
A Synopsis of

Format-Preserving Encryption

Phillip Rogaway ∗

Department of Computer Science
University of California, Davis, USA

March 27, 2010

Abstract

Format-preserving encryption (FPE) encrypts a plaintext
of some specified format into a ciphertext of the same
format—for example, encrypting a social-security num-
ber into a social-security number. In this survey we de-
scribe FPE and review known techniques for achieving it.
These include FFX, a recent proposal made to NIST.

FPE Synopsis / Draft 3. This note is a survey of format-preserving encryption (FPE). It aims to explain FPE in an accessible but precise
way. The current version has evolved, along with my understanding of FPE, since June 2008.

1 Introduction

Suppose you want to encrypt a 16-decimal-digit plain-
text, perhaps a credit-card number, into a ciphertext that is
again a 16-decimal-digit number. A shared key K is used
to control the encryption. Syntactically, you seek a map
E : K × X → X where X encodes 16-digit strings and
where EK = E(K, ·) is a permutation—a forwards and
backwards computable function on X—for each K ∈ K.
In terms of security, you intend that EK(X) not only con-
ceal X but, also, all partial information about X .

The problem is harder than it sounds. You cannot, say,
encode each X ∈ X as a 128-bit string and then apply
AES, for AES will return a 128-bit string, not a 16-digit
one. You can’t just say to hash that 128-bit AES out-
put, creating a 16-digit string, as that would obliterate
your ability to go backwards—that is, your ability to de-
crypt. Classical modes of operation (CBC, CFB, CTR,
ECB, OFB) don’t do the job, nor do more recent modes
from NIST (things like CCM, CMAC, or GCM). Indeed
no contemporary cryptographic standard as yet exists that
addresses the problem described, nor can a treatment be
found in any published book.

∗Department of Computer Science, One Shields Ave., University of
California, Davis, CA 95616, USA. Email: rogaway@cs.ucdavis.edu;
URL: http://www.cs.ucdavis.edu/∼rogaway. The author is also a mem-
ber of the Technical Advisory Board of Voltage Security. This survey
was prepared at Voltage’s suggestion. All shortcomings in this docu-
ment are entirely my own.

And it is not only 16-decimal-digit numbers that one
might like to encrypt without disruption to their format;
other natural possibilities include primary account num-
bers (PANs) of other lengths, possibly required to have a
zero Luhn-checksum [33]; various subsequences of the
digits drawn from such numbers; U.S. social security
numbers (SSNs); SSNs stripped of their last four digits;
US postal addresses; database fields with an essentially ar-
bitrary format; payloads in a networking packet; 512-byte
disk sectors; and files of a particular kind, such as JPEG
files, MPEG files, or C programs. For any of these mes-
sage spaces a format-preserving encryption (FPE) would
let you encrypt in such a way that the ciphertext will have
exactly that same format as the plaintext.

The utility of FPE stems, in part, from its use in adding
security to legacy protocols and systems. You can’t, for
example, just go in and change the PANs in a database to
128-bit strings without causing serious disruptions to pro-
grams that use those PANs, and possibly to the surround-
ing human context as well. Such disruptions are not only
unnecessary but, in many situations, inimical to sound se-
curity practice.

It is my view that the cryptographic literature already
contains good solutions for FPE but that, at least until
quite recently, the ideas were scattered about, not widely
known, and not cohesively described. Until quite recently,
the overarching context was not spelled out all that ex-
plicitly and, to this day, relatively few cryptographers will
have even heard the term “FPE”. This survey aims to help
fix this, and to explain the state-of-the-art to people who
are not necessarily cryptographers. I will describe the FPE
problem, survey known solutions, and provide some high-
level commentary. My description includes the FFX mode
of operation recently proposed to NIST by Bellare, Spies,
and me [7].

This note is not a research paper. While you do not
need to be a cryptographer to understand what I write (my

1

sincere apologies if you disagree with this claim!), I do
write with a cryptographically informed audience in mind.
My imagined reader has encountered AES, DES, shared-
key encryption, and the like. He or she may, for example,
have heard a Voltage Security presentation that touched
on FPE and wondered what this thing exactly is, and if
it be solid science or just wishful thinking. I intend to
unambiguously answer questions such as these.

My own research on FPE goes back more than a decade
and includes, to date, some eight academic papers that one
might reasonably place within this area [5, 6, 8, 24–26, 39,
56]. I would not say that this has been a “dominant” part
of my cryptographic work, but that it is something that has
been repeatedly on my mind. It has taken a while, but I
am delighted to see that FPE is really catching on.

The term format-preserving encryption (FPE) is not
my own. It is due to Terence Spies, Voltage Security’s
CTO [69]. I first saw the phrase on Voltage’s website and
immediately liked the term, and the idea associated to it,
which I took to be a generalization of the kind of integer
FPE scheme that I had previously formalized in my work
with John Black [8]. There one aims to encipher on a mes-
sage space of the form X = [N] = {0, 1, . . . , N − 1} for
some arbitrary number N .

I didn’t know it when I did my work with Black [8],
but it turns out that the FPE problem goes much further
back. Brightwell and Smith (1997) appear to have been
the first to clearly (although informally) describe FPE and
its utility [9]. They called their goal datatype-preserving
encryption, as opposed to format-preserving encryption.
(Both terms are good, but I prefer the second.) Even ear-
lier, in 1981, the US National Bureau of Standards (NBS,
which later became NIST) published FIPS 74, section 8
of which describes a (completely flawed) approach for
enciphering an arbitrary string over a non-binary alpha-
bet [45], the most prominent special case of FPE. In view
of these references, I see FPE as a rather old problem—
effectively a folklore one—of applied cryptography.

Eventually FPE did receive the attention of cryptogra-
phers. First there was the paper I mentioned with Black
[8], which defined integer FPE and envisioned the use of
this tool for enciphering on more general domains still.
More recently, Bellare, Ristenpart, Stegers, and I gave a
treatment of FPE at the level of generality that I now think
most fitting [5]. That work and the current note have an
intertwined history. They co-evolved to some extent, ear-
lier versions of this note giving rise to the academic paper
and the academic paper informing the current version of
this note. Comparing the two, the note you are reading
is considerably gentler, trying to explain matters for the
benefit of non-experts. In contrast, the academic paper is
narrower in scope and more technical in execution, target-
ting researchers in my community. Its focus is on formal
definitions, theorems, and proofs.

2 The FPE Problem

This section is intended to provide a clear but informal de-
scription of the FPE problem. I try to avoid heavy math-
ematics and notation. A more formal treatment, for those
inclined to see one, can be found in Appendix A and in
reference [5].

The first thing to understand about format-preserving
encryption is, naturally enough, that it is encryption: it’s
one flavor of shared-key (= symmetric) encryption. So the
general setting is that there is a key K and, using it, you
can encrypt a plaintext X to make a ciphertext Y . Anyone
who has the same key K can decrypt the ciphertext Y to
recover the plaintext X .

Now some encryption schemes are randomized, mean-
ing that you can produce various different ciphertexts
from a given plaintext depending on the computer-
generated random bits—metaphorical coin tosses—that
arise when you encrypt. Other encryption schemes are
stateful, meaning that there might be a counter, say, that
gets incremented with each message encrypted. When
an encryption scheme takes a (non-constant) IV (initial-
ization vector), as CBC encryption does, you know right
away that it is randomized or stateful.

It is important to understand that FPE is neither ran-
domized nor stateful; it is deterministic. There are no
coins. No state. No IV. Every time you encrypt a par-
ticular message X with a particular key K you’re going
to get the exact same ciphertext Y . That’s what we mean
by deterministic encryption.

For a deterministic encryption scheme, I sometimes use
the word encipher instead of encrypt and decipher instead
of decrypt. At least to my ears, those terms help empha-
size that we are in the deterministic setting. But there is
nothing wrong with using the words encrypt and decrypt
in the setting of deterministic encryption; that diction is
very common, too.

A blockcipher, say AES, is a deterministic encryption
scheme: every plaintext X has n = 128 bits and we con-
vert it into a ciphertext Y that again has n = 128 bits,
the transformation controlled by a key K. Be clear that
AES itself won’t let you encipher a message that has, say,
30 bits, or 50 bits, or 16 digits; it just doesn’t have that
ability. One might imagine some mode of operation that,
using AES, does let you encipher a string of 30 bits or 50
bits or 16 digits. But then it’s not AES we’re talking about
anymore—it’s an AES-based mode of operation.

With AES, not only is the message space the set of 128-
bit strings but so too is the ciphertext space. They’re the
same set. One might therefore say that that AES is format-
preserving: the format of a plaintext—that it’s a string of
128 bits—is the format of the ciphertext. AES is, all by
itself, a format-preserving encryption scheme, one with
a message space of 128-bit strings. AES, or any other

2

blockcipher, is our first example of an FPE scheme.
The problem with AES (and every other conventional

blockcipher) as an FPE scheme is that the message space
is so particular—we can only encipher binary strings of
that one, fixed length. Basically, the message space X =
{0, 1}128 is what was conventional for the cryptographic
community and convenient for the AES designers. It’s not
necessarily what’s convenient for you. The FPE problem
is, in essence, to construct a cipher that is “like” AES—a
deterministic, reversible, format-preserving scheme that
nicely scrambles up its input—but where the message
space is whatever you might want it to be. We should
do this without sacrifice in assurance compared to AES.

As an example, an FPE scheme with a message space
of 30-bit strings would deterministically encrypt a 30-bit
string into a 30-bit string. An FPE scheme with a message
space of 16-digit strings would deterministically encrypt
a 16-digit string into a 16-digit string. An FPE scheme
with a message space of valid PANs, for some prescribed
notion of validity, would deterministically map one such
string into another.

It is best to make an FPE scheme out of a conven-
tional blockcipher, say AES itself. One will use the un-
derlying blockcipher in some mode of operation. It is
true that one could try to design an FPE scheme from
scratch—a de novo construction, one might say. The ci-
pher called Hasty Pudding is such a scheme [64]. But
blockcipher design is hard and engendering confidence in
any blockcipher is a long, community-based process. FPE
schemes are generalizations of blockciphers, so design-
ing a de novo one would have all the same barriers, and
more. The only practical way that one will get a widely-
accepted and widely-used FPE scheme is to base it on a
conventional and widely accepted blockcipher.

Let us get back to nitty-gritty and think in terms of an
FPE scheme’s API. An FPE scheme is going to have some
message space X . To encrypt a value X ∈ X you’ll call
some procedure E , the encryption algorithm, providing it
a key K and the plaintext X . This will yield a cipher-
text Y = EK(X) that is again in the message space X . To
decrypt, you’ll call DK(Y). This will return X .

Truth be told, there is another argument that ought, in
many cases, to be provided to E and D. It is called the
tweak [30]. I like to write the tweak with a superscript T ,
as in Y = ETK(X) or X = DT

K(Y). Conceptually, each
tweak names an independent cipher: Y = ETK(X) and
Y ′ = ET ′

K (X) will be unrelated values if T �= T ′. I’ll
explain later why it’s important to have and use tweaks.

Our formalization of FPE schemes in Appendix A actu-
ally includes yet one more argument that is provided to E
and D. It is the format that we want X to be interpreted
as having. The issue is that it may not always be manifest
from looking at an input X what is the format you want
it to be regarded as having. Are you trying to encrypt the

number 71 within the space of two-digit numbers, two-
character alphanumeric strings, or what? You can’t just
look at the input and tell. And, more to the point, you
might be interested in simultaneously supporting the en-
cryption of an input with respect to multiple formats at
the same time. The format names the message space in
which X should be enciphered.

The previous paragraph not withstanding, it most often
is the case that, for a given applications, it will be mani-
fest, once you see X , what format you want it to be con-
sidered to have. We’ll assume this from now on.

We have gotten this far without explaining the security
requirement we intend for an FPE scheme. Informally,
we want EK(·) to look like a random permutation on the
message space X . We envisage a game in which the ad-
versary has an oracle that behaves either as a “real” en-
cryption oracles or as “fake” encryption oracle. In the
first case the oracle chooses a random key K from the key
space and encrypts each query X ∈ X to the ciphertext
Y = EK(X), returning Y . In the second case the ora-
cle chooses a random permutation π on X encrypts each
query X ∈ X to the ciphertext Y = π(X), returning Y .
A good FPE scheme is one in which no reasonable ad-
versary is able to distinguish among these two types of
behaviors. This is the famous PRP (pseudorandom per-
mutation) notion of security.

There’s also a notion of a “strong” PRP. This means that
encryption should resemble a random permutation even if
you can decrypt points, too. For more details on PRPs and
strong PRPs, see Appendix A or reference [5].

The PRP notions we have described allow one to dis-
count many potential FPE schemes as “wrong” (that is,
completely insecure). Suppose, for example, we try to
make an FPE scheme E for 30-bit strings by saying that
EK(X) is X xored it with the first 30-bits of AESK(C)
for some 128-bit constant C. The method is wrong in
that, for example, EK(A) ⊕ EK(B) = A ⊕ B, while
π(A)⊕π(B) is only rarely A⊕B. So a simply adversary
will be able to easily win the game we have laid out: ask
the oracle distinct strings A, B and see if the xor of the
ciphertexts is the xor of the plaintexts. As trivial as this
attack may be, it is quite enough to break the suggestion in
FIPS 74 [45]. Having strong definitions of security goes a
long way in helping to keep us out of trouble.

3 Survey of Schemes

TAXONOMY. Blockcipher-based techniques for FPE
change in character with the domain size N = |X | and
with gross efficiency expectations. More specifically,
schemes change in character if it is or isn’t practical to
spend O(N) time to encrypt, and if N does or doesn’t ex-
ceed the number of points in the domain of the underlying

3

setting size msg space comments

tiny-space FPE N ≤ 210 X = [N] Easy case for FPE: N is sufficiently small that it is acceptable to spend
O(N) time for key setup or the first encryption (one can always initialize an
N -element table and do constant-time lookups into it to encrypt or decrypt).
There is no application-independent cutoff for this; 210 is just illustrative.
Small-space techniques may also be used for tiny message spaces.

small-space FPE N ≤ 2128 X = Σn This setting includes the encryption of PANs, substrings of PANs, and
SSNs. We usually assume a message space of X = Σn for some arbitrary
alphabet Σ. Natural schemes can be based on (generalized) Feistel
networks. Small-space FPE is the main focus of this writeup. Proposed
NIST standard FFX [7] is a small-space FPE scheme.

large-space FPE N ≥ 2128 X = {0, 1}n Also called wide-block encryption (assuming a domain of binary strings).
Standardization of EME2 and XCB in IEEE P1619.2 [27] is expected in
2010. Prototypical application is the encryption of 512-byte disk sectors.

Figure 1: Three kinds of FPE schemes. The distinction among small- and large-space schemes assumes that the construction is
blockcipher-based (the 128 in the size column is the blockcipher’s assumed block size). The message-space column indicates what
we usually assume the message space X to be; the message space may be the indicated set or the union of such sets.

blockcipher we will use. The following three cases are
usefully distinguished. See Figure 1.

For tiny-space FPE the size of the message space N =
|X | is so small that it is feasible to spend O(N) time or
O(N) space in order to encrypt or decrypt a point. Cer-
tainly it is application-specific how big N can be for this
to be considered so, but we are imagining settings like,
for example, X = [365], to encrypt a calendar day. Here
[N] is the set {0, . . . , N − 1} (or you may take [N] to be
{1, . . . , N}, the choice is not important). For a tiny-space
FPE we will usually assume that the message space X
is [N] for some (not-too-big) number N .

For small-space FPE the size of the message space
N = |X | is at most 2w where w is the blocksize of the
blockcipher underlying our FPE scheme. These days we
almost always think of using AES as our blockcipher, so
w = 128 bits and N = 2128 ≈ 1038.5 becomes the cut-
off for “small.” Note that N can be vastly smaller than
2128 and still be huge, not small, by human standards (eg,
the universe is believed to be fewer than 286 nanoseconds
old, “small” by our reckoning). For a small-space FPE
scheme the number of domain points is small only in the
sense that a domain point (or an encoding of one) won’t
“fill out” an entire AES block.

For a small-space FPE scheme we will usually assume
that the message space consists of strings of some given
length n. The strings might be binary, decimal, alphanu-
meric, or something else. We write X = Σn for the
strings of length n over the (finite) alphabet Σ.

Small-space FPE schemes can usually be used on tiny
message spaces, suggesting that a small-space vs. large-
space distinction would already make for an adequate tax-
onomy. One reason for maintaining the tiny/small distinc-
tion is that known tiny-space FPE techniques have a dif-
ferent qualitative character than their small-space coun-

terparts. One reason for actually using tiny-space FPE
techniques is that, on tiny domains, small-space schemes
will typically have worse or effectively absent provable-
security guarantees (although no known attacks). In other
words, scheme selection focused on quantitative provable-
security results will suggest using tiny-space FPE tech-
niques where efficiency considerations allow it. One argu-
ment in favor of ignoring tiny-space techniques and using
small-space schemes even on tiny domains is to minimize
complexity and the number of cryptographic schemes an
application employs.

For large-space FPE the size of the message space
N = |X | is at least 2w where w is again the blocksize
of the blockcipher we want to use to make our scheme
(so, once again, assume that w = 128). For a large-
space FPE scheme we will usually assume that the mes-
sage space consists of binary strings of one or more per-
mitted lengths. Permitted lengths are at least 128 bits.
Under these assumptions, a large-space FPE is the same
as a wide-block encryption scheme. Special cases include
enciphering a binary string of exactly 512 bytes (eg, a
disk sector) and enciphering any binary string of length
n ≥ 128, getting a binary string of the exact same length.

In Figs. 2, 3, and 4 we survey some tiny-space, small-
space, and large-space FPE schemes. I have tried to iden-
tify the most important schemes and references.

In the remainder of this survey I will focus mostly on
small-space FPE schemes. The reasons are as follows.
First, this is the setting that matters for key applications
like enciphering SSNs, PANs, and substrings of PANs.
Second, small-space schemes can be used also on tiny-
space domains. Third, large-space schemes are better un-
derstood and further along in standardization [27], so they
would seem to need less of our attention.

In the remainder of this section we explain some of the

4

method can encrypt on description security

Knuth shuffle
[15, 18, 29, 40, 59]

X = [N] where
N is small

Shuffle [N] by repeatedly choosing an
element from a decreasing prefix and
moving it to the end. Slow setup then
fast, table-driven encryption. Map X
to its position after the shuffle.

Provably secure with ideal bounds.

Permutation
numbering

X = [N] where
N is very small

Map key K to a number k ∈ [N !] and
encrypt with the k’th permutation πk

on [N]. One AES call enough to
usually determine permutation on
N≤34 points (32-bit arithmetic
enough for N≤12, 64-bit arithmetic
enough for N≤20).

Provably secure with ideal bounds.

Prefix cipher [8] X = [N] where
N is small

Use ordering of EK(0), . . .,
EK(N−1) to determine permutation.
Slow setup then fast, table-driven
encryption. Simpler but uses more
coins than Knuth shuffle.

Provably secure with ideal bounds.

Figure 2: Tiny-space FPE schemes. Encryption or key-setup take time proportional to N = |X |, restricting feasible values of N .

schemes mentioned in the tables. Discussion of FFX is in
a section of its own, Section 4, but the methods it employs
are described below.

FIPS 74 SCRAMBLING. The earliest treatment we know
for small- or large-space FPE is in [45, Section 8]. The
method enciphers an n-character string over some alpha-
bet Σ = {0, 1, . . . , d − 1} by deterministically generat-
ing from the key an n-character pad, again from Σ =
{0, 1, . . . , d−1}, and then characterwise modulo-d adding
it to the plaintext to generate the ciphertext. For example,
suppose the plaintext is X = 123456 and that the alphabet
consists of the decimal digits Σ = {0, 1, . . . , 9}. Suppose
that the user’s key K determines the pad P = 749621,
say by enciphering the all-zeros string with DESK(·) and
taking the (64-bit) result modulo 106. Then the cipher-
text will be 123456 � 749621 = 862077. From the point
of view of Section 2 (and probably from any modern per-
spective), the method is easily attacked. Knowledge of
one plaintext/ciphertext pair will let one decrypt any ci-
phertext of the same or shorter length.

BRIGHTWELL-SMITH SCRAMBLING. Brightwell and
Smith were the first to really describe and motivate the
FPE problem, and they also sketch an ad hoc solution for
small-space (or even large-space) FPE [9]. They again as-
sume the message is a sequence of characters—the string-
based setting on which we too will focus. The scheme
they sketch is cryptographically naı̈ve, but the recogni-
tion of the problem was highly insightful. We will not de-
scribe the Brightwell-Smith scheme, which, in any case,
was complex and not fully pinned down.

PREFIX CIPHER. After the preceding examples, let’s
give a simple example of a clearly correct scheme for

FPE. Consider the tiny domain X = {0, 1, 2, 3, 4} hav-
ing just five possible plaintexts. Under the control of a
key K, say having 128 bits, we have to decide which
of the five points 0 encrypts to, which of the remaining
five points 1 encrypts to, and so on. One way to do this
would be to compute Y0 = AESK(0), Y1 = AESK(1),
Y2 = AESK(2), Y3 = AESK(3), Y4 = AESK(4), and
Y5 = AESK(5). The argument to AES means the 128-
bit string that encodes the given number. Use the relative
ordering of Y0, Y1, Y2, Y3, Y4, Y5 to determine the desired
permutation. For example, if Y2 < Y4 < Y0 < Y1 < Y3

then we would set EK(0) = 2 (as 0 lands in position 2,
with positions numbered 0 to 4), EK(1) = 3, EK(2) = 0,
EK(3) = 4, and EK(4) = 1. It’s not the most effi-
cient scheme; you need to make five AES calls to encrypt
one of five different points. But the usual assumption on
AES, that it’s a good PRP, is enough to know that our
constructed FPE is a good PRP. Clearly this solution does
not scale to encrypting one of 1016 points, for example,
motivating more sophisticated techniques.

FPE BY SHUFFLING CARDS. Some techniques in small-
space FPE are based on a card-shuffling metaphor. One
thinks of the message space as consisting of a deck of
playing cards X = [N] = {0, . . . , N − 1}. Each card
X ∈ X has its number imprinted on it. We use the key K
as the specification of a recipe to shuffle this deck of cards.
For example, key K could serve as the input to a pseu-
dorandom generator and one could use the resulting bits
as the needed randomness for some card-shuffling tech-
nique, like the customary riffle shuffle. After the shuffle
each card X is in some position in [N] = {0, . . . , N−1}.
This position is regarded as the encryption of X under the
key K. In other words, the point X encrypts to its final

5

method can encrypt on description security

Alternating Feistel
[1, 32]

X = {0, 1}n for
any desired n

Like unbalanced Feistel but based on
ladder drawing of Feistel. Round
functions’ domain and range alternate
between contracting and expanding.

Provably secure to nearly the size of
the domain of the round function with
larger domain [8, 26, 32].

Brightwell-Smith
scrambling [9]

X = Σn for any
desired Σ and n

Characters successively modified by a
multi-step process involving modular
additions, rippling, and the use of DES
in OFB mode. Later elaborated and
named DTP [34].

Cryptographically unsophisticated
scheme that seems unlikely to be
secure. No provable security results
are claimed.

Classical Feistel
[16]

X = {0, 1}2n for
any desired n

Classical (∼1971), extensively studied
approach. Variable number of rounds
(eg, 3–32). Can use a high-assurance
PRF as the round function.

With enough rounds, provably secure
to about 2n queries [36, 49]. With
enough rounds, known attacks are
completely ineffective [50]. Also true
of all Feistel variants described here.

FIPS 74
scrambling [45]

X = Σn for any
desired n

Characterwise-modular addition of
plaintext and a key-dependent,
DES-based pad.

Trivially attackable.

FFSEM [68] X = {0, 1}2n for
any desired n; or
X = [N] for any
desired N

Former NIST submission from Voltage
Security that combines classical
Feistel and cycle walking. Has been
replaced by FFX.

Inherits classical Feistel results.

FFX [7] X = Σn for any
desired n

NIST submission uses alternating or
unbalanced Feistel. Highly
parametrized. Parameter sets A2 and
A10 concretize enciphering binary and
decimal strings.

Provably secure with bounds
associated to alternating or
unbalanced Feistel [26, 39, 42].

Numeric Feistel
[5, 8]

X = [N] where
N = a b for
a, b ≥ 2

Like unbalanced or alternating Feistel
but everything is done mod a or mod b
instead of using binary strings.
Intended to make cycle walking rare.

Provably secure with about the same
bounds as the analogous string-based
methods [5, 8, 26].

Recursive-merge
shuffle [21]

X = [N] where
N is arbitrary

Trace the trajectory of (just) card x in a
shuffle suggested by [14, 42]. Samples
from hypergeometric distribution to do
so. Impractically slow.

Provably secure with ideal bounds.

Thorp shuffle [71] X = [N] for
even N

Split deck in half and let cards fall
left-right or right-left depending on a
coin. Coincides with maximally
unbalanced Feistel if N = 2n.

Provably secure to N1−ε queries
(with O(1/ε) passes) [26, 39]. Weak
security notions already achieved
with two passes [39].

Unbalanced
Feistel [63]

X = {0, 1}n for
any n

Generalized Feistel scheme where split
is not into even halves. Source-heavy
and target-heavy subtypes.

Provably secure to nearly the size of
the domain of the round function
[26, 42]. Weak attacks [51, 52].
Source-heavy preferred.

Figure 3: Small-space FPE schemes. Most of the included scheme are “generic,” the scheme based on a pseudorandom function
that can, in turn, be built from a blockcipher.

6

method can encrypt on description security

ABL4 [38] X = {0, 1}∗ Unbalanced Feistel with a layer of
ECB. Slow, eclipsed by later work.

Provable security claimed, but no
known writeup.

CMC [25] X = {0, 1}mw

where m ≥ 2
An encrypt-mix-encrypt scheme where
encryption is CBC and the mix is very
lightweight. Not parallelizable.

Provably secure with good bounds.

EME [24] X = {0, 1}mw

where m ≥ 1
An encrypt-mix-encrypt scheme where
encryption is ECB and the masking is
lightweight.

Provably secure with good bounds.

EME2 [22, 27] X = {0, 1}≥w Refinement of EME to extend the
domain. Formerly named EME∗. In
draft standard IEEE P1619.2.

Provably secure with good bounds.

HCH [11] X = {0, 1}>w Follow-on to HCTR, an efficiency and
security improvement to it.

Provably secure with good bounds.

HCTR [10, 72] X = {0, 1}≥w A hash-counter-hash scheme where the
hash is relatively heavy.

Provably secure with good bounds.

HEH [61]
HEH∗ [60]

X = ({0, 1}w)+
X = {0, 1}≥w

A hash-encrypt-hash follow-on to
TET; improves efficiency, makes VIL.

Provably secure with good bounds.

HMC [41] X = {0, 1}>w Follow-on work to HCTR improves
bounds and efficiency.

Provably secure with good bounds.

NR [42, 43] X = {0, 1}mw

where m ≥ 1
A hash-encrypt-hash scheme with a
relatively heavy hash and an encrypt of
ECB mode, say. Not fully specified.

Provably secure with good bounds.

PEP [12] X = {0, 1}mw

where m ≥ 1
Like TET, follow-on to NR. Poor
speed, eclipsed by other modes.

Provably secure with good bounds.

TES [62] X = {0, 1}≥2w

where m ≥ 1
A hash-encrypt-hash scheme using
only the forward direction of the
blockcipher. Tweakable, VIL.

Provably secure with good bounds.

TET [23] X = {0, 1}mw

where m ≥ 1
A hash-encrypt-hash scheme that
concretizes NR. Tweakable,
parallelizable, FIL.

Provably secure with good bounds.

Type-1 Feistel [73]
Type-2 Feistel [73]
Type-3 Feistel [73]

X = {0, 1}mw

for desired m
Generalized Feistel schemes used in
blockciphers like CAST-256, RC6, and
MARS.

Provably secure with good
bounds [26, 73].

VIL [6] X = {0, 1}≥w Early scheme that helped introduced
and formalize the problem.

Provably secure for CPA security, but
does not achieve CCA security.

XCB [37] X = {0, 1}≥2w

or X = {0, 1}≥w

with nonce AD

A hash-counter-hash scheme with a
relatively heavy hash. In draft standard
IEEE P1619.2.

Provably secure with good bounds,
although the writeup leaves some
questions about the precise claims.

Figure 4: Large-space FPE schemes. All of these are blockcipher-based. The underlying blockcipher is assumed to have a
blocksize of w bits (eg, w = 128) and we are doing length-preserving enciphering on an indicated set of strings. Some schemes
not included in this enumeration (either broken, not blockcipher-based, or with unclear claims) include BEAR and LION [1],
Mercy [13, 19], and PSPC [73].

7

position in the deck.
When analyzing shuffling-based techniques we can

think of the coins that will be produced from the key as
being chosen uniformly at random. The fact that they are
actually to be derived from some short key K won’t com-
promise the shuffle if cryptographically sound techniques
are used to map the key to the needed coins.

Now for “most” ways to shuffle cards—again think of
the usual riffle shuffle—the position that a card X lands in
depends on a great many coins. It will depend on where
the other cards ended up. You will thus need at least
O(N) time1 to figure out where a single card goes; ba-
sically, you must figure out where all cards go to know
where any card goes. But there turn out to be clever ways
to shuffle a deck of cards where the trajectory of a card X
hardly depends on the trajectory of other cards. For such a
shuffle you can follow where a card moves, as you shuffle
the deck, by looking at just a few coin tosses per shuffle.
The amount of time to encrypt will thus depend princi-
pally on the number of rounds (shuffles), not the size of
the domain (number of cards). Moni Naor calls such a
shuffle oblivious [42, p. 62], [58, p. 17]. Naor noticed
the potential utility of oblivious shuffling to cryptogra-
phy some 20 years back. The Knuth shuffle (Figure 2)
is not oblivious, so it only works to make a tiny-space
FPE scheme. In contrast, the Thorp and recursive-merge
shuffles (Figure 3) are oblivious shuffles.

LARGE-SPACE SCHEMES. There have been a great many
blockcipher-based solutions offered for the problem, as
enumerated in Figure 4. One reason is that the prob-
lem was taken up by the Security in Storage Working
Group (SISWG), which will put out a standard known as
IEEE P1619. The Working Group had initially focused on
sector-level disk encryption. Another reason for the inter-
est in wide-block encryption schemes is the wide range of
solutions that are amenable to provable-security analysis:
designing and proving secure a new one is fun, challeng-
ing, but not too challenging to succeed.

Blockcipher-based wide-block encryption schemes be-
gin with Naor and Reingold [42, 43]. Those authors in-
troduce a paradigm that has come to be called the hash-
encrypt-hash approach. The hashing here refers to a kind
of universal hash function that is actually a permutation,
while the encryption is just ECB. Naor and Reingold do
not fully specify any scheme, but subsequent schemes that
build on their work, like TET [23], have done so.

Unhappy with the complexity of the hashing required
by hash-encrypt-hash schemes, Shai Halevi and I in-
troduced a different, encrypt-mix-encrypt approach [25].
Follow-on schemes include EME and EME2 [22, 24, 27].

1 I really should write Ω(N) time, not O(N) time, but I fear that
the distinction is likely to confuse more people than it would inform.
The same for when I spoke of tiny-space techniques using O(N) time
or memory to encrypt.

Such schemes have two layers of encryption and not much
else.

The latest approach, a hash-ctr-hash construction, is a
variant of hash-encrypt-hash. It began with the precursor
to XCB [37]. The inner encryption is CTR mode and the
hash seems to be somewhat cheaper than it was with the
NR-style schemes. XCB does the hash using GF(2128)
multiplications in a manner reminiscent of GCM [48].

Given their likely standardization [27], users needing a
wide-block scheme are probably best off selecting EME2
or XCB.

CLASSICAL FEISTEL. To a cryptographer, using a Feistel
network is probably the most natural approach for solv-
ing the small-space FPE problem. The technique is sim-
ple, old, and extensively studied. It was popularized by
the U.S. Data Encryption Standard (DES) (1974) [44] but
dates back to even earlier than this [16, 17, 66].

The “classical” version of a Feistel network works like
this. Suppose you want to encipher a binary string X . As-
sume that X has an even number of bits. Partition it into
a left-hand side L and a right-hand side R. Take the right-
hand side R and apply to it some key-dependent round
function F 1

K to get a processed right-hand side R∗ that has
the same length as the original right-hand side R. Next
you xor together the already-mentioned left-hand side L
and the processed right-hand side R∗ to get the new right-
hand side R′. The old right-hand side becomes the new
left-hand side L′. This is round-1 of the classical Feis-
tel network, mapping a left and right side, (L,R), to a
new left and right side, (L′, R′). Each subsequent round i
works the same way except that you use variant F i

K of the
round function. You can use as many rounds as you wish.
See Figure 5 for an illustration showing three rounds.

The Feistel construction always engenders a reversible
function—that is, it “works” to make a blockcipher—no
matter what you use for the round functions F i

K . In par-
ticular, the round functions don’t have to be permutations.
Look at any one round of Figure 5, say the last. To go
backwards one step works like this. You have an (L′, R′)
pair, so you known the former right-hand side R = L′.
Thus—assuming you know the key K—you can compute
the processed right-hand side R∗ = F i

K(R). Now we
know that R′ = L⊕R∗, which implies that L = R′⊕R∗.
Thus we can compute the former left-hand side L. We
have manged to go backwards one round. Repeat this for
every round and you have reversed the entire encryption
process. The fact that you can reverse it means that we
have made a blockcipher.

Let us see how one might use the classical Feistel
structure to encipher a 6-digit number, say the number
123456. Again see Figure 5. To encode a 6-digit num-
ber needs 20 bits, as 219 < 106 < 220, so we be-
gin by writing 123456 as a 20-bit binary number, get-
ting 0001111000 1001000000. The first 10 bits are made

8

0001111000 1001000000

1001000000 1100100111

1100100111 1001100111

2

1001100111 0110001001

123456

1101011111

0000100111

1010101110

630153

FK

1FK

3FK

Figure 5: Classical Feistel. Three rounds of a Feistel network
on a 20-bit string. Here 0001111000 1001000000 gets enci-
phered to 1001100111 0110001001 using the round function F .
Its subscript is the key and its superscript is the round number.

the initial left-hand side L; the next 10 bits are the initial
right-hand side R. We now go through the Feistel con-
struction. In the illustration, just three rounds are shown.
More rounds than this should used; the figure is just to get
across how the construction works. The 10-bit numbers
that result from each F i

K application have been randomly
generated in the figure; we have not specified what PRF
is actually to be used. After we are done running the in-
put through the Feistel network we get, in this example,
the binary string 10011001110110001001, which, in dec-
imal, is the number 630153. Thus we have enciphered the
six-digit string 123456 into the six digit string 630153.

CYCLE WALKING. The astute reader may ask: but what
if our final 20-bit number had exceeded 999999? Then
we would not have enciphered our 6-digit number to a 6-
digit number. Certainly getting a 7-digit result is possible;
since 220 = 1048576 there are 48576 twenty-bit num-
bers that are too big for six decimal digits. The chance
that we will get such a number as our final output, if ev-
erything is assumed to be random, is (220 − 106)/220 =
48576/1048576 ≈ 4.6%.

Well, if the ciphertext exceeds 999999 there is a simple
solution: just re-encipher it. Keep re-enciphering until
you get a 6-digit string.

I call the method just described cycle walking. It works,
in general, like this. Suppose you would like to encipher
on some message space X ; in other words, you aim to
make an FPE scheme E : K × X → X . Suppose what
you know how to do is to encipher on a superset of X ;
you have in hand an FPE scheme E′ : K × X ′ → X ′ that
works to encipher on X ′ ⊇ X . Then the cycle-walking

method defines E in the following way:

algorithm EK(X) // Encipher X ∈ X ⊆ X ′ in X
repeat
X ← E′

K(X) // Encipher X in X ′

until X ∈ X
return X

Correspondingly, decryption D of points in X using the
decryption algorithm D′ for points in X ′ ⊇ X works like
this:

algorithm DK(Y) // Decipher Y ∈ X ⊆ X ′ in X
repeat
Y ← D′

K(Y) // Decipher Y in X ′

until Y ∈ X
return Y

But what, you might ask, if you never land in X—what if
the repeat . . . until just runs forever?! In fact, this cannot
happen [8]. The reason is that we start on a point X ∈ X
and encryption with a particular key traces out a directed
cycle of points in X ′. So we know that the cycle we are
walking on contains some point of X , and so we must
eventually hit some point of X as we walk around it.

No problem if you didn’t follow the explanation just
given. The point is that it works. Indeed it is possible
to show [5], in a technical sense, that cycle walking not
only terminates, but that it preserves, in the encryption
scheme E, the hardness of the encryption scheme E′.

For cycle walking to be efficient, you need to have an
efficient way to test if X ∈ X . In addition, it better be the
case that X ′ isn’t too much larger than X . That’s because
the expected number of times you’re going to have to re-
peat the E′ encryption (or the D′ decryption) is the ratio
of the domain sizes, |X ′|/|X |. For example, the expected
number of repetitions to encipher six digits using 20 bits
is 220/106 = 1048756/1000000 ≈ 1.05. That’s not too
bad. But it won’t work to, say, encipher a 16-digit PAN
by cycle walking within the space of 128-bit strings, since
1016 is tiny compared to 2128, meaning that you’d need an
absurd number of repetitions.

We comment that cycle walking reveals side-channel
information when it makes manifest how quickly a point
in the space X is found. Recent work establishes what
seems intuitively clear: that release of this timing infor-
mation is not damaging [5]. Of course this statement has
a precise technical meaning, which I am not describing
here.

NONBINARY ALPHABETS. The slowdown associated to
cycle walking can be undesirable. If you try to encrypt X
by embedding it in the smallest message space X ′ that has
at least as many points asX and that can be represented by
binary strings of even length, thenX ′ might be as much as

9

1 2 3 4 5 6

4 5 6 6 3 9

6 3 9 6 3 0

6 3 0 1 5 3

514

174

516

2FK

1FK

3FK

Figure 6: Decimal Feistel. Three rounds of a Feistel network
on a 6-digit string. Here 123456 gets enciphered to 630153 using
the round function F .

much as four times larger thanX . You’d have to repeat the
encryption process E′ (or the decryption process D′) an
expected four times. This might be a problem. Possibly
worse, this is only an expected number of repetitions—
the actual number could, on a given run, be considerably
greater. For example, if X ′ is four times larger than X
then 6.25% of the time you will need 20 or more repeti-
tions. The unpredictability of the running time might be
particularly undesirable in applications on low-end hard-
ware where a customer is waiting for some transaction to
complete.

One way to deal with this issue is to use the Feistel
construction directly on the non-binary input string. This
nice idea was first suggested, to my knowledge, by Ter-
ence Spies. See Figure 6, which shows three rounds of
Feistel being used to encipher the string 123456. Rather
than convert the plaintext into a binary string, as was done
in Figure 5, we apply the construction directly to the dec-
imal string. The initial left-hand side is the three-digit
string 123 and the initial right-hand side is the three-digit
string 456. The round function now maps three digits to
three digits (instead of mapping 10 bits to 10 bits), doing
this in a way that depends on the key K and the round
number i. It no longer makes sense to xor (⊕) a left-
hand side L with a processed right-hand side R∗ as xor is
an operation only defined for binary strings. So, instead,
we must use some other operator, denoted � in Figure 6.
What might this operator be?

If we are working with a decimal alphabet there are
two natural realizations of � that we might use. The first
possibility for � is characterwise addition. This means
that, character by character, we add up, modulo 10, the

corresponding characters of the equal-length strings L
and R∗. Carries are ignored. So, with this type of ad-
dition, 456 � 174 = 520, since 4 + 1 = 5 (mod 10),
5+ 7 = 2 (mod 10), and 6+ 4 = 0 (mod 10). The sec-
ond possibility for � is blockwise addition. This means
that we add up the two strings as though they were equal-
length numbers, letting carries propagate except for the
final carry, which is ignored. Said differently, we add
up two m-digit numbers using ordinary addition modulo
10m. In this case we’d have 456 � 174 = 630 since
456 + 174 = 630 (mod 103). An inspection of Figure 6
reveals that we have there assumed blockwise addition.

To the best of anyone’s knowledge, there is no security
difference between using characterwise and blockwise ad-
dition in a Feistel network. There will be an efficiency
difference in some settings.

The above examples were for a decimal alphabet. But
of course the same technique works for any radix. As
an example, if we want to encrypt a string drawn from
the 26-character alphabet {A, . . . ,Z} then we can give the
characters their natural numbering (A=0, · · · , Z=25) and
get, with characterwise addition, HELLO � THERE =
ALPCS, since (7+19)(4+7)(11+4)(11+17)(14+4) =
(0)(11)(15)(2)(18). Here (i + j) means the character
numbered i+ j (mod 26).

One pragmatic difficulty in realizing Feistel over a
non-binary alphabet is that we will need a round func-
tion F that operates from and to this non-binary alphabet.
Since off-the-shelf cryptographic tools operate on binary
strings, we must construct the desired round function from
a conventional pseudorandom function on and to binary
strings. In Section 4 we sketch how this can be done us-
ing AES, the CBC MAC, and a bit of modular arithmetic.

UNBALANCED FEISTEL. So far we have seen Feistel-
based methods that encipher even-length strings. But
what if the input is of odd length? How can we encipher
a 15-digit string, or a 5-digit one?

One possibility is to use cycle walking, embedding the
message space of odd-length strings in a message space
of even-length ones over the same or another alphabet. In
terms of security, this works fine. But we have already
discussed the efficiency downside of cycle walking. Is
there a way to work directly with an odd-length input?

Two well-known generalizations of the Feistel con-
struction can be used to encipher odd-length strings:
unbalanced Feistel [63] and alternating Feistel [1, 32].
We now describe the former.

In the classical Feistel network each left-hand string L
and right-hand string R have the same length. In that
sense, the construction is balanced. It is also possible
to have intermediate left- and right-hand values of dif-
ferent lengths a = |L| and b = |R|. Such unbalanced
Feistel networks were first discussed by Schneier and
Kelsey [63]. See Figure 7 for an illustration of the tech-

10

3 4 5 8 1

1 2 3 4 5

1
KF

6 9

5 8 1 7 9

2
KF

4 5

1 7 9 9 0

3
KF

3 2

Figure 7: Unbalanced Feistel. Three rounds of an unbalanced
Feistel network using a round function that maps three charac-
ters to two characters. Here 123456 gets encrypted to 17990.

nique using a five-digit input. We use left-hand sides of
a = |L| = 2 digits and right-hand sides of b = |R| = 3
digits. The round function F correspondingly maps b=3
characters to a = 2. After each application of it the old
(three-digit) right-hand side becomes the new (three-digit)
left-hand side. The new (two-digit) right-hand side is the
sum (with respect to the operator �) of the old left-hand
side and the processed right-hand side.

In Figure 7 we have persisted in using blockwise addi-
tion, so, for example, 12� 69 = 81. As before, character-
wise addition is fine, too.

Relative to the input length n, the value a= |L| quan-
tifies the imbalance. We call it the split. Balanced Feistel
networks can be considered a special case of unbalanced
Feistel networks where the input has even length n and
the split is a = n/2. The unbalanced Feistel scheme we
illustrated in Figure 7 is almost balanced—with a split
of a = �n/2�, it’s as balanced as you can get with an
odd-length input. One can also consider more unbalanced
schemes. At one extreme (a = 1) you would encipher
an n-character string using a round function that mapped
b=n−1 characters to a=1 character. The n−1 character
R-value would effectively be shifted one position to the
left with each round, a new character, computed from all
the rest, joining in at the end. It would take n-rounds—
what one might call one “pass”—to work your way one
time through the string.

Schneier and Kelsey call an unbalanced Feistel network
source-heavy when a < b; the round function’s input is
longer than its output, so it is said to be contracting. The

1 2 3 4 5

8 1 3 4 5

1
KF

8 1 1 4 8

2
KF

6 9

8 0 3

4 8 1 4 8

3
KF

4 8 2 1 2

4
KF

6 7

0 6 4

Figure 8: Alternating Feistel. Four rounds of an alternating
Feistel network using a round function that alternates between
mapping three characters to two characters and the other way
around. Here string 123456 gets encrypted to 48212.

scheme is target-heavy if a > b; the round function is
then expanding. Security results for unbalanced Feistel
networks can be found in [26, 39, 42], while attacks (not
very effective) can be found in [51, 52]. For source-heavy
schemes, quantitative security results improve as the im-
balance increases (ie, the split goes down), assuming you
adequately compensate for the imbalance with a suffi-
cient number of additional rounds. On the other hand, se-
curity considerations suggest that one avoid target-heavy
schemes with large split a= |L|.

We introduced unbalanced Feistel networks as a way to
deal with odd-length strings. But you can now see that
the schemes aren’t just for that: unbalanced Feistel net-
works are possible for inputs of any length, and over any
alphabet.

ALTERNATING FEISTEL. An oddity of unbalanced Feis-
tel is the implicit re-partitioning of intermediate strings.
Again refer to Figure 7. The round-1 output of 345 ‖ 81
must be re-conceptualized as 34 ‖ 581 so that the round-2
round function can be applied to the 581 and the resulting
output can be added to the 34. This might seem to be only
a “viewpoint shift,” not actual work. But, in an implemen-
tation, it likely does correspond to actual work: we will
likely have a pair of integer variables holding (345, 81)

11

and need to create from them a pair of integer variables
holding (34, 581). This will take some arithmetic.

Alternating Feistel, depicted in Figure 8, avoids re-
partitioning and, therefore, the corresponding implicit
arithmetic. This is not the reason it was invented, but it is
one reason for liking this generalized Feistel scheme. The
method dates to Anderson and Biham [1] and, indepen-
dently, to Lucks [32]. Two kinds of round functions are
alternately used: a contracting one and an expanding one.
Even-numbered rounds work one way and odd-numbered
rounds work the other way. The operator � can again be
realized by characterwise or blockwise addition.

Our illustration was again for the “nearly-balanced”
setting; for a five-character string, the left- and right-hand
pieces were as close to being balanced as possible. This
isn’t the only possibility. For example, one could, with
a five-character string, have the compressing round func-
tion map four characters to one, and have the expanding
round function map one character to four. A parameter
a, the split, indicates the desired imbalance, the original
n-character string being divided into a length-a left-hand
piece L and a length-(n−a) right-hand piece R.

Note that balanced Feistel is again a special case; it can
be regarded as an alternating Feistel scheme with an even
number of characters n and a split of a= n/2. Both un-
balanced and alternating Feistel networks can be regarded
as upwardly-compatible generalizations of the classical
Feistel design.

4 FFX Mode

OVERVIEW. To help bring small-space FPE to practice,
Mihir Bellare, Terence Spies, and I have written a specifi-
cation document for a Feistel-based design [7]. Our mode
of operation is called FFX (Format-preserving, Feistel-
based encryption). It is derivative of an earlier proposal,
FFSEM, authored by Spies [68]. Using FFX one can enci-
pher strings of any length over any desired alphabet. FFX
employs a pseudorandom function as its underlying cryp-
tographic primitive. We expect this to be built from AES.

There were a large number of concerns to try to balance
in designing FFX. In the end, we decided on a structure
like this. The specification document defines the general
structure for a Feistel-based FPE scheme. It is general
in the sense that it depends on a number of parameters.
In all, nine parameters are used; see Figure 9. To have a
fully concrete scheme one must pin down all parameters.
The situation is analogous to the specification of HMAC,
say, which does not mandate a particular hash function
or MAC length. The basic mechanism underlying FFX
is a balanced, unbalanced, or alternating Feistel network
over an arbitrary alphabet—what we already described in
Section 3. Formally, balanced Feistel networks are just

param description

radix The radix, a number that determines the alpha-
bet Chars = {0, . . . , radix− 1}. Plaintexts and
ciphertexts are strings of characters from Chars.

Lengths The set of permitted message lengths. For a
plaintext to be encrypted, or for a ciphertext to
be decrypted, its length must be in this set.

Keys The key space, a finite nonempty set of binary
strings.

Tweaks The tweak space, a nonempty set of strings.
Conceptually, different tweaks name unrelated
encryption functions.

addition The addition operator, either characterewise ad-
dition or blockwise addition. Determines the
meaning of �.

method The Feistel method, either balanced, unbalanced,
or alternating (the first is actually regarded as a
special case of either of the other two).

split The imbalance, a number (actually, a function)
specifying the degree of imbalance in our unbal-
anced or alternating Feistel network.

rnds The number of rounds, a number (actually, a
function) specifying the number of rounds to
use.

F The round function, on K ∈Keys, n∈Lengths,
T ∈ Tweaks, i ∈ {0, . . . , rnds − 1}, and
B ∈Chars∗, it returns a string FK(n, T, i, B)∈
Chars∗ of the appropriate length.

Figure 9: Parameters of FFX. To have a fully-specified
scheme, each of these parameters must be defined.

param A2 A10

radix 2 10

Lengths {8, 9, . . . , 128} {4, 5, . . . , 36}
Keys {0, 1}128 {0, 1}128
Tweaks BYTE∗ BYTE∗

addition xor blockwise

method alternating Feistel alternating Feistel

split maximally balanced maximally balanced

rnds 12 or more 12 or more

F AES-based AES-based

Figure 10: Schemes FFX-A2 and FFX-A10. The former al-
lows the encryption of binary strings, the latter, decimal strings.
For a full description of these modes, see the spec [7].

regarded as a special case of either of the other two kinds.
Because of the open-endedness of FFX, we specify a

couple of parameter collections, A2 and A10, which se-
lect values for all parameters. Scheme FFX-A2 can enci-
pher binary strings of 8–128 bits. Scheme FFX-A10 can

12

encipher decimal strings of 4–36 digits. Both modes use
an alternating Feistel network that is as close to balanced
as possible (for messages with an even number of char-
acters, the scheme is a balanced Feistel network). The
round functions for FFX-A2 and FFX-A10 use AES op-
erating in the CBC MAC mode of operation. This is
the classical way to turn a blockcipher into a pseudoran-
dom function—a method standardized by ANSI, ISO, and
NIST [2, 28, 46] that has strong provable-security guaran-
tees [3, 4, 55]. See Figure 10 for a description of FFX-A2
and FFX-A10 parameters.

As we’ve explained Feistel schemes already, little more
need be said to understand the structure of FFX. Still, in
making an “industrial strength” specification there were
some significant matters to attend to, as we now describe.

TWEAKS. The FFX scheme is tweakable: a byte string T ,
the tweak, can be provided when one encrypts or decrypts
a string. Encryption takes the form Y = ETK(X); de-
cryption, X = DT

K(Y). As indicated in Section 2, each
tweak T conceptually names its “own” permutation, inde-
pendent from those associated to all other tweaks.

Why is the tweak needed? Consider the encryption of
the middle six digits of a 16-digit PAN. The envisaged ap-
plication is unable to encrypt the entire PAN because, for
example, legacy architectural considerations mandate that
the first six digits and the last four digits be presented in
the clear. One might then worry that our message space
has become too small: multiple PANs in a large database
will have the same middle-six digits. Without using a
tweak, these will encrypt to the same thing. The adversary
may then assemble a dictionary mapping known six-digit
plaintexts to their corresponding ciphertexts. The dictio-
nary could be used to decrypt unknown ciphertexts.

The exposure suggested above is unnecessary: what my
middle-six digits encrypt to in the context of my PAN
need tell an adversary nothing about what your middle-
six digits encrypts to in the context of your PAN. To en-
sure this is so, use the non-secret ten digits of the PAN as
the tweak T for encrypting the remaining six-digit plain-
text. Now identical six-digit plaintexts will not give rise
to identical six-digit ciphertexts (except by chance or for
identical PANs). In general, the string Y that a plain-
text X encrypts to with tweak T will tell an adversary
nothing about the preimage of a ciphertext Y ′ that was
encrypted using some other tweak T ′.

Summarizing, when you encrypt a plaintext X using an
FPE scheme, it is desirable—sometimes even essential—
to provide as a tweak T everything that the recipient will
know about X and its context. Providing such a tweak
will in most cases be enough to overcome the (unavoid-
able) fact that, with any deterministic encryption scheme,
identical inputs do map to identical outputs.

In the definition of FFX, the tweak T is included in
the scope of the round function F . This function is ex-

pected to be pseudorandom, so including T within its
scope has the effect of creating an unrelated round func-
tion for unequal tweaks.

Designers of recent wide-block encryption schemes
(eg, EME2 and XCB) have also been careful to accom-
modate tweaks in their designs.

ROUND FUNCTION. In both FFX-A2 and FFX-A10,
the selected round function begins by applying the AES
CBC MAC, keyed by the underlying key K, to a string
that encodes the round number i, the input string B, and
the tweak T . (Some other values, like the radix and input
length, are also thrown in.) The result is a 128-bit string.
But the round function is not supposed to output a 128-bit
string—we need, instead, to create a string of the desired
length m over the desired character set. For example, the
round function for FFX-A10 will, given a five-digit input,
need to generate m = 2 or m = 3 digits, according to the
parity of the round, as was shown in Figure 8.

For FFX-A2, whose round function must create a bi-
nary string, we can excise the needed number of bits a
from the 128-bit AES CBC MAC output. We will need
4 ≤ m ≤ 64 bits, since FFX-A2 can encipher strings of
8–128 bits. On the other hand, FFX-A10 can encipher
strings of 4–36 digits, so our round function must be able
to generate outputs of 2–18 digits. To create 2 ≤ m ≤ 9
digits we take the last 64 bits of the AES CBC MAC out-
put modulo 10m. To create 10 ≤ m ≤ 18 digits we simi-
larly process the first 64 bits, too. The decimal strings we
generate in this way will be nearly as unpredictable as the
128-bit strings from which they come (a formal statement
corresponding to this, quantifying the bias, is not hard to
state and prove).

The round functions for FFX-A2 and FFX-A10 were
designed so that, even if a tweak is long, you will only
have to pay to process it one time. Achieving this sort of
efficiency property can be done using standard “crypto-
engineering” kinds of tricks (the tweak T is simply put
near the “beginning” of the CBC MAC). For full details
on FFX and its predefined parameter collections, see the
mode’s specification document [7].

NUMBER OF ROUNDS. Considerable attention was paid
to the minimum number of rounds allowed in FFX and
the number of rounds selected for FFX-A2 and FFX-A10.
We considered provable-security results, attacks, round-
selection heuristics, efficiency, and simplicity. We se-
lected very conservative values. For the balanced and
nearly-balanced settings, FFX is required to use at least
eight rounds. Mechanisms FFX-A2 and FFX-A10 use
more: 12–36 rounds and 12–24 rounds, respectively. In
both cases the actual number of rounds used depends on
the length n of the input (the spec contains a small table).
We actually use more rounds for shorter inputs. While
the authors do not know this to be necessary, as the in-

13

put length decreases quantitative security results do get
worse, while the best attacks do improve, suggesting that,
at least for now, the conservative choice is to devote more
rounds for shorter strings. For further discussion, see the
spec [7].

5 Discussion

RANK-THEN-ENCIPHER FPE. One reason that we focus
on numeric message spaces X = [N] or string message
spacesX = Σn is due to the rank-then-encipher approach
for encrypting on an arbitrary finite set. Let’s illustrate the
idea with a concrete example.

Suppose you want to encipher 16-digit strings with a
zero Luhn checksum. Each string represents a (valid-
checksum) PAN. To encrypt a PAN X , grab its first 15
digits, X ′; encipher X ′ as a 15-digit string to get a 15-
digit ciphertext Y ′; then convert this 15-digit string Y ′ to
a valid 16-digit PAN Y by appending to Y ′ whatever final
digit is necessary to produce the correct checksum.

More abstractly, the rank-then-encipher approach
works like this. There is some finite message space X
on which you would like to do FPE. You already know
how to do FPE on some other message space X ′ having
the same number of points as X . So, to encipher a point
X ∈ X map it to a corresponding point X ′ ∈ X ′, enci-
pher that point inX ′ to get a ciphertext Y ′ ∈ X ′, then map
Y ′ to its corresponding point Y in X . The maps between
X and X ′ must be bijective—that is, each point in X is
matched up with with one and only one point in X ′.

We call the above rank-then-encipher encryption. The
set X ′ is usually of the form X ′ = [N], or something
easily regarded as equivalent, in which case the map from
X to X ′ is a ranking—a numbering—of the points in X .

Rank-then-encipher encryption can be considered a
“meta-technique” for building an FPE scheme. By a meta-
technique I mean a method that turns an FPE scheme
on one message space into an FPE scheme on another,
closely related one. Cycle walking was another meta-
technique that we looked at. See Figure 11.

The rank-then-encipher approach lets us create FPE
schemes on the kinds of message spaces that arise in prac-
tice. Theoretical work informs us that there are message
spaces where FPE is possible but where the rank-then-
encipher approach won’t work [5]. But the known exam-
ples are highly artificial—message spaces on which one
would never really want to encrypt.

Finding ranking and unranking functions (the maps be-
tween X and X ′) is not a cryptographic problem; there is
no cryptographic significance as to how you do it. Choose
as simple and efficient a method as can be found.

PROOFS AND ATTACKS. It is beyond the scope of this
note to explain or survey all the provable-security re-

sults associated to Feistel schemes; we instead refer the
reader to the papers referenced in Figure 3. It is fair
to say, however, that provable-security results for Feistel
have been steadily improving, both in quantitative power
and in scope. Known security proofs provide quantita-
tively useful guarantees. Still, there remains a huge gap
between what we can prove about the security of Feis-
tel constructions and what the best known attacks actu-
ally accomplish. Part of the issue is that an information-
theoretic analysis of Feistel networks simply cannot take
us as far as one might like, as there are (absurdly inef-
ficient) information-theoretic attacks on Feistel construc-
tions when the number of queries exceeds the size of the
domain of the round function.

In most protocol-design domains I do not take that
absence of known and effective attacks as evidence of
their inexistence. But Feistel is different. It has been
the most well-known approach for making blockciphers
for 35 years. Effective attacks on Feistel-based construc-
tions almost never attempt to attack the Feistel structure
itself ; they look, instead, for defects in the round func-
tion used. In all that time that Feistel has been around,
there has never been suggested an effective attack on the
Feistel design itself. When random round functions are
used and the number of rounds is six or more, the best
attack known, in terms of time complexity, is the (rela-
tively obvious) meet-in-the-middle attack [50] that runs in
doubly-exponential time: for r rounds of balanced Feistel
on 2n bits, the time exceeds 20.5nr2n steps. For encipher-
ing decimal strings the number 2 is replaced by 10 and
the time exceeds 100.5nr10n computational steps. To be
concrete, attacking just eight rounds of a balanced Feis-
tel construction employing a random round function and
applied to a string of just six decimal digits would take,
in the best attack known, 1012,000 time (and 4001 ora-
cle queries). Assuming we have made our round function
from AES, the far more practical line of attack would be to
do exhaustive search on its key space. Exhaustive search
on AES is, by far, the best attack we know on FFX.

CLOSING REMARKS. Some people, on hearing FPE de-
scribed, suspect that it must be some sort of cryptographic
snake oil. Hopefully this note has made obvious that it is
not. Once one understands what FPE is, its relation to
other cryptographic primitives, and that there is no inher-
ent insecurity associated to enciphering on a small mes-
sage space, it should not be surprising that the crypto-
graphic community has good solutions for this problem
already well in hand. Whatever seems magical about FPE
is, in the end, no more magical than what one sees across
the landscape of contemporary cryptography.

Given FPE’s utility, and given the maturity of tech-
niques known for achieving it, standardization and
widespread use of FPE would seem to be inevitable.

14

method can encipher on description security

Cycle walking [8] X where you have in
hand a scheme that
enciphers on X ′ ⊇ X and
membership in X is
easily tested.

To encrypt X ∈ X repeatedly encipher it in
X ′ until you land at a point in X . Takes
|X ′|/|X | expected steps, so X should not
be too sparse in X ′. Classical construction
(circa 1915) [65].

Preserves provable
security of underlying
FPE scheme.

Rank-then-encipher
[5]

X where you have in
hand a scheme that
enciphers on X ′ and you
can bijectively map
between X and X ′.

To encrypt X ∈ X bijectively map it to a
point in X ′, encrypt it in X ′, then
bijectively map it back to X . To be
efficient, mapping from X to X ′ and back
must be efficient.

Preserves provable
security of underlying
FPE scheme.

Figure 11: Meta-techniques for FPE. These methods turn an FPE scheme with one message space into an FPE with another, not
vastly different one. The utility of these methods helps explain a focus on integer and string FPEs.

Acknowledgments

The author gratefully acknowledges the role of Volt-
age Security in rekindling my interest in the FPE prob-
lem, leading to publications [5, 26, 39], specification doc-
ument [7], and of course this expository note. Particular
thanks are due to Terence Spies, whose work in connec-
tion with FPE has enabled some of my own ideas to make
that difficult journey into the real world.

Kind thanks also to Viet Tung Hoang, Terence Spies,
and Till Stegers for helpful comments and corrections.

References

[1] R. Anderson and E. Biham. Two practical and
provably secure block ciphers: BEAR and LION.
Fast Software Encryption (FSE 1996), LNCS 1039,
Springer, pp. 113–120, 1996.

[2] ANSI X9.19. Financial institution retail mes-
sage authentication. American Bankers Associa-
tion, 1986.

[3] M. Bellare, J. Kilian, and P. Rogaway. The secu-
rity of the cipher block chaining message authenti-
cation code. J. Comput. Syst. Sci., 61(3), pp. 362–
399, 2000. Earlier version in CRYPTO 1994.

[4] M. Bellare, K. Pietrzak, and P. Rogaway. Im-
proved security analyses for CBC MACs. Advances
in Cryptology – CRYPTO 2005. LNCS 3621,
Springer, pp. 527–545, 2005.

[5] M. Bellare, T. Ristenpart, P. Rogaway, and T. Ste-
gers. Format-preserving encryption. Selected Areas
in Cryptography (SAC 2009), Springer, pp. 295–
312, 2009.

[6] M. Bellare and P. Rogaway. On the construc-
tion of variable-input-length ciphers. Fast Software
Encryption (FSE 1999), LNCS 1636, Springer,
pp. 321–344, 1999.

[7] M. Bellare, P. Rogaway, and T. Spies. The FFX
mode of operation for format-preserving encryption
(Draft 1.1). February, 2010. Manuscript (standards
proposal) submitted to NIST.

[8] J. Black and P. Rogaway. Ciphers with arbitrary
finite domains. Topics in Cryptology – CT-RSA.
LNCS 2271, Springer, pp. 114–130, 2002.

[9] M. Brightwell and H. Smith. Using datatype-
preserving encryption to enhance data warehouse
security. 20th NISSC Proceedings, pp. 141–149,
1997. Available at csrc.nist.gov/nissc/1997.

[10] D. Chakraborty and M. Nandi. An improved se-
curity bound for HCTR. Fast Software Encryption
(FSE 2008), LNCS 5086, Springer, pp. 289–302,
2008.

[11] D. Chakraborty and P. Sarkar. HCH: A new tweak-
able enciphering scheme using the hash-encrypt-
hash approach. IEEE Transactions on Information
Theory, 54(4), pp. 1683–1699, 2008.

[12] D. Chakraborty and P. Sarkar. A new mode of
encryption providing a tweakable strong pseudo-
random permutation. Fast Software Encryption
(FSE 2006), LNCS 4047, Springer, pp. 293–309,
2006.

[13] P. Crowley. Mercy: A fast large block cipher for
disk sector encryption. Fast Software Encryption
(FSE 2000), LNCS 1978, Springer, pp. 49–63,
2000.

[14] A. Czumaj, P. Kanarek, M. Kutylowski and K. Lo-
rys. Fast generation of random permutations via net-
works simulation. Algorithmica, 21(1), Springer,
May 1998.

[15] R. Durstenfeld. Algorithm 235: Random permuta-
tion. CACM, 7(7), p. 420, July 1964.

[16] H. Feistel. Block cipher cryptographic system. US
Patent #3,798,359. March 19, 1974.

[17] H. Feistel, W. Notz, and J. Smith. Some cryp-

15

tographic techniques for machine-to-machine data
communications. Proc. of the IEEE, 63, pp. 1545–
1554, 1975.

[18] R. Fisher and F. Yates. Statistical tables for bio-
logical, agricultural and medical research, 3rd ed..
Oliver & Boyd, pp. 26–27, 1938 (1948).

[19] S. Fluhrer. Cryptanalysis of the Mercy block cipher.
Fast Software Encryption (FSE 2002), LNCS 2355,
Springer, pp. 21–40, 2002.

[20] S. Goldwasser and S. Micali. Probabilistic encryp-
tion. J. Comput. Syst. Sci, 28(2), pp. 270–299,
1984.

[21] L. Granboulan and T. Pornin. Perfect block ciphers
with small blocks. Fast Software Encryption (FSE
2007), LNCS 4593, Springer, pp. 452-465, 2007.

[22] S. Halevi. EME∗: Extending EME to handle
arbitrary-length messages with associated data. IN-
DOCRYPT 2004, LNCS 3348, Springer, pp. 315–
327, 2004.

[23] S. Halevi. Invertible universal hashing and the
TET encryption mode. Cryptology ePrint report
2007/014. May 24, 2007.

[24] S. Halevi and P. Rogaway. A parallelizable enci-
phering mode. Topics in Cryptology – CT-RSA
2004, LNCS 2964, Springer, pp. 292–304, 2004.

[25] S. Halevi and P. Rogaway. A tweakable enciphering
mode. Advances in Cryptology – CRYPTO 2003,
LNCS 2729, Springer pp. 482–499, 2003.

[26] V. Hoang and P. Rogaway. On generalized Feistel
networks. Manuscript, February 2010.

[27] IEEE P1619.2. Draft standard architecture for wide-
block encryption for shared storage media. File
EME2-for-p1619-2 v3. 2008.

[28] ISO/IEC 9797-1. Information technology – Secu-
rity techniques – Message Authentication Codes
(MACs) – Part 1: Mechanisms using a block ci-
pher. International Organization for Standardiza-
tion, 1999.

[29] D. Knuth. The Art of Computer Programming,
vol. 2, 3rd ed., pp. 145–146, 1969 (1998).

[30] M. Liskov, R. Rivest, and D. Wagner. Tweakable
block ciphers. Advances in Cryptology – CRYPTO
2002, LNCS 2442, Springer, pp. 31–46, 2002.

[31] M. Luby and C. Rackoff. How to construct pseu-
dorandom permutations from pseudorandom func-
tions. SIAM J. Comput, 17(2), pp. 373–386, 1988.

[32] S. Lucks. Faster Luby-Rackoff ciphers. Fast
Software Encryption (FSE 1996), LNCS 1039,
Springer, pp. 180–203, 1996.

[33] H. Luhn. Computer for verifying numbers. US
Patent #2,950,048. August 23, 1960.

[34] U. Mattsson. Format controlling encryption using
datatype preserving encryption. Cryptology ePrint
Report 2009/257.

[35] U. Maurer. A simplified and generalized treatment
of Luby-Rackoff pseudorandom permutation gen-
erators. Advances in Cryptology – EUROCRYPT
1992, LNCS 658, pp. 239–255, 1992.

[36] U. Maurer and K. Pietrzak. The security of many-
round Luby-Rackoff pseudo-random permutations.
Advances in Cryptology – EUROCRYPT 2003,
LNCS 2656, Springer, pp. 544–561, 2003.

[37] D. McGrew and S. Fluhrer. The security of
the extended codebook (XCB) mode of opera-
tion. Selected Areas of Cryptography (SAC 2007),
LNCS 4876, Springer, pp. 311–327, 2007.

[38] D. McGrew and J. Viega. Arbitrary block length
(ABL) mode: security without data expansion. Sub-
mission to IEEE SISWG. April 15, 2004.

[39] B. Morris, P. Rogaway, and T. Stegers. How to enci-
pher messages on a small domain: deterministic en-
cryption and the Thorp shuffle. Advances in Cryp-
tology – CRYPTO 2009, LNCS 5677, Springer,
pp. 286–302, 2009.

[40] L. Moses and R. Oakford. Tables of Random Per-
mutations. Stanford University Press, 1963.

[41] M. Nandi. Improving upon HCTR and matching at-
tacks for Hash-Counter-Hash approach. Cryptology
ePrint report 2008/090. Feb 28, 2008.

[42] M. Naor and O. Reingold. On the construction of
pseudo-random permutations: Luby-Rackoff revis-
ited. J. of Cryptology, 12(1), pp. 29-66, 1999.

[43] M. Naor and O. Reingold. The NR mode of opera-
tion. Undated manuscript describing the mechanism
of [42].

[44] National Bureau of Standards. FIPS 46. Data En-
cryption Standard. U.S. Dept. of Commerce, 1977.

[45] National Bureau of Standards. FIPS 74. Guidelines
for Implementing and Using the NBS Data Encryp-
tion Standard. U.S. Dept. of Commerce, 1981.

[46] National Bureau of Standards. FIPS 113. Computer
data authentication. U.S. Dept. of Commerce, 1985.

[47] National Institute of Standards. FIPS 197. Spec-
ification for the Advanced Encryption Standard.
U.S. Dept. of Commerce, 2001.

[48] National Institute of Standards. NIST Special Pub.
SP800-38D, Recommendation for block cipher
modes of operation: Galois/Counter Mode (GCM)
and GMAC. Authored by M. Dworkin. 2007.

[49] J. Patarin. Security of random Feistel scheme with
5 or more rounds. Undated manuscript based on
CRYPTO 2004 paper of the same title.

16

[50] J. Patarin. Security of random generic attacks
on Feistel schemes. Cryptology ePrint report
2008/036. Earlier work in ASIACRYPT 2001.

[51] J. Patarin, V. Nachef, and C. Berbain. Generic
attacks on unbalanced Feistel schemes with con-
tracting functions. ASIACRYPT 2006. LNCS 4284,
Springer, pp. 396–411, 2006.

[52] J. Patarin, V. Nachef, and C. Berbain. Generic at-
tacks on unbalanced Feistel schemes with expand-
ing functions. ASIACRYPT 2007. LNCS 4833,
Springer, pp. 325–341, 2007.

[53] S. Patel, Z. Ramzan, and G. Sundaram. Effi-
cient constructions of variable-input-length block
ciphers. Selected Areas in Cryptography (SAC
2004), LNCS 3357, Springer, pp. 326–340, 2005.

[54] Payment Card Industry (PCI) Data Security Stan-
dard: Requirements and Security Assessment Pro-
cedures, version 1.2. October 2008.

[55] E. Petrank and C. Rackoff. CBC MAC for real-time
data sources. J. Cryptology, 13(3), pp. 315–338,
2000.

[56] T. Ristenpart and P. Rogaway. How to enrich the
message space of a cipher. Fast Software Encryp-
tion (FSE 2007), LNCS 4593, Springer, pp. 101-
118, 2007.

[57] R. Rivest, M. Robshaw, and Y. L. Yin. The RC6
block cipher. Manuscript, August 20, 1998.

[58] S. Rudich. Limits on the provable consequences
of one-way functions. Ph.D. Thesis, UC Berkeley,
1989.

[59] P. Sanders. Random permutations on distributed,
external and hierarchical memory. Information Pro-
cessing Letter, 67, pp. 305–309, 1998.

[60] P. Sarkar. Efficient tweakable enciphering schemes
from (block-wise) universal hash functions. Cryp-
tology ePrint report 2008/004. Extends [61].

[61] P. Sarkar. Improving upon the TET mode of oper-
ation. Information Security and Cryptology (ICISC
2007), LNCS 4817, Springer, pp. 180–192, 2007.

[62] P. Sarkar. Tweakable enciphering schemes using
only the encryption function of a block cipher.
Cryptology ePrint report 2009/216.

[63] B. Schneier and J. Kelsey. Unbalanced Feistel
networks and block-cipher design. Fast Software
Encryption (FSE 1996), LNCS 1039, Springer,
pp. 121–144, 1996.

[64] R. Schroeppel. The Hasty Pudding cipher.
Manuscript. AES candidate submitted to NIST.
1998.

[65] R. Schroeppel. Personal communication, approxi-
mately 2001.

[66] J. Smith. The design of Lucifer: a cryptographic de-
vice for data communications. IBM Research Re-
port RC 3326, IBM T.J. Watson Research Center,
Yorktown Heights, New York, USA. April 15, 1971.

[67] D. Socek, H. Kalva, S. Magliveras, O. Marques,
D. Culibrk, and B. Furht. New approaches to en-
cryption and steganography for digital videos. Mul-
timedia Systems, 13, Springer, pp. 191–204, 2007.

[68] T. Spies. Feistel finite set encryption. NIST submis-
sion. February 2008. Evolved into [7].

[69] T. Spies. Personal communications, February 2009.

[70] T. Spies. Format preserving encryption. Manuscript,
www.voltage.com/library.shtml. See also: Format
preserving encryption: www.voltage.com. Database
and Network Journal, Dec. 2008.

[71] E. Thorp. Nonrandom shuffling with applications to
the game of Faro. Journal of the American Statisti-
cal Association, 68, pp. 842–847, 1973.

[72] P. Wang, D. Feng, and W. Wu. HCTR: A variable-
input-length enciphering mode. Information Se-
curity and Cryptology – CISC 05, LNCS 3822,
Springer, pp. 175–188, 2005.

[73] Y. Zheng, T. Matsumoto, and H. Imai. On the con-
struction of block ciphers provably secure and not
relying on any unproved hypotheses. Advances in
Cryptology – CRYPTO ’89, LNCS 435, Springer,
pp. 461–480, 1989.

A Formal Definition

Some of this section is taken from Bellare, Ristenpart, Ro-
gaway, and Stegers [5] (which, in turn, evolved from an
earlier version of this section).

SYNTAX. A scheme for format-preserving encryption
(FPE) is a function E : K × N × T × X → X ∪ {⊥}
where the sets K, N , T , and X are called the key space,
format space, tweak space, and domain, respectively. All
of these sets are nonempty and exclude ⊥. We write
EN,T
K (X) = E(K,N, T,X) for the encryption of X with

respect to key K, format N , and tweak T . We require that
whether or not EN,T

K (X) = ⊥ depends only on N and X ,
not on K or T , and we let XN = {X ∈ X : EN,T

K (X) ∈
X for all (K,T) ∈ K× T } be the N -indexed slice of the
domain. We demand that a point X ∈ X live in at least
one slice, X ∈ XN for some N (if X is in no slice it
should not be included in E’s domain). We demand that
there be finitely many points in each slice, meaning that
XN is finite for all N ∈ N . We require that EN,T

K (·)
be a permutation on XN for any (K,T) ∈ K × T . Its
inverse D : K × N × T × X → X ∪ {⊥} is defined
by DN,T

K (Y) = D(K,N, T, Y) = X if EN,T
K (X) = Y .

17

In summary, an FPE scheme enciphers the points in each
of the (finite) slices XN that collectively comprise its do-
main X .

A practical FPE scheme E: K×N×T ×X → X ∪{⊥}
must be realizable by efficient algorithms: an algorithm E
to encrypt, an algorithmD to decrypt, and an algorithm to
sample uniformly from the key space K. Thus K, N , T ,
and X should consist of strings or points easily encoded
as strings, and the algorithms for E and D should return⊥
when presented a point outside of weK×N×T ×X . We
do not draw any distinction between an integer element
of X , say, and a string that encodes such a point.

Sometimes the format space and/or the tweak space are
trivial, meaning that |N | = 1 or |T | = 1, respectively. In
such cases the format or tweak is irrelevant and we omit
mention of it, writing, for example, EN

K (X), ET
K(X), or

EK(X) for the encryption under a scheme with trivial
tweak space, format space, or both.

THE FORMAT OF A POINT. Let E : K ×N × T × X →
X∪{⊥} be an FPE scheme. Then we can speak of X ∈ X
as having format N if X ∈ XN . One could associate to
E a format function φ: X → P(N) \ {∅} that maps each
X ∈ X to its possible formats; formally, φ(X) = {N ∈
N : X ∈ XN}.

With the definition above, a point may have multiple
formats. Often this will not be the case: each X ∈ X
will belong to exactly one XN . In that case we can regard
the format function as mapping φ: X → N and interpret
φ(X) as the format of X . FPE is somewhat simpler to
understand for such unique-format FPEs: you can exam-
ine an X and know the slice Xφ(X) on which you mean
to encipher it. For a unique format FPE it is fine to write
ETK(X) instead of EN,T

K (X) since N is determined by X .
One interpretation of format function φ is to capture the

partial information about the plaintext that the encryption
is allowed to leak. Ciphertexts are expected to be indis-
tinguishable from one another only when they are distinct
and of a common format.

SPECIFICATIONS. An FPE problem, as needed by
some application, will specify the desired collection of
slices, {XN}N∈N . It will also specify the desired tweak
space T . Typically it is easy to support whatever tweak
space one wants, but it may be quite hard to support a
given collection of slices {XN}N∈N . Indeed it may be
hard to accommodate a single slice, depending on what it
is. We therefore call the collection of slices {XN}N∈N
the specification for an FPE scheme. We will write
X = {XN}N∈N for a specification, only slightly abus-
ing notation because the domain X is the union of slices
in {XN}N∈N . The question confronting the cryptogra-
pher is how to design an FPE scheme with a given speci-
fication. We now provide some example possibilities.

EXAMPLES. (1) AES-128 can be regarded as an FPE

with a single slice, {0, 1}128. The key space is K =
{0, 1}128 and the format space and tweak space are triv-
ial. (2) To encipher 16-digit decimal numbers, take X =
{0, 1, . . . , 9}16 and just the one slice. (3) To encipher
512-byte disk sectors using an 8-byte sector index as the
tweak, let X = {0, 1}4096, T = {0, 1}64, and just the one
slice. (4) To encipher PANs of 12–19 digits with a proper
Luhn checksum, the ciphertext having the same length as
the plaintext, the specification could be X = {XN}N∈N
where N = {12, 13, . . . , 18, 19} and XN is the set of
all strings X ∈ {0, 1, . . . , 9}N satisfying the predicate
LuhnOK(X). Here |XN | = 10N−1. (5) One nice FPE
scheme has slices that are {0, 1}N for each N ≥ 0. It
allows length-preserving encryption of any binary string.
(6) One can imagine doing FPE on rather unusual spaces.
For example, slice XN could encode all N -vertex graphs,
or XN could be all valid C programs on N bytes. Design-
ing an efficient FPE for the last example might well be
impossible.

INTEGER FPES. All of the examples just given were
unique-format FPEs. The following example is not. The
slices are XN = ZN for N ∈ N ⊆ N. This allows en-
ciphering natural numbers with respect to any permitted
modulus N . We call such schemes integer FPEs.

STRING FPES. Here is another useful FPE, this one a
unique-format FPE. The slices are XN = ΣN for N ∈
N ⊆ N and Σ an arbitrary (finite, nonempty) alphabet.
This allows enciphering strings of permitted lengths over
desired alphabets. We call such schemes string FPEs.

SECURITY. Let E: K×N×T ×X → X ∪{⊥} be an FPE
scheme. Let A be an algorithm with access to two oracles.
Then we define A’s advantage (or, more specifically, its
strong PRP advantage) Adv±prp

E (A) as the real number

Pr[AEK(·,·,·),DK(·,·,·)⇒ 1]− Pr[Aπ(·,·,·),π−1(·,·,·)⇒ 1]

where the oracles that superscript A have the following
behavior. In the experiment underlying the first addend
we choose a random K

$←K and then provide the adver-
sary oracles for EK(·, ·, ·) and DK(·, ·, ·). In the experi-
ment underlying the second addend we let π be chosen
uniformly among all functions π(N,T,X) that, for each
format N ∈ N and each tweak T ∈ T , π(N,T, ·) is
a permutation on XN . We let π−1 be this function’s in-
verse. Extend both maps to return ⊥ on strings outside
of N × T × X . Now provide the adversary with the pair
oracles π, π−1.

The definition just given generalizes prior (strong-
PRP) notions for the security of blockciphers, wide-
blocksize blockciphers, VIL (variable-input length) enci-
phering scheme, and schemes that encrypt on “unusual”
spaces of strings. The definition may seem a bit abstract,
but it may help to bring out the essential commonality of
all the problems just named.

18

