Verlag� ����� pp� ����	���

�
� A� Shimizu and S� Miyaguchi� Fast data encryption algorithm FEAL� Advances
in Cryptology � Eurocrypt ���� Lecture Notes in Computer Science� Vol� ����
Springer�Verlag� ��
��

��� D� Wheeler� A bulk data encryption algorithm� Fast Software Encryption� Lecture
Notes in Computer Science� Vol�
��� Springer�Verlag� ����� pp� �	������

��

Appendix A
 The Table�Generation Function

We specify Gai� for ����bit string a and integer � � i � ���� The latter is
treated as a ���bit string whose value as an unsigned binary number is i� This
function is de�ned directly from Sections ��
 of ����� the de�nition is repeated
here only for ease of reference�

First we make the following de�nitions� For � � t � �	� set Kt � �x�a��
			
and ftB�C�D� � B � C� � B � D�� For �� � t � �	� set Kt � �x�ed	eba�
and ftB�C�D� � B � C � D� For �� � t � �	� set Kt � �x�f�bbcdc and
ftB�C�D� � B � C� � B � D� � C � D�� For �� � t �
	� set Kt �
�xca��c�d� and ftB�C�D� � B � C �D�

The ����bit string a is broken up into �ve ���bit words� a � H�H�H�H�H��
and the ����bit M� is set to i k ���� and then processed by�

a� Divide M� into �� words W��W�� � � � �W�	 where W� is the left�most word�
so that W� � i� W� �W� � � � �� W�	�

b� For t � �� to
	 let Wt � Wt�� �Wt�� �Wt��� �Wt���� hhh ��

c� Let A � H�� B � H�� C � H�� D � H�� E � H��

d� For t � � to
	 do
TEMP � A hhh � � ftB�C�D� �E �Wt �Kt

E � D� D � C� C � B hhh ��� B � A� A �TEMP�

e� H� � H� �A� H� � H� �B� H� � H� �C� H� � H� �D� H� � H� �E�

After processing M� the value of Gai� is the ����bit string H�H�H�H�H��

Appendix B
 Test Case

This appendix provides adequate data to verify a correct implementation of
SEAL ���� Suppose the key is the ����bit string

a � �������	 efcdab
� �
badcfe 	������� c�d�e	f�

and assume we want SEAL to produce � KByte outputs i�e�� L � ��
�� bits��
Then the table R consists of words R���� R���� � � �� R�����

�������d ce���c�� fa�bd�dd ���d�b	� ���cff�� ac��d�c� ����ead� fabe����

��a��c	�
�c
��bd ca	����c ��fe�
c� bd��b��� �fdcc��c �dada���
���dd�

The table T consists of words T ���� T ���� � � �� T ������

	�b
�
e� �����ced �c�acd
e bf���f�� �	f��a	� cd�f���a b���f�
e �b��
a�f

��e�
� �������� ���d�f	�
d	
�a�� aea��ffb 	����a�b
���af�� ��bb����

�������� �������� �������� �������� �������� �������� �������� ��������

�
e�afcd ���e�c�f �af�a
bf ���e
��� �a���d	�
��c�db� ���e
b�e �	ccf���

The table S consists of words S���� S���� � � �� S������

��

	��c�e�d ce��ef�a
�f��	ef �b�ab�bc
���f
b� ���e	b��
fde�efa �a�
�f	

�����c�b d
b

�	� �����dce
�	efa�� ��bea��e a
�d�b�d c
���

e ��f�	�ee

�������� �������� �������� �������� �������� �������� �������� ��������

��d
���� �
�f	�cc bd�dea�� fd���d�� ��aa���� ec��e��� �eaef�f	 �b�a�	
	

Let n � �	����af� Then y � SEALa� n� L� consists of y��� k y��� k � � � k y�������

��a���	� 	b�
c
	c a
be�e�� �������f �fb�	�fd f�a��fbd �c�cdecd ��fdee�c

�abdc�e� �
��	aff ��a����� ef������ c���
b�� ��	��	e� a�ab�ed	
��c��eb

�������� �������� �������� �������� �������� �������� �������� ��������

���a�	�� f�
	�ba� �eb�d�
� efa�
b��
d�a���
 fed	fede �����
aa �	�e��e

The XOR of the ���� words of y is �x�e�fe��f�

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

