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Abstract

Assume we have a network of three or more players, each player in possession of some

private input. The players want to compute some function of these private inputs, but in a

way which protects the privacy of each participant's contribution. Not all of the players can

be trusted to do as they are instructed. The resources the players are given to accomplish

their goal are communication|the ability to privately send messages to one another, or to

broadcast messages to the community as a whole|and local computation.

Many insightful protocols have been proposed for solving this problem of multiparty

secure function evaluation. Building on Yao's protocol for the case of two players [Ya86],

Goldreich, Micali and Wigderson [GMW87] o�ered the �rst general protocol for this prob-

lem, and they provided the paradigm on which a large body of successive work was based.

Despite enormous progress, research on secure function evaluation has su�ered from

some serious shortcomings. First, though many protocols have been devised for solving the

problem, what, exactly, these protocols accomplish has not been fully understood. In fact,

no rigorously speci�ed and generally accepted de�nitions have been proposed in this �eld.

Second, protocols for multiparty secure function evaluation could be extremely ineÆcient,

the main cause being that they required an unbounded (and usually large) number of

communication rounds.

We address both of these points, carefully crafting de�nitions which satisfactorily deal

with the myriad of issues lurking here, and o�ering a new protocol for multiparty secure

function evaluation|one which categorically improves the complexity requirements for this

task. The new protocol completely divorces the computational complexity of the function

being collaboratively computed from the round complexity of the protocol that evaluates

it. Using this approach, we show that a rigorously-speci�ed and extremely strong notion

of secure function evaluation can be achieved by a protocol which requires only a �xed

constant number of rounds of interaction. This result assumes only the existence of a

one-way function and that the majority of the participants to the protocol behave correctly.

Thesis Supervisor: Silvio Micali.

Title: Professor of Electrical Engineering and Computer Science.
Keywords: computer security, cryptography, distributed computing, secure protocols.
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C h a p t e r 1

Introduction

This thesis is concerned with doing correct computation in ways that preserve people's

privacy. We begin with some motivating examples.

1.1 Examples of Protocol Problems

Millionaires problem (Yao, [Ya82a]). Two millionaires wish to �nd out who is richer, though

neither is willing to reveal the extent of his fortune. Can they carry out a conversation which

identi�es the richer millionaire, but doesn't divulge additional information about either's

wealth?

Coin ipping problem (Blum, [Bl82]). How can Alice and Bob, speaking to one another

over the telephone, agree on a random, unbiased coin ip|even if one of them cheats to

try to produce a coin ip of a certain outcome?

Oblivious transfer problem (Rabin, [Ra81]). Is it possible for Alice to send to Bob a com-

posite number n in such a way that, half the time, Bob gets just n, while, the other half of

the time, Bob gets n together with a factorization of n? Alice should have no idea which

of these two possibilities has occurred.

Mental poker problem (Shamir, Rivest and Adleman, [SRA81]). A group of cryptographers

want to play a game of poker|over the telephone. The stakes are high, so Alice becomes

uneasy when Bob begins, \Alright, Alice, I've just shu�ed a deck of cards|really I have|

and now I'm dealing you your hand. You've got a 3~, a 10�, a 7}, a J|, and a 5| : : :"

Digital voting problem (Benaloh and Fisher, [BF85]). Is it possible for a group of computer

users to hold a fair election on a computer network? The election should enforce the

\one-man, one-vote" constraint, and should respect the privacy of each participant's vote,

revealing only the correctly computed tally.

11
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OÆce assignment problem (Disgruntled sta�, [MIT]). The n graduate students are thrown

into disarray when suddenly told that they should pair themselves o� into n=2 two-person

oÆces. (Assume n is even.) Each student i has a list of ilikej-values specifying his will-

ingness to share an oÆce with each other student j. The students want their preferences

taken into account, despite the fact that it would be more than a bit tactless for students to

publish these lists! The students agree that the quality of a room assignmentM , considered

as a partition of the students into n=2 two-elements subsets, is reasonably well measured by

wM =
P
fi;jg2M min

�
ilikej;

jlikei
	
: Now all the students want to do is to collaboratively

compute an M that maximizes the value wM while simultaneously respecting the privacy

of their individual ilikej values : : :

1.2 Secure Protocols

The problems above illustrate several variations in the goals one may have for carrying

out a collaborative computation in a privacy-preserving manner. The following possibilities

should be singled out: There may be two parties or there may be many. The result of the

computation might be a single value, known to all players, or it might be a private value for

each player. What is being collaboratively computed may be a computationally simple task

or a computationally intensive one. What is being collaboratively computed may depend

deterministically on the each player's initial state, or it may depend only probabilistically

on this. And the problem being solved might naturally be considered as a function, or|

following the notion of Goldreich, Micali and Wigderson [GMW87]|it may be something

which is not naturally considered as computing a function, a more \game-like" problem.1

The general notion of a secure protocol encompasses all of these possibilities. Each

participant is willing to divulge some information pertaining to his own initial state in

exchange for learning some information inuenced by other participants' initial states. A

player's willingness to participate in the protocol is based on the promise that the protocol

will not only correctly compute what it is supposed to compute, but it will also protect the

privacy of each player's own contribution. We shall take seriously the notion that the job

of the cryptographer is both to make good on this promise, and to precisely elucidate its

meaning. We will do this in the general setting which we now describe.

1[GMW87] uses the phrase \playing a mental game" to describe the problem of implementing on a

communication network an n-party game of partial information|without recourse to a trusted party. This

is the problem of allowing a progression in time of states of a system, certain aspects of each state known to

various players, other aspects of the current state known to no one. In this viewpoint, computing a function

by executing a Turing machine computation on inputs held by the various players is just one simple type of

game that a group of players may wish to play.
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1.3 Secure Function Evaluation

Of the various \types" of secure protocols exempli�ed by our sample problems, we will

limit our discussion in this thesis to multiparty secure function evaluations. Informally, we

have n � 3 parties, 1; : : : ; n. Each party i has a private input, xi, known only to him.

The parties want to correctly evaluate some function f on their private inputs|that is, to

compute y = f(x1; : : : ; xn)|while maintaining the privacy of their own individual inputs.

That is, they want to compute y without revealing more about their inputs than this value

implicitly reveals. The players task of securely computing the function is made particularly

diÆcult by the presence of bad players, who may do their utmost to compromise a good

player's privacy or disrupt the correctness of the collaborative computation.

An enormous variety of computational tasks that one might wish to perform in a privacy-

preserving manner can naturally be expressed as multiparty function evaluations. Still, we

note that a multiparty secure function evaluation specializes the general notion of a secure

protocol in two ways: by insisting that there be three or more players; and by demanding

that what the players are trying to do is to compute some (deterministic) function. From

our initial list of examples, the digital voting problem and the oÆce assignment problem

are multiparty secure function evaluations, while the remaining problems are not.

There is good reason to limit our discussions to multiparty secure function evaluations.

As to our insistence on there being three or more players, it turns out that what is achiev-

able in the two-party case and what is achievable in the multiparty case are qualitatively

very di�erent. In fact, for achieving the strongest notion of security, one needs to have

three or more participants.2 As to excluding \game-like" computations, this simpli�es our

exposition, distilling the \core" of the problem of secure protocols without the extraneous

complications.

1.4 The Accomplishments of a Decade

It is one of the major triumphs of modern cryptography that the idea of performing secure

function evaluation has not only been conceived, but, also, protocols have been o�ered for

this ambitious goal. Let us review some of the most important advances.

Two party computation. The consideration of the millionaires problem, the coin ip-

ping problem, the oblivious transfer problem, the mental poker problem, and other speci�c

2Intuitively, when two parties communicate with one another over a clear communication channel, every-

thing each player sends out to the other player is known by every player in the system. This \symmetry"

means that there is no \partial knowledge" that can be exploited for the design of clever protocols, and,

consequently, severely limits what can be securely computed by two parties communicating over a clear

channel.
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computational problems led to Yao's recognizing that there is a general problem to be solved

here|the problem of secure function evaluation for two or many players [Ya82a].

The task of devising a protocol to securely evaluate an arbitrary function seemed enor-

mous. But in 1986, Yao proposed a protocol for exactly that, for the special case of n = 2

parties, under a speci�c cryptographic assumption (that factoring is hard). Yao's proto-

col made important use of the oblivious transfer primitive [Ra81], and it inaugurated the

\garbled circuit" approach, which will be crucial for us.

Secure two-party computation has been investigated extensively by Kilian [Ki89]. He

o�ers a protocol for secure two-party computation and proves precise claims about its prop-

erties. Instead of making a number theoretic assumption, Kilian achieves his results under

a model of computation which supports a simple abstract primitive|oblivious transfer.

In a two-party computation, if one of the parties stops speaking before the protocol

is speci�ed to end, we would like that he does not for his silence earn an unfair informa-

tion advantage over the other party. Yao �rst brought to light this consideration [Ya86].

Strengthening what a two-party computation should accomplish to be called \secure," Gold-

wasser and Levin investigate just how fair a two-party computation can be, and they show

how to achieve such a high standard of fairness [GL90]. Their ideas are not only applicable

to two-party computation, but to multiparty computation when half or more of the players

are bad.

Multiparty computation. In 1987, Goldreich, Micali andWigderson proposed a protocol

for solving the problem of multiparty secure function evaluation, and problems even more

general than that [GMW87]. Their protocol was designed to overcome the inuence of bad

players, as long as they were in the minority. Signi�cantly, it provided the paradigm on

which successive solutions were based, a paradigm which is described Section 3.1.

The protocol of Goldreich, Micali and Wigderson, as with Yao's protocol, requires a

complexity-theoretic assumption (a trapdoor permutation, say). The assumption is used

in several places: to provide for private communication between pairs of players; to permit

oblivious transfer between pairs of players; and to implement the \garbled circuit" computa-

tion of Yao's two-party protocol. In 1988, several workers managed to banish the complexity

assumption of the [GMW87] protocol by positing a richer communication model, in which

private communication was provided for by the model itself. Under this richer model of

computation, Ben-Or, Goldwasser and Wigderson [BGW88], and Chaum, Cr�epeau and

Damg�ard [CCD88] proposed multiparty protocols which made no cryptographic assump-

tions and were designed to overcome the inuence of bad players, as long as they constituted

fewer than a third of all of the players.

Besides achieving error-free secure distributed computation, the protocol of [BGW88]

demonstrated the power of the arithmetization of Boolean computation|the power of work-

ing over a �nite �eld, instead of the Boolean domain, and exploiting its algebraic structure.

It inaugurated the use of error correcting codes in this context. The arithmetization of
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Boolean computation has subsequently proven important in a variety of contexts.

Extending the protocols above. The fault tolerance of the [BGW88] and [CCD88]

protocols was subsequently improved.3 Through the development of a new veri�able secret

sharing scheme, Rabin and Ben-Or [RB89] managed to match the fault-tolerance of the

[GMW87] protocol under the communication model providing both broadcast and pairwise

private communication.

The paper of Galil, Haber and Yung [GHY87], among other contributions, made several

improvements to the [GMW87] protocol, one idea from which we will make use of; see

Section 3.1.

Work which made the protocols above possible. A large number of ideas had to

be in place before the protocols above could be conceived. These ideas include the notion

of secret sharing and veri�able secret sharing [Sh79, CGMA85], oblivious transfer [Ra81],

probabilistic encryption [GM84], zero-knowledge proofs [GMR85, GMW86], and the slow

revelation of a secret [Bl82, LMR83, BG89].

1.5 Limitations of Earlier Work

Limitations on definitions. The papers of the last subsection describe protocols. It is

clear that these protocols have some remarkable properties. Of course the various authors

have worked to describe what these properties are, o�ering de�nitions, to varying degrees

of explicitness. But, in our view, no one succeeded in devising satisfactory de�nitions for

the general problem at hand.

Not having satisfactory de�nitions for secure protocols is a major problem. Cryptogra-

phers have seen, in contexts like digital signatures, how a lack of well-planned de�nitions

can lead them astray.4 Without good de�nitions, there are no proofs, there can be no full

understanding of the problem, and, eventually, no one understands what anything really

means.

For secure function evaluation, de�nitions must be crafted with extreme care. Otherwise,

they are likely to admit as \secure protocols" some protocols which we would like not to

have this status; or they may exclude as being \secure" protocols which ought to be called

secure; or protocols which achieve the de�nitions may fail to provably have properties one

would expect a secure protocol to enjoy; or the de�nitions may not capture the appropriate

intuition; or they may be too complicated to understand; and so forth.

3For error-free secure computation, the fault tolerance achieved by the [BGW88] protocol is, in fact,

already optimal.
4Central contributions in getting this notion straight were due to DiÆe and Hellman [DH76], Goldwasser,

Micali and Yao [GMY83], and, �nally, to Goldwasser, Micali, and Rivest [GMR88]. The notion of digital

signatures is now well understood.
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Thus |as I see it| a large body of beautiful notions and protocols has sat atop rather

murky foundations. As a consequence of the lack of agreement on de�nitions, the protocols

which were o�ered were to a large extent o�ered without proof that they accomplished any

rigorously-speci�ed set of goals.

Limitations on the protocols. There was another problem as well: all of the multiparty

protocols which had been devised were computationally infeasible. To a large extent, this

was because each minute step of the computation the players were interested in carrying

out would manifest itself as additional communication rounds between the players. This

is a serious problem, because in a network of communicating parties, such back-and-forth

communication is usually the most costly resource.

1.6 Contributions of this Thesis

This thesis makes three contributions in the design and understanding of secure protocols.

� First, we de�ne the notion of secure function evaluation, in detail and with care never

before attempted. The de�nitions given in this thesis are for secure function evaluation

under the communication model that players may speak privately to one another in pairs,

or they may broadcast messages to everyone. More general notions in the same spirit as ours

will be described in [MR91]. It should be emphasized again that achieving good de�nitions

in this domain is a very tricky matter; it is here that the most delicate issues arise, and,

indeed, the de�nitions given here is a part of de�nitional work nearly two years in the

making.

� Second, we o�er a new protocol for multiparty secure function evaluation. This protocol

has a major advantage over all previous protocols: it runs fast, in the sense of requiring little

back-and-forth communication among the players. In fact, the protocol uses just a (�xed)

constant number of rounds. This independence of the round complexity of the protocol

from the computational complexity of the underlying function being evaluated is in sharp

contrast with previous protocols, which used a number of rounds which grew directly with

the circuit complexity of the function being evaluated. Not only does reducing the rounds

to a constant amount to overcoming the main barrier to making secure protocols practical,

but it also provides a key insight about the problem itself. Additionally, the new protocol

is easier to analyze and make provable assertions about than previous complexity-theoretic

proposals.

� Third, we prove that the formal notion of secure computation described is in fact achieved

by the protocol presented, under the sole assumption of the existence of a one-way function,

and that the majority of the players behave honestly. The later assumption is not really

a limitation, but a necessary consequence of the \strong" notion of security which our
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de�nitions are designed to capture.5 To prove our protocol secure, we assume the correctness

of some previous work on secure multiparty function evaluation. What exactly is assumed

and what is achieved is stated precisely as Theorem 4.1.1, and Theorems 4.3.1 and 4.4.1,

respectively.

Taken together, this research puts secure function evaluation on much �rmer footing, and

provides direction for the continued development of the area.

1.7 Related Work

Concurrent with the de�nitional work of Kilian, Micali and Rogaway [KMR90], Gold-

wasser and Levin independently proposed interesting de�nitions for secure function evalu-

ation [GL90]. It is early to assess how their de�nitions compare with ours.

Early in our research we shared de�nitional ideas with Beaver, who later pursued his

own ones in [Be91].

1.8 Organization and History of Thesis Results.

Organization of thesis results. Paralleling the three contributions of Section 1:6,

the notion of security is described in Chapter 2; the constant-round protocol is given in

Chapter 3; and the proof that it is indeed a secure protocol is given in Chapter 4.

Publication history of thesis results. The de�nitions of Chapter 2 are a special

case of notions developed by Micali and Rogaway. An extensive paper investigating these

notions is currently undergoing revision [MR91].

At an earlier stage of this research, Micali and Rogaway collaborated with Kilian in

developing de�nitions for secure function evaluation. The fruits of this collaboration are de-

scribed in [KMR90]. The de�nitions o�ered here are more stringent than those of [KMR90],

attempting to capture elements of the \ideal evaluation" of a function which this earlier work

did not attempt to capture. (See Section 2.4.1 for an explanation of the ideal evaluation of

a function f .)

5Intuitively, when half or more of the players may cheat, certain functions can be computed \more and

more correctly" only as you spend \more and more time trying to compute them." There is never a point

in time in which the function is computed \totally correctly." Since we want a strong notion of security,

in which our protocols should stop, at some �xed point in time, with everyone knowing exactly what they

should know, we are forced to accept that there should be fewer than half faulty players.

The �rst protocol to show how time spent interacting could be traded for increased correctness was due to

Luby, Micali and Racko� [LMR83], in the context of the coin ipping problem. Indeed it is necessary to pay

for correctness with time for the coin ipping problem, as demonstrated by Cleve [Cl85]. Goldwasser and

Levin, following Beaver and Goldwasser, have investigated just how strong a notion of security is achievable

when there is a dishonest majority [BG89, GL90].



18

The constant-round protocol of Chapter 3 was developed jointly with Micali. Having

heard from Beaver that he too had developed these same results, we thought it �t to produce

a jointly authored proceedings version. However, written documentation subsequently pro-

vided to us by Beaver was only mildly related to our constant round-protocol [Be88b]. What

we describe in Chapter 3 is a revised and simpli�ed version of the protocol in [BMR90].

The contents of Chapter 4|the proof of security of the constant-round protocol|has

not appeared elsewhere.



C h a p t e r 2

The Notion of Secure Computation

To a cryptographer, security means defeating an adversary. The stronger the adversary

that can be defeated, the more secure the cryptosystem. Thus cryptographers try to dream

up nastier and nastier adversaries, and then prove (sometimes under various assumptions)

that these very strong adversaries are harmless nonetheless.

In each context, one must carefully de�ne what the adversary can do, and in what sense

the adversary is rendered powerless.

In this chapter, we carefully do this, in the context of secure function evaluation. We

begin with a brief overview of our goal.

2.1 Overview

For secure function evaluation, achieving security means overcoming the inuence of those

who would try to compromise a player's privacy or disrupt the integrity of the collaborative

computation. The stronger this adversary, the more diÆcult to overcome the e�ect of her

activities, and the more meaningful the resulting notion of security. Specifying what a

protocol we call secure must accomplish consists of specifying the abilities of the protocol's

participants, specifying the abilities of the adversary, and saying in what sense the adversary

is rendered harmless.

Powerful adversaries. The adversary we will consider will be extremely strong|the

strongest \reasonable" adversary we can postulate. Roughly, the adversary is able to corrupt

players at any time she wishes. When a player is corrupted, the adversary learns the state of

the player at the time at which he was corrupted, and all future computation the corrupted

player was responsible for is now controlled by the adversary. E�ectively, the player has

been turned into the adversary's loyal agent. To give our adversaries even more power,

19
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we assert that even though our protocols are synchronous (communication occurs in �xed

increments of rounds), the adversary is granted a certain amount of asynchrony in her ability

to corrupt players.1 The only restrictions placed on the adversary is that there may be a

bound on the number of players whom she is able to corrupt, and (for complexity-theoretic

security) her local computation time must be \reasonable."

Regarding an adversary as a single agent, rather than many, makes the resulting notion of

an adversary stronger, e�ectively permitting a maximal degree of surreptitious cooperation

among the maliciously faulty participants to a protocol.

Defeating an adversary. To develop the notion of what it should mean to defeat such

an adversary, we imagine an ideal protocol, in which computation is carried out by some

external, trusted party. Privacy and correctness are non-issues in this scenario because the

model provides for correct and private computation. Defeating an adversary ought to mean

that the computation carried out by the protocol under attack by the adversary mimics the

computation by the ideal protocol under attack by the adversary as closely as possible. In

other words, a secure protocol succeeds in simulating the existence of an external trusted

party, while actually trusting no one.

Making this precise entails specifying in what sense the computation of a secure protocol

is \just like" the computation of the function by a trusted party. A secure protocol should

be \just as private" and \just as correct" as with a trusted party. To de�ne privacy, we

choose a simulation-based viewpoint, motivated by Goldwasser, Micali and Racko�'s ideas

developed in the context of zero-knowledge proof systems [GMR85]. Basically, a protocol

is deemed private if for any adversary, what she learns when executing with a protocol is

nothing but a sample point of a distribution which she is entitled to sample. Correctness

is then \interwoven" into the notion of privacy: the simulator existentially guaranteed for

privacy is the principal object through which correctness is de�ned. We do this in a manner

which preserves the idea present in the ideal protocol of sending a value o� to the external

trusted party, and then each player|even the bad players|getting (the right) value back

from this agent.

Getting the notions right. In the context of secure protocols, \getting the notions

right" is extremely delicate. De�nitional issues are tricky both because of the inherent

complexity of the setting (a distributed protocol under attack by a powerful adversary is

a complicated object!), and because of the severity of the constraints one wants to put on

the behavior of the protocol in the presence of the adversary (that is, one wants to ensure

1In particular, we permit rushing|the ability of the adversary to corrupt a player at the end of round r

and use this information to decide on additional players to corrupt during round r. Information gleaned

from these players may in turn motivate additional corruptions, and so forth, until the adversary is done

corrupting players for now. Then the outgoing messages are constructed and sent out on behalf of the

corrupted players. All of these activities are completed before the beginning of round r + 1.



21

the highest possible standard for correctness as well as for privacy). Too weak a notion of

security and \secure protocols" begin to pop into existence that one would not like to call

secure; too strong a notion and \secure protocols" virtually drop out of existence.

Besides achieving the right balance between de�nitions which are too strong and too

weak, there are a host of other issues in the crafting of good de�nitions. For example,

composability and reducibility properties are important. Uniformly being able to treat

complexity-theoretic security and information-theoretic security is desirable. Simplicity is

very important. Model independence. And there are many other concerns. Successful

de�nitional work re�nes one's intuition about security, protocols, and adversaries, leading

to substantially improved understanding.

2.2 Preliminaries

Before specifying what it means that our adversary \learns nothing," and that our protocol

\computes something," we must introduce some basic language to talk about these things.

Some of this is standard, but much has been tailored to our speci�c goal of de�ning secure

computation.

2.2.1 Notation

Sets, strings, languages, and functions. An alphabet is a �nite set. Fix the alpha-

bet � = f0; 1g. For b 2 �, we call b a bit and we let b denote its complement. A string

is a �nite sequence of characters from some alphabet, and an in�nite string is an in�nite

sequence of characters over some alphabet. A language is a set of strings.

If A is a set, then An denotes the set which is the n-wise Cartesian product of A

with itself. Thus �n is the language of strings of length n over alphabet �, and we let

�� =
S
n �

n denote the set of all strings over �. We let �! denote the set of in�nite strings

over alphabet �. The empty string (i.e., the length-0 sequence of characters) is denoted

by �. For A a set, �x the convention that A0 is the singleton language f�g. The notation

1n represents n written in unary. If we write x 2 �� where x is apparently not composed

of characters of the alphabet � (e.g., x = 11]0 ), then it is understood that the string x is

encoded over � in some natural manner. If A is a set, 2A is the set of all subsets of A.

If x and y are strings, xy denotes their concatenation. If x = a1 � � � an is a string, ai 2 �,

then x[i : j] (where i � j) is the substring ai � � � aj . If x = a1 � � � an is a string, ai 2 �, then

lsb(x) = an. For x; y 2 ��, jxj = jyj, x�y is the bitwise exclusive-or (XOR) of these strings.

The NAND operator on bits give the negation of their conjunct.

When a symbol denotes a string or an in�nite string, use of the same symbol with

a subscript denotes the indicated character. This convention holds even if the symbol

denoting the string already bears a subscript. For example, if ri is a string or an in�nite

string, then ri1 is the �rst character of ri.
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The set of nonnegative integers is denoted N = f0; 1; 2; : : :g, and R is the set of real

numbers. If a and b are integers, a � b, we let [a::b] denote the set of integers between

a and b, inclusive. By [a::1) we denote the set of all integers greater than or equal to a,

and by [a::1] we denote the set of all integers greater than or equal to a, together with a

point \1". This set is ordered in the natural way, with all numbers n <1. For A and B

ordered sets, the set A�B is ordered according to (a; b) < (a0; b0) if either a < a0 or a = a0

and b < b0.

If A and B are sets, A�B denotes the elements of A which are not in B.

For f : A ! B a function, f is automatically extended to a function on subsets of A

according to f(X) = ff(x): x 2 Xg. For f : A! B a function, f�1(y) = fx : f(x) = yg.

Vectors. As usual, we denote a vector by a letter topped with an arrow symbol, \~".

The same letter without the arrow but with a subscript denotes the indicated component.

For example, if ~x is a vector, xi is its i
th component. An n-vector ~x has n components,

x1; : : : ; xn. If ~x and ~y are n-vectors, ~x~y denotes the n-vector whose ith component is xiyi.

Fix n, and let T � [1::n]. Then we write T for [1::n] � T . If ~x is an n-vector and

T � [1::n], we de�ne the tagged vector xT = f(i; xi): i 2 Tg. (That is, xT keeps track of

the indices as well as the values.) If ~x and ~x0 are n-vectors and T � [1::n], then xT [ x
0
T

can be regarded as an n-vector ~y where yi = x0i if i 2 T and yi = xi otherwise.

For f : (�`)n ! (�l)n and T � [1::n], fT (~x) is the function de�ned by fT (~x) = (f(~x))T .

(That is, fT (~x) is the tagged T -coordinates of the image of ~x under f .)

Probability. All probability spaces we will be concerned with have underlying set 
 = ��,

and �-�eld 2�
�

. Thus we won't distinguish between a probability space and the probability

measure of a space. Our probability measures will all have �nite support (i.e., the measure

is nonzero only on �nitely many points). The probability of an event E � �� with respect

to some measure � is written Prob� [E], or simply Prob [E] when the measure � is under-

stood. If E is an event of some probability space, E is the event which is the set-theoretic

complement of E in the underlying set.

A random variable is any function (not necessarily real-valued) on the underlying set of

a probability space. The expectation of a real-valued random variable X is denoted EX.

By Uk we denote the uniform distribution on �k, that is, Uk is the probability measure

which assigns mass 2�k to each string of length k, and assigns mass 0 to all other strings.

2.2.2 Basic Notions

This subsection de�nes some notions fundamental for stating our results: these are the

notions of function families, circuits, negligibility, and ensembles.

Function families. A �nite function is a map fn`l : (�
`)n ! (�l)n, or a map fn`l :

(�`)n ! �l. The former is a vector-valued �nite function, while the later is a string-valued
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�nite function.

Since we are devising de�nitions tailored for distributed computation by three or more

parties, we consider families of functions, each a function of three or more strings. Suppose

L � ��, with each c 2 L specifying values nc � 3, `c; lc � 0, in some natural manner. Let

f = ffcg be a collection of functions, one for each c 2 L. If each fc is a vector-valued �nite

function fc : (�
`c)nc ! (�lc)nc , we say that f is a vector-valued function family; if each fc

is a string-valued �nite function fc : (�
`c)nc ! �lc , we say that f is a string-valued function

family; in either of the above two cases we say that f is a function family.

Circuits. A circuit C is a computing device specialized for computing a function from

a �xed number of bits to a �xed number of bits. It is a (�nite) labeled directed acyclic

graph. Each node is labeled by a symmetric Boolean operator drawn from some �xed set

of Boolean operators, such as AND, OR, XOR, and their negations. Input nodes (those

with in-degree zero) are labeled x1; : : : ; xi, and output nodes (those with out-degree zero)

are labeled y1; : : : ; yo.

Circuits provide a convenient encoding for �nite functions. A circuit C on i inputs

and o outputs computes a function C: �i ! �o in the natural way. For i = n`, o = nl, C

can be regarded as computing a vector-valued �nite function C : (�`)n ! (�l)n. For i = n`,

o = l, C can be regarded as computing a string-valued �nite function C : (�`)n ! �l.

If C is a circuit, then jCj is its size|the number of gates in C plus the number of wires

in C, say|and depth(C) is its depth|the length of a longest path from an input node to

an output node. If C is a circuit, we also write C to denote a string describing it in some

standard encoding.

What is fast? We adopt the notion that the polynomiality of an algorithm captures its

running in a \reasonable" amount of time. In this thesis, \polynomial" will always mean a

nonnegative-valued polynomial in a single variable.

It will be convenient for us to speak of the time complexity of algorithms which have

in�nite strings as inputs. To allow such discourse, we always measure the time complexity of

a function in terms of the length of its �rst argument, and we assume that each argument to

an algorithm can be eÆciently scanned from left to right. More precisely, let x1; x2; : : : ; xm

be �nite or in�nite strings, the �rst of which is a �nite string. We say that a string-valued

functionM on such tuples of strings (x1; : : : ; xm) is polynomial-time computable if there ex-

ists a polynomial Q and a Turing machineM , havingm input tapes, such thatM computes

M(x1; x2; : : : ; xm) within Q(jx1j)-time steps when M is begun in its initial con�guration

with its ith input tape initialized to the string xi.

What is small? We will say that a function � : N �! R is negligible if it is nonnegative

and vanishes faster than the inverse of any polynomial: for any c > 0 there exists a K 2 N

such that �(k) � k�c for all k � K. A function �(k) which is not negligible is called

nonnegligible.
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There is, of course, some arbitrariness in this notion of negligibility. An alternative

advocated by Levin (e.g., [Le85]) says that a function is negligible if it vanishes faster than

the inverse of any function in some �xed resource class R, where R is required to satisfy

certain properties. Fortunately, the notions we develop here are essentially independent of

the particular de�nition selected for negligibility.

2.2.3 Indistinguishability of Ensembles

A central notion in de�ning secure protocols is indistinguishability, as introduced by [GM84]

in the context of encryption. (The notion has also proven crucial for the complexity theoretic

treatment of pseudorandom generation [Ya82b] and for zero-knowledge proofs [GMR85].)

Essentially, it captures the fact that two families of probability spaces can be (asymptoti-

cally) so close as to be considered insigni�cantly di�erent. To say this exactly requires some

specialized language|the notion of a distinguisher and of a probability ensemble. The

reader who wishes a bit more discussion about this notion may consult [GMR85] (pages

191-193).

Distinguishers. A distinguisher is our formalization of a \judge" who votes to decide

among two competing alternatives. As will be discussed shortly, our notion of a distinguisher

is a \nonuniform" one.

A distinguisher Da is an (always halting) probabilistic algorithm, D, together with an

in�nite \advice" string, a. The algorithm D takes one or more (possibly in�nite) strings,

x1; x2; : : :, and uses its in�nite sequence of random bits, rD, and its in�nite string, a, to

compute a value D(x1; x2; : : : ; a; rD) 2 f0; 1g. A distinguisher Da is polynomial-time if D

is polynomial-time. (Recall that this means polynomial-time in the length of the �rst

argument.)

Ensembles. If L = fLk : k 2Ng is a family of languages, then an ensemble E (over L) is a

collection of probability measures on ��, one for each (k; !) 2 N�Lk; that is, E = fEk(!) :

k 2 N; ! 2 Lkg. The argument k is called the index of the ensemble E, the argument ! is

called the parameter of E, and L is called the parameter set of E. As the index k is always

drawn from the index set N, we never specify it, writing E = fEk(!): ! 2 Lkg to indicate

an ensemble over L. When the parameter set of an ensemble is understood and there is

no danger of confusion, we refer to an ensemble by writing the symbol \E" in front of its

\generic element"|that is, we simply write EEk(!) instead of fEk(!): ! 2 Lkg.

The above notion of an ensemble applies only to distributions on strings. However, the

notion is trivially extended to any other domain whose elements can be canonically encoded

as strings. We will thus speak of ensembles on other domains, where it is understood that

there is, implicitly, a �xed encoding of domain points into strings.

If E and E0 are probability ensembles over a common parameter set L = fLkg, then

E � E0 is an ensemble over L, where points in �� encode pairs of points in �� by some
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�xed, natural encoding. This ensemble is de�ned by asserting that Prob(E�E0)k(!)[(x; x
0)] =

ProbEk(!)[x] � ProbE0k(!)[x
0]. The notion generalizes in the obvious way to arbitrary �nite

products. The notation En denotes an ensemble which is the n-wise product of E with

itself.

If f : �� ! �� is a function on strings and E is an ensemble, then f(E) is an ensemble

in the natural way, with Prob(f(E))k(!)[x] = ProbEk(!)[f
�1(x)].

If EEk(!) is an ensemble and A = fAk � ��g is a family of events, we say that A occurs

almost certainly if �(k) = sup!2Lk ProbEk(!)[Ak] is negligible.

Sometimes a simpler notion of an ensemble will do, ensembles which have no param-

eter !. In this case, EEk is simply an N-indexed family of probability measures on ��,

and all subsequent de�nitions are made meaningful by interpreting the parameter set of the

ensemble to be a collection of singleton languages.

As an example of an unparameterized ensemble, EUk is the ensemble of uniform dis-

tributions on k-bit strings. As an example of a parameterized ensemble, �x c and de�ne

Ek(x1 � � � xkc) (for jxij = 1) as the distribution on tuples (n;X1; � � � ; Xkc) given by �rst

selecting n to be the product of two random k-bit primes, then selecting Xi to be a random

residue modulo n if xi = 0, and selecting Xi to be a random nonresidue modulo n of Jacobi

symbol +1 if xi = 1. Then EEk(x) is an interesting ensemble over fLk = �kcg.

Computational indistinguishability. We now specify what it means for two ensembles

to be indistinguishable to an observer with bounded computational resources.

De�nition 2.2.1 Let E and E0 be ensembles. We say that E and E0 are computationally

indistinguishable, writtenE � E0, if the ensembles are over the same parameter set L = fLkg,

and for every polynomial-time distinguisher Da

�(k) = sup
!2Lk

���ED(1k; Ek(!); !; a)�ED(1k; E0
k(!); !; a)

���
is negligible.

When we wish to emphasize the sequence of languages fLkg which parameterizes the en-

sembles E and E0 we write E
Lk
� E0. Two ensembles over the same parameter set L which

are not computationally indistinguishable are called computationally distinguishable. This

is written E 6� E0.

The notion we have de�ned for computational indistinguishability is a nonuniform

notion|possibly, the ensembles appear di�erent to the resource-bounded judge only by

virtue of the advice string a. Nonuniform notions of indistinguishability have more com-

monly been de�ned by polynomial-size circuit families. We �nd the phrasing above more

convenient, because it is more natural for an in�nite string to be an input to an algorithm

than to a circuit.
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Uniform notions of computational indistinguishability|where the distinguisher does not

have bene�t of the advice a|are also possible. In fact, all results of this thesis hold equally

in the uniform model. However, for economy of notions, we choose to describe only the

nonuniform notion of security. Some reasons for favoring the nonuniform notion of security

over its uniform counterpart are given in Section 2.3.3.

� We remark that the following two variations of the concept of indistinguishability are

possible without a�ecting which pairs of ensembles are indistinguishable and which are

not. First, the distinguisher need not be probabilistic: the advice a can always be used to

specify a \good" set of coin ips to use. Second, instead of saying that a single in�nite

advice string a is associated to the algorithm D, we could instead associate an advice string

for each value k. To distinguish Ek(!) from E0
k(!), the distinguishing algorithm D would

be given 1k, the sample point, the parameter !, and ak. To see that this \k-dependent

advice" does not improve one's ability to distinguish ensembles, note that, by the standard

diagonalization method, an in�nite sequence of in�nite advice strings fakg can be encoded

into a single in�nite advice string a in such a way that the overhead to read a bit ak[i] from

the advice string a which encodes it is only quadratic in k and i.

Statistical indistinguishability. We de�ne a stronger notion of indistinguishability,

one that does not depend on the resource bounds of the observer.

De�nition 2.2.2 Let E and E0 be ensembles. We say that E and E0 are statistically

indistinguishable, writtenE ' E0, if the ensembles are over the same parameter set L = fLkg,

and for every distinguisher Da,

�(k) = sup
!2Lk

���ED(1k; Ek(!); !; a)�ED(1k; E0
k(!); !; a)

���
is negligible.

It is an easy theorem that ensembles EEk(!) and EE
0
k(!) over fLkg are statistically indis-

tinguishable if an only if �(k) = sup!2Lk(
P

x2�� jProbEk(!)[x]� ProbE0
k
(!)[x]) is negligible.

2.3 Protocols and Their Adversaries

In this section we describe not only the communication mechanism provided to the agents

of a collaborative computation, but also the adversary which may attack these agents|for

one has not described the behavior of a protocol until it is speci�ed how it runs in the

presence of the adversary.

The adversary we consider is extremely strong, which makes our de�nition of security

much more meaningful. On the other hand, given that secure protocols are non-trivial to

�nd, we at least make them easier to write by providing a generous communication model.
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In essence, we allow each player both to privately talk to any other player and to talk

\aloud," so that all other players will agree on what was said and on who said it.

Summary of the model. The players (or processors) are the agents who wish to carry

out the joint computation. The collection of players is the network, and the program that

the players run is called a protocol. To be certain that a protocol can be easily described,

each player runs the same program; it is made speci�c to the player who is running it by

letting the player be aware of his own identity. The players have two resources at their

disposal: the ability to compute locally, and the ability to communicate with one another.

To communicate, the processors may talk privately to one another in pairs, or they may

announce messages to the community as a whole. When they do broadcast a message,

everyone knows who sent it.

As a player computes, his computational state progresses in time. One might imagine

that this computational state should progress as the communication rounds progress, but

instead we formalize matters with a �ner level of granularity, thinking of a processor as

carrying out many computational steps within a single round. These steps consist of ip-

ping a coin or applying some deterministic function to his computational state. When the

round is over, the messages a player sends out to the other players are functions of his

computational state, and the messages a player receives from other players|functions of

their computational states|augment his computational state in a timely manner.

Initially, each player knows only his own initial computational state. The information

this contains is his identity, i, his private input, xi, and a string called the common input, c,

which is shared by all of the players. The common input contains such information as

the number of players in the network, n, and a description of the function they wish to

compute, fc.

For simplicity, we insist that players' private inputs are all of the same length. While

it is not important that all inputs be of the same length|this could be accomplished by

padding the inputs which are too short|it is important that the players know a bound

on the length of the longest possible private input. That this is a natural and reasonable

restriction can be motivated as follows. One thing a player i learns about another player j

when interacting with him is the number of bits which were sent out by j and received

by i. For some functions, player j must send out at least as many bits as his private input

is long|even if there were no privacy constraint at all. A convenient way to make sure

that this degree of exposure of one's input is not considered to be damaging is to say that

bounds on input lengths were already known in advance by each player.2

Our goal in this chapter is to properly de�ne those protocols which are robust against

the incorrect behavior of some of its participants. We adopt an extremely pessimistic view

of how players may diverge from faithfully executing a protocol. Namely, we imagine that
2When this restriction is not made, the problem of secure computation changes radically in character.

See [CGK90] for some work in this framework.
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the players are not the only agents involved in the joint computation: also present is an

adversary, who runs a program the players know nothing about. The unpleasant trait of

an adversary is her ability to corrupt players. When a player is corrupted, he is made the

adversary's loyal servant, with the adversary subsuming all communication and computation

associated with the corrupted player. Additionally, the adversary is handed over the private

state of the corrupted player at the time at which the player was corrupted.

The computation proceeds in rounds. The adversary runs; then the players run; then

the adversary runs; then the players; and so forth, until all the players have terminated.

At this point, the adversary is given one last run, and then the protocol has terminated.

Within each of these adversary and player rounds, a good deal of activity may go on|as

players do computation, and the adversary computes and corrupts processors.

We will be interested in how much the adversary can learn as a result of her activities,

and what the good players compute, despite the interference of the adversary. To concretize

these ideas, we now proceed more formally.

2.3.1 Protocols

Protocols for n-parties. In this section we describe what a protocol for a �xed number

of players is. Later we discuss protocols for arbitrary numbers of players.

Recall that � is the binary alphabet, and words over this alphabet are indicated by

writing that they belong to ��. However, we will sometimes indicate that words which

are apparently not over the binary alphabet are to be considered as belonging to ��|for

example, we might write 0]0�1 2 ��. When we do this, it is understood that the symbols

which constitute the \expanded" alphabet over which our strings are drawn are encoded as

strings over �� by some �xed, natural encoding scheme.

In the de�nition that follows, the protocol P is the main object of interest. It speci�es

how the computational states of the players are to progress in time. Specifying a protocol

means de�ning the map P . The interaction functions are the \glue" that allows applying

the function P repeatedly to capture the network's state progressing in time.

De�nition 2.3.1 An n-party protocol is a Turing-computable function

P : ��|{z}
common
input

� ��|{z}
current
state

! ��|{z}
new
state

:

A network interaction function is any of the following polynomial-time computable functions:

1. a next-action function � : �� ! fcompute; ip-coin; round-done; protocol-doneg,

2. a broadcast messages function M : �� ! ��,

3. a private messages function m : �� � [1::n]! ��, and

4. an output function o : �� ! ��.
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A player con�guration is an element of ��|{z}
player's
state

� �!|{z}
coins

remaining

� ��|{z}
history

.

Notation. In place of m(si; j) we will write mj(si).

Discussion. The next subsection describes, formally, how a protocol runs. Here we give a

sketch of this.

To run a protocol, each player starts o� in some initial computational state. Each player

applies the next action function, �, to his current computational state to see what he should

do. If it says that he should compute, then the algorithm P is applied to the computational

state to come up with a new computational state. If it says that he should ip-coin, then the

player is given a random coin toss from his in�nite sequence of random coins. The consumed

coin then \vanishes" from the in�nite sequence of future coin tosses. As long as the player

computes or gets coin ips, the process continues. When the player is done with all of

his activities for this round, this is indicated by � assuming the value round-done. When

all the players are done computing in this round, their broadcasts and private messages

are \delivered"|that is, these strings are properly appended to the computational states

of other players. (This will be described in the next subsection.) The messages a player

broadcasts and those he sends out privately to other players are determined by applying

the functions M and m to his own computational state. Thus, even though these functions

assume values before a player is done with a given round, their values are of no importance

then. After all the messages are delivered, each player resumes running: the next action

function � is again applied to his current computational state|the state that the processor is

in after the messages he receives from other players have been appended to his computational

state. When a processor is �nished with all the activities he wishes to engage in for this

execution of the protocol, instead of simply choosing a computational state in which �

assumes a value of round-done, he instead selects a computational state which � indicates

protocol-done. At this point, the output function o de�nes the player's private output;

previous to this, the output function is not meaningful. The protocol terminates when

every player is protocol-done.

As the proceeding discussion suggests, a protocol P can only be run with respect to a

�xed set of interaction functions. When combined with P , these interaction functions specify

how a player's computational state is to progress in time, a�ecting the computational states

of other players in the network. Thus we might have considered a protocol to be a �ve-tuple

(P; �;M;m; o) consisting of the protocol algorithm proper and the collection of interaction

functions. However, it is more convenient to require that the interaction functions be

�xed functions, good for any protocol. This way, for example, protocols can more easily

be composed with one another: there is no danger that two protocols employ di�erent

conventions on how processors communicate, say.

We have not speci�ed these interaction functions since the particular conventions chosen
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for de�ning them are not important. Each function should specify its range value in a natural

and simple manner from its domain value. For example, with \h", \i", \(", \)", and \,"

all being formal symbols, we might say that if si contains one and only one occurrence of a

substring h1ji, then �(si) = compute if j = 1, �(si) = ip-coin if j = 2, �(si) = round-done

if j = 3, and �(si) = protocol-done otherwise; if si contains one and only one occurrence

of a substring (�), then M(si) = �; otherwise, M(si) = �; if si contains one and only one

occurrence of a substring (1j ; �j), for j 2 [1::n], then mj(si) = �j; otherwise; mj(si) = �;

and if si contains one and only one occurrence of a substring [�], then o(si) = �; otherwise,

o(si) = �. This was just an example of how the interaction functions could be de�ned; the

speci�c choice of conventions is irrelevant.

We have not described a player's con�guration. It captures his current computational

state, his future coin tosses, and his history. The history is information associated to a

player which is not relevant to the task at hand. The presence of the history is useful

for properly dealing with protocol composition, and for proving certain properties of secure

protocols. For example, when a protocol is called as a subroutine, the \saved state" which is

irrelevant to the subroutine call is tucked away in the history. Since we will not be concerned

with subroutine calls in this thesis, the saved state is of no real importance. However, we

keep this information around because of its playing a signi�cant role in the more general

theory of secure protocols.

We now de�ne more formally how a protocol runs in the absence of an adversary.

2.3.2 Executing Protocols in the Absence of an Adversary

Notice how, in the formalism for a protocol, we have a �ne level of granularity in how a

protocol runs|all the way down to individual coins being tossed. We could have tried

to be more succinct, letting a player's computational state progress from round-to-round,

with a player doing all the necessary computation \in one shot." However, the approach

selected turns out to be more symmetric with the natural way of phrasing the adversary's

behavior|she gets information repeatedly from the players within a single round. This

approach also serves to emphasize that a player may choose to remember a coin toss or

he may choose not to remember a coin toss, but|as we shall see when we discuss the

adversary|a coin, once ipped, is not recoverable by the adversary except to the extent

that it is stored in the player's computational state.

Thus we index the player con�gurations by two superscripts. The �rst index, r, is a

counter for the round number. The second index, �, is the \micro-round" number, formal-

izing this �ner granularity as the protocol ips coins and does computation. We allow the

micro-round to take on the formal value \1". If a player's computation for round r is com-

pleted at some micro-round �, then all subsequent computational states for micro-rounds

during round r, including that at time (r;1), are �xed. This is notationally convenient.
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Configuration sequences. An n-party protocol P generates from n initial player con-

�gurations, (C00
1 ; : : : ; C00

n ), a sequence of con�gurations fCr�
i : i 2 [1::n]; r 2 N; � 2 [0::1]g,

which we now describe.

We remark that some con�gurations may fail to be de�ned by the recurrences below;

this will be dealt with later. We note that the character r is somewhat overworked: with

a subscript i, it indicates player i's random tape; as a superscript, it indicates a round

number. This should cause no confusion. Recall that, if ri (for example) is an in�nite

string, then rij is its jth bit. Finally, the symbols f#; ]; �; �; g, which appear here and

elsewhere, are all just formal punctuation symbols.

Fix the notation

Cr�
i = (sr�i ; r

r�
i ; �r�i )

for player con�gurations, and the notation

M r
i =

(
M(sr1i ) if r > 0 and �(s

(r�1)1
i ) = round-done

� otherwise

mr
ij =

(
mj(s

r1
i ) if r > 0 and �(s

(r�1)1
i ) = round-done

� otherwise

for broadcast messages and messages sent out along private channels. (Intuitively, the

former is what processor i \tries" to broadcast at the end of round r, and the latter is what

processor i \tries" to send to j at the end of round r.) Let the common input , c, be the

\]"-terminated pre�x of s001 . Then the players' con�gurations progress as follows:

C
r(�+1)
i =

8>>>>>>><>>>>>>>:

(P (c; sr�i ); rr�i ; �r�i ) if �(sr�i ) = compute and r > 0

(sr�i �r
r�
i1 ; r

r�
i2 r

r�
i3 � � � ; �

r�
i ) if �(sr�i ) = ip-coin and r > 0

Cr�
i otherwise

Cr1
i = Cr�

i if 9 � 2 N s.t. r = 0 or �(sr�i ) 2 fround-done; protocol-doneg

C
(r+1)0
i =

8>>>><>>>>:
(sr1i �M

r
1� � � � �M

r
n�m

r
1i� � � � �m

r
ni; if �(sr1i ) = round-done and

rr1i ; �r1i ) r > 0

Cr1
i otherwise

If any con�guration fails to be de�ned by the recurrences above, then the protocol is said

to have diverged (on this execution).

Nomenclature. As mentioned, the �rst superscript indexes the round while the second

superscript indexes the micro-round. The string Cr0
i is called the con�guration of party i at
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the beginning of round r, while Cr1
i is the con�guration of party i at the end of round r. The

con�guration C00
i = C01

i is the initial con�guration of party i. If the round r, micro-round �

con�guration of party i is Cr�
i = (sr�i ; r

r�
i ; �r�i ), then we refer to sr�i as the computational

state of player i at this point in time. The string M r
i is the message broadcasted by i in

round r, and the string mr
ij is the message sent from i to j in round r.

Executing protocols. In the absence of an adversary, an execution of an n-party pro-

tocol P with common input c = 1k#1n#1`#1l#1m#C, private inputs x1; : : : ; xn 2 �`,

histories �1; : : : ; �n 2 �m, and coin sequences r1; : : : ; rn 2 �! is the sequence of con�g-

urations fCr�
i g generated by P when the initial con�guration of party i is taken to be

C00
i = (c]xi]i; ri; �i). The set of executions of P with common input c, private inputs ~x,

histories ~�, and all possible coin sequences r1; : : : ; rn 2 �
! enjoys a probability measure by

endowing each execution with the measure induced by taking each bit of each ri to be se-

lected uniformly and independently. In the absence of an adversary, executing a protocol P

with common input c and private inputs ~x, means sampling according to this distribution.

The values speci�ed on the common input, c, in an execution of an n-party protocol are

called the security parameter, k, the number of players, n, the input length, `, the output

length, l, the history length, m, and function description, C. Any of these values may take

a subscript c to emphasize their being speci�ed on the common input c. Since we will be

interested in secure computation of functions, Cc will specify|somehow|a vector-valued

or string-valued �nite function, Cc : (�
`c)nc ! (�lc)nc , or Cc : (�

`c)nc ! �lc.

Message delivery. The string M r
i is the message that processor i broadcasts at the end

of round r, or � if processor i does not broadcast a message in round r. The string mr
ij is

the messages that processor i sends to processor j at the end of round r, or � if processor i

does not send a message to processor j in round r. The empty message is delivered to each

processor in round 1, since no activity occurred in round 0 (see below).

Discussion. As mentioned, the history of a processor is thought of as information which

a processor may possess which is not relevant to the task at hand, but which is nonetheless

part of the processor's con�guration; for example, it might be the saved state before a

subroutine call, and the currently executing protocol is really just a subroutine. To ensure

that a processor does not \use" information it should not use, we do not include the history

in a processor's computational state. But, as we will see, it is there in the sense that

when a processor is corrupted, its history is made available to the adversary. We note that

we could, alternatively, have said that some properly-marked portion of each processor's

computational state is not allowed to be \used" by the protocol P . Saying this formally is

more awkward than the approach taken.

We have established the convention that a protocol begins with the players executing a

\dummy" round, round 0; during this round, \nothing happens." The presence of the void
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round facilitates bringing the adversary into the model of computation in a manner which

allows for clean protocol composition. This will not, however, be a concern for us here.

2.3.3 Adversaries (Informal Treatment)

Modeling errors. So far we have described how a fault-less network operates. We now

consider the possibility for some players becoming \bad" in an execution of a protocol|

that is, of deviating from their prescribed instructions. In fact the goal of this chapter is to

properly de�ne those protocols that can \withstand" the action of some bad players.

How powerful should we let these bad players be? In some scenarios the only natural way

for a processor to deviate from a protocol is by ceasing all communications, such as in the

case of a computer \crash." Alternatively, processors may start sending messages \at ran-

dom," corresponding|for example|to having some short-circuited register. If people are

behind their processors, it is safer to consider more \malicious" deviations. This possibility,

clearly subsuming the previous ones, is the one we focus on. Our goal is in fact reaching

the strongest, natural notion of security, so that a protocol satisfying our de�nitions may

be safely and easily used in any natural context. We thus allow bad players to deviate from

their prescribed instructions in any way|the only constraint we consider is that even bad

processors may (perhaps) be computationally bounded, and there may be a limit on the

number of bad players possible. We also allow bad players to secretly cooperate with each

other. Actually, to guarantee their \perfect cooperation," we envisage a single agent, the

adversary, that during an execution of a protocol, may corrupt and control players.

Let us now address an equally important question: when can the adversary corrupt

players? One possibility is to consider a static adversary, one who can choose and corrupt

a subset of the players only at the start of a protocol. Since any real adversary may

be expected to make an e�ort to corrupt those players whose corruption would be most

bene�cial to her for the current execution, a better possibility is to consider a dynamic

adversary, one capable of corrupting players at arbitrary points during the execution of a

protocol, based on the information acquired from previous corruptions. This appears to

capture the worst natural model of malicious behavior which one might hope to defeat in

our scenario.3 Such an adversary is provably more powerful than a static one (see [MR91]),

and security with respect to a dynamic adversary is both harder to achieve and harder to

properly de�ne.

If an adversary were allowed to corrupt all players, then nothing could be said about

the behavior of the network. Thus the number of corruptible players will appear in our

de�nition of security.

3For the Byzantine agreement problem [PSL80]|the problem perhaps most responsible for clarifying

notions of adversarial behavior|even stronger adversaries can be postulated and defeated, including an

adversary capable of \seeing" the internal states of all players, but capable of gaining control of the output

of only a certain fraction of them.
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We now re�ne these ideas, until we are ready to specify a \mathematical" description

of an adversary, and how a protocol runs in the presence of such an agent.



35

Start

Player's round 0

Adversary's round 0

Player's round 1

Adversary's round 1
...

Player's round !

Adversary's round !

End

Figure 2.1: An execution of a protocol with the adversary. The player's 0th round is a round

on which there is not activity|so, e�ectively, the adversary begins and ends the execution

of a protocol.

Adversaries interacting with networks. Think of an adversary A as an abstract

machine interacting with the participants of a network in a prescribed way. This way entails

the players and the adversary alternating periods of activity, as suggested by Figure 2:1.

In the beginning, the adversary and all the players in the network are quiescent. The

adversary and players will take turns being active. In the beginning, all of the players are

good, and so they remain unless the adversary corrupts them. Initially, all the information

the adversary has on which to base these corruptions is the same common input which the

players share. (If the players are entitled to this information without doing any work, so is

the adversary!)

At the start of every round, the adversary is quiescent. Once all of the still good players

have �nished their activities for this round, having well-de�ned out-going private messages

and broadcast messages, the players go to sleep and adversary A is awakened and receives all

broadcast messages just computed, together with all of the messages the players composed

for already-corrupted processors. The adversary may then choose to corrupt some new

processor i. When she does so, within the same round, she learns all of i's internal state

(his computational state, history, and initial private input), all of the messages which were

just sent out by processor i (as a consequence), and all messages which were just sent to

processor i.

After this, still within the same round, A can corrupt, one at a time and exactly as

before, additional players, until she does not want to corrupt any more of them. At this

point, the adversary composes all outgoing messages from the bad players to the good,

and it is these messages (together with the messages sent by good players) which will be

delivered to the players in the next round.

This process continues until all of the processors have either been corrupted or have

halted. Then the adversary is given one last period of activity. After this, the protocol is



36

said to have terminated.

To formalize what we have just described, we will say that the execution of a protocol in

the presence of an adversary follows the sequence of \macro-rounds" shown in Figure 2.1.

Within each macro-round, there may be many \micro-rounds," in which the players per-

form their local computations, or the adversary computes and corrupts various players, in

sequence. We choose to think of the players as having a 0th -round in which no activity

occurs; after that void round, it is the adversary's turn to be active.

The adversary's advice. To obtain a robust notion of security, we demand that our

protocols remain secure even if there is some information aA known to the adversary in

advance of the protocol's execution. Oren has pointed out the importance of providing such

advice in the context of zero-knowledge proof systems [Or87]. The adversary advice might,

for example, consist of information which the adversary has somehow come to acquire about

the input vector ~x|perhaps from previous executions of other protocols. Or, it might be

information that depends on the security parameter k, which, perhaps, the adversary worked

for years to come up with in a \preprocessing stage" of her attack on the protocol. The

advice will be doled out in a manner like the coin ips are: when the adversary asks for the

next advice bit, it is given to her and vanishes from the in�nite string of advice remaining.

Why the nonuniformity? Adversaries like the one we have described|who may possess

some �xed information before the protocol begins, information, possibly hard to compute,

tailored to the choice of security parameter or, in our case, the private inputs and proces-

sor histories, as well|such adversaries are called called nonuniform adversaries (because,

traditionally, such adversaries have been modeled by (possibly nonuniform) polynomial-size

circuit families). Nonuniform adversaries have several advantages over their uniform coun-

terparts, advantages which we now enumerate. Most importantly, since a cryptosystem is

generally run for a particular choice of security parameter, one would be unhappy with a

protocol which was only secure against uniform adversaries: a suÆciently committed at-

tacker would mount an attack that would break the cryptosystem itself, a much worse break

than just breaking a particular usage of the cryptosystem. Secondly, proofs are frequently

simpler or more natural in the nonuniform model. Third, the main theorem of this thesis

talks about how an arbitrary circuit can be used to specify a protocol for securely evaluating

it; thus there is already nonuniformity present in the families of circuits which might be

evaluated.

2.3.4 Adversaries (Formal Treatment)

Adversaries for n-party protocols. Formally, an adversary will not be very di�erent

from the other participants of the collaborative computation; but she has additional abilities

which allow her to make life diÆcult for the players. De�ning how a protocol runs in the
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presence of an adversary will be a matter of properly modifying the players' and adversary's

computational state as she \interacts" with the protocol.

De�nition 2.3.2 An adversary for an n-party protocol is a function

A : ��|{z}
common
input

� ��|{z}
current
state

! ��|{z}
new
state

:

An adversary interaction function is any of the following polynomial-time functions:

1. a next-action function ~� : �� ! fcompute; ip-coin; get-advice; corrupt1; : : : ; corruptn;

round-doneg,

2. a broadcast messages function ~M : �� � [1::n]! ��, and

3. a private messages function, ~m : �� � [1::n]� [1::n]! ��.

An adversary con�guration is an element of

��|{z}
adversary's

state

� �!|{z}
coins

remaining

� �!|{z}
advice

remaining

� 2[1::n]| {z }
corrupted

players

� ��|{z}
traÆc

:

Notation. In place of ~M(sA; i) and ~m(sA; i; j) we will write ~Mi(sA) and ~mij(sA), respec-

tively.

Discussion. We do not explicitly specify the interaction functions since the particular

conventions selected for them is irrelevant. All that is important is that each function

speci�es its range value in a natural and simple manner from its domain value, as with the

interaction functions associated to the players of a network.

As with a protocol, the �rst component in A's domain is the common input. Though

this could be considered as an unnecessary component|it could be encoded in the second

component, the adversary's current state|we make a separate argument of it to facilitate

specifying the computational complexity of an adversary.

The function ~� describes the action an adversary wishes to perform: does she do some

computation, ip a coin, corrupt some processor i, or complete her activities for this round?

Note that while a player may terminate, we choose to say that an adversary does not; we

will select a formalization in which the adversary e�ectively terminates after all processors

have done so.

The string ~Mi(sA) denotes the message that the adversary will broadcast for player i,

if i has been corrupted. The string ~mij(sA) denotes the message that the adversary sends

to processor j on behalf of processor i, if i has been corrupted.

Note that, while a protocol must at least be computable, no similar assumption is made

of an adversary; an adversary which is, say, an arbitrary function, with no �nite description,

is a perfectly good adversary. However, possible restrictions on the power of an adversary

will be de�ned in Section 2:3:7.
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The adversary con�guration captures that information about the adversary's computa-

tion which needs to be remembered and updated across the application of A. The adver-

sary's computational state, the coins which she has not yet used, and the advice which she

has not yet read are all components of the adversary's con�guration. Also included are the

set of processors which are currently corrupted; this set grows with each corruption, and

never shrinks. The �nal component of the adversary con�guration is an encoding of the

traÆc of exchanges between the adversary and the players with whom she speaks. This

quantity will prove suÆciently important to warrant explicitly specifying how it evolves as

the adversary interacts with the players.

2.3.5 Executing Protocols in the Presence of an Adversary

We now describe how an n-party protocol P executes in the presence of an adversary A.

After specifying the behavior formally, we will describe what it means in English.

Configuration sequences. Let A be an adversary for attacking an n-party protocol,

and let P be such a protocol. We describe how, from any n initial player con�gurations,

(C00
1 ; : : : ; C00

n ), and any initial adversary con�guration, C00
A = (sA; rA; aA; �A; �A), proto-

col P and adversary A generate a sequences of player con�gurations, fCr�
i : i 2 [1::n]; r 2

N; � 2 [0::1]g, and a sequence of adversary con�gurations, fCr�
A : r 2 N; � 2 [0::1]g.

Fix the notation

Cr�
i = (sr�i ; r

r�
i ; �r�i ); and

Cr�
A = (sr�A ; r

r�
A ; ar�A ; �

r�
A ; � r�A );

and let the common input c and the private input ~x be given by c]xi]i = s00i . Once again,

the symbols f#; ]; �; �; g are just formal punctuation symbols. The players' con�gurations

progress as before,

C
r(�+1)
i =

8>>>>>>><>>>>>>>:

(P (c; sr�i ); rr�i ; �r�i ) if �(sr�i ) = compute and r > 0

(sr�i �r
r�
i1 ; r

r�
i2 r

r�
i3 � � � ; �

r�
i ) if �(sr�i ) = ip-coin and r > 0

Cr�
i otherwise

Cr1
i = Cr�

i if 9 � 2 N s.t. r = 0 or �(sr�i ) 2 fround-done; protocol-doneg

C
(r+1)0
i =

8>>>><>>>>:
(sr1i �M

r
1� � � � �M

r
n�m

r
1i� � � � �m

r
ni; if �(sr1i ) = round-done and

rr1i ; �r1i ) r > 0

Cr1
i otherwise
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while the adversary's sequence of con�gurations progresses as follows:

C
r(�+1)
A =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(A(c; sr�A ); rr�A ; ar�A ; �
r�
A ; � r�A ) if ~�(sr�A ) = compute

(sr�A �r
r�
A1; r

r�
A2r

r�
A3 � � � ; a

r�
A ; �

r�
A ; �

r�
A ) if ~�(sr�A ) = ip-coin

(sr�A �a
r�
A1; r

r�
A ; ar�A2a

r�
A3 � � � ; �

r�
A ; � r�A ) if ~�(sr�A ) = get-advice

(sr�A �s
r1
i ��

r1
i �xi� �m

r
1i� � � � � �m

r
ni; if ~�(sr�A ) = corrupti

rr�A ; ar�A ; �
r�
A [ fig; and r > 0

� r�A �i�s
r1
i ��

r1
i �xi� �m

r
1i� � � � � �m

r
ni)

(sr�A �s
r1
i ��

r1
i �xi; if ~�(sr�A ) = corrupti

rr�A ; �r�A ; �r�A [ fig and r = 0

� r�A �i�s
r1
i ��

r1
i �xi)

Cr�
A otherwise

Cr1
A =

8>>>>>>><>>>>>>>:

(sr�A ; r
r�
A ; ar�A ; �

r�
A ; if 9 � 2 N s.t. r > 0

� r�A �
~M r
1� � � � � ~M

r
n� ~m

r
11� � � � � ~m

r
1n� � � � and ~�(sr�A ) = round-done

� � � � ~mr
n1� � � � � ~m

r
nn )

(sr�A ; r
r�
A ; ar�A ; �

r�
A ; �

r�
A ) otherwise

C
(r+1)0
A =

8>>>>>>><>>>>>>>:

(sr1A �
�M r+1
1 � � � � � �M r+1

n � �mr+1
11 � � � � � �m

r+1
1n � � � � � �m

r+1
n1 � � � � � �m

r+1
nn ;

rr1A ; ar�A ; �
r1
A ; if r > 0

� r1A �
�M r+1
1 � � � � � �M r+1

n � �mr+1
11 � � � � � �m

r+1
1n � � � � � �m

r+1
n1 � � � � � �m

r+1
nn )

(sr1A �; r
r1
A ; ar1A ; �r1A ; � r1A ) if r = 0

where

M r
i =

8>><>>:
M(sr1i ) if r > 0 and i 62 �r1A and �(s

(r�1)1
i ) 6= protocol-done

~Mi(s
r1
A ) if r > 0 and i 2 �r1A

� otherwise

mr
ij =

8>><>>:
mj(s

r1
i ) if r > 0 and i 62 �r1A and �(s

(r�1)1
i ) 6= protocol-done

~mij(s
r1
A ) if r > 0 and i 2 �r1A

� otherwise
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�M r
i =

(
M(sr1i ) if r > 0 and i 62 �

(r�1)1
A and �(s

(r�1)1
i ) 6= protocol-done

� otherwise

�mr
ij =

8>><>>:
mj(s

r1
i ) if r > 0 and i 62 �

(r�1)1
A and j 2 �

(r�1)1
A and

�(s
(r�1)1
i ) 6= protocol-done

� otherwise

~M r
i =

(
~Mi(s

r1
A ) if r > 0 and i 2 �r1A

� otherwise

~mr
ij =

(
~mij(s

r1
A ) if r > 0 and i 2 �r1A and j 62 �r1A

� otherwise

If any con�guration fails to be de�ned by the recurrences above, then the execution with

the speci�ed initial con�guration is said to have diverged.

Nomenclature. The tuple Cr0
i is called the con�guration of party i at the beginning of

round r, while Cr1
i is the con�guration of party i at the end of round r. The con�guration

C00
i = C01

i is the initial con�guration of the party i. The tupleCr0
A is called the con�guration

of the adversary at the beginning of round r, while Cr1
A is the con�guration of the adversary

at the end of round r. The con�guration C00
A = C01

i is the initial con�guration of the

adversary.

If the round r, micro-round � con�guration of party i is Cr�
i = (sr�i ; r

r�
i ; �r�i ), then we

refer to sr�i as the computational state of player i at this point in time. The string M r
i is

the message broadcasted by i in round r, and the string mr
ij is the message sent from i to j

in round r.

If �(sr1i ) = protocol-done, then Cr1
i is called the �nal con�guration of party i. The

value Cr1
A is called the adversary con�guration at the end of round r.

Player j is corrupted in round r if ~�(sr�A ) = corrupti for some �. Processor i terminates

at round r if r is the �rst round for which �(sr1i ) = protocol-done.

Executing protocols. In the presence of an adversary A, an execution of an n-party

protocol P with common input c = 1k#1n#1`#1l#1m#C, private inputs x1; : : : ; xn 2 �`,

histories �1; : : : ; �n 2 �m, player coin sequences r1; : : : ; rn 2 �!, adversary coin sequence

rA 2 �!, adversary advice aA 2 �!, and initial corruptions �A, is the collection of con-

�gurations fCr�
i ; Cr�

A g generated by P and A when the initial con�guration of party i

is taken to be C00
i = (c]xi]i; ri; �i), and the initial con�guration of A is taken to be

(c��A; rA; aA; �A; c��A). The set of executions of P with common input c, private inputs

~x, histories ~�, adversary advice aA, initial corruptions �A, and all possible coin sequences ~r
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and rA becomes a probability space by endowing each execution with the measure induced

by taking each bit of rA and each bit of each ri to be selected uniformly and independently.

In the presence of an adversary, executing a protocol P with common input c, private inputs

~x, histories ~�, and adversary advice aA means sampling from this probability space.

Message delivery. We explain the meaning of the various m&M 's. The string �M r
i is

the message an uncorrupted processor i \tries" to broadcast to the network in its round r.

Due the adversary's activities, some other message M r
i may actually be broadcast to the

network on behalf of player i. The string �mr
ij is the message an adversary receives from an

uncorrupted processor i, intended for (corrupted) processor j. The stringmr
ij is the message

that a (good) player j receives on behalf of player i, the source of this message depending

on whether i is corrupted or not. The string ~M r
i is the message the adversary broadcasts in

round r on behalf of the corrupted processor i; the string ~mr
ij is the message the adversary

sends in round r to the uncorrupted processor j on behalf of corrupted processor i.

The adversary's interaction with the network. When the adversary corrupts a

processor, she learns the current computational state of that processor, and the history as-

sociated to that processor. Additionally, she learns that processor's private input. As long

as there are messages which were delivered to the corrupted processor in this round (i.e.,

as long as it is not round 0), the adversary is given those messages which did not originate

from the adversary herself. When the adversary terminates her activities for some round,

the messages she composes on behalf of the corrupted processors are then delivered. When

the processors terminate their activities, the messages which they compose and which the

adversary can see (broadcast messages or messages sent to corrupted processors along pri-

vate channels) are delivered to the adversary. So that the formalism matches the intuition,

we demand that an adversary corrupts a processor at most once: if ~�(sr�A ) = corrupti, then

~�(sr
0�0

A ) 6= corrupti for all (r
0; �0) < (r; �).

Traffic. The \traÆc" of exchanges between the adversary and the uncorrupted processors

consists of everything the adversary \gets" from the currently good players|the messages

they broadcast, the messages they send to corrupted players, and the information the ad-

versary learns when one of these good players is corrupted|together with the information

that the adversary \gives" to the currently good players|the messages the adversary broad-

casts on behalf of corrupted players, and the messages the adversary sends out along private

channels to uncorrupted players on behalf of corrupted players. As we have formalized it,

the traÆc also includes (tacked onto the beginning) the common input and a description of

the initially corrupted processors.

In words, each time a processor i is corrupted, the information learned from that proces-

sor which augments the adversary's state is tacked onto the transcript of traÆc, preceded

by an indication of which processor was corrupted; each time the adversary completes her
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round-r activities, the messages she has composed on behalf of corrupted players is ap-

pended to the transcript of traÆc, terminated by a special marker; and, �nally, each time

the adversary is awakened as a result of the player's completing a round, those messages sent

by good players which are received by the adversary are properly delineated and appended

to the transcript of traÆc.

If �A speci�es traÆc, then corrupted (�A) denotes the set of processors who are corrupted

in this transcript|that is, the set of all i such that �i� appears in �A
4|and `(�A) denotes

the input length in this traÆc|that is, the value ` such that c = 1k#1n#1`# � � � is a pre�x

of �A.

Output and termination. A protocol is said to terminate in round r if r is the �rst

round at the end of which every uncorrupted processor has terminated. We demand the

following of any protocol P : for any adversary A with which P may interact, when P runs

with A, P terminates with probability 1.

Player i's output in an r-round execution of a protocol P is the image yi = o(sr1i )

under o of that players �nal computational state, if the player is uncorrupted at the end of

round r, and the distinguished value corrupted otherwise. The players' output is the tagged

vector consisting of each player's output di�erent from corrupted.

Adversary's view. In an execution e of an adversary A with a network, the view of A

in this execution is \everything the adversary sees" before termination: that is, the triple

(�A; r
0
A; a

0
A) consisting of the traÆc, the adversary's coins actually consumed (a pre�x r0A

of the in�nite string rA), and the adversary's advice which is consumed (a pre�x a0A of the

in�nite string aA). A random bit is consumed when ~� becomes ip-coin; an advice bit is

consumed when ~� becomes get-advice.

2.3.6 Dealing with Arbitrary Numbers of Players

General protocols. To properly talk about general multiparty protocols we must relax

the requirement that a protocol is tailored for one particular number of players. (It is

discussed in [MR91] why imagining n �xed is too restrictive.) Thus we treat a protocol

P as a family of n-party protocols P = fPng. However, recall that we demanded that a

protocol be \describable" by a Turing machine (that is, we demanded a protocol be Turing-

computable). In passing to more general protocols, we would like not to lose this property.

In fact, any \reasonable" protocol should have a description that is eÆciently computable

knowing the number of players involved.

De�nition 2.3.3 A protocol P is a polynomial-time computable function that maps a

number 1n to a standard encoding of an n-party protocol Pn.

4If corruption is interrogation followed by murder, surrounding i with bullets is quite mnemonic!
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We will usually suppress the subscript n when considering an n-party protocol Pn, using P

to denote either a general protocol or a particular n-party protocol that it speci�es.

General adversaries. Likewise, to talk about a protocol with arbitrary numbers of

players under attack by an adversary, we must suitably relax our notion of an adversary.

De�nition 2.3.4 An adversary A is a function that maps a number 1n to an n-party ad-

versary An.

Again, we usually suppress the subscript n when considering an adversary for an n-party

protocol, using A to denote either a general adversary or an adversary for a particular value

of n.

2.3.7 Complexity Measures

Adversaries with bounded charisma. If an adversary corrupts all the players, then

nothing can be said about their behavior in her presence. We thus prefer less captivating

adversaries.

De�nition 2.3.5 A t(n)-adversary for a protocol P is an adversary A for which j�r1A j � t(n)

for any r-round execution of An with the n-party protocol Pn.

For our purposes, we may imagine that the constraint above is strengthened to demand

that the adversary always corrupts exactly t(n) players, rather than at most t(n) players.

As long as t(n) is eÆciently computable and the adversary \knows" when the protocol will

terminate, the notions are equivalent. This will be the case for us. But in contexts like the

Byzantine agreement protocol of Feldman and Micali [FM88a], these conditions are not met.

Often, t(n) is a step-function associated to linear function of n, such as t(n) = b(n� 1)=2c.

Local computation complexity. Let e = fCr�
i ; Cr�

A g be an execution of an n-party

protocol. The number of player micro-rounds for execution e is

jfCr�
i : i 2 [1::n], r; � 2 N, �(sr�i ) 62 fround-done; protocol-doneg, and i 62 �r1A gj ;

while the number of adversary micro-rounds is

jfCr�
A : r; � 2 N, �(sr�A ) 6= round-done, and the protocol has not terminated

before round rgj :

A protocol P = fPng is polynomial-time if there is a polynomial Q such that for any n, Pn

is Q(jcj)-time computable (where c is the common input); and for any execution e with any

adversary A, the number of player micro-rounds is bounded above by Q(jcj).

An adversary A who interacts with a polynomial-time protocol P is polynomial-time if

there is a polynomial Q such that the encoding of An is computed by A in time bounded

above by Q(n); and An is computable in time at most Q(jcj); and, last of all, the number

of adversary micro-rounds is bounded above by Q(jcj).
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Round and communication complexity. The round complexity of a protocol P is least

value r such that when protocol P is run in the presence of an adversary A it necessarily

terminates within r rounds. The round complexity is \1" if no such number exists. The

round complexity is regarded as a a function of jcj.

The communication complexity of a protocol P is the least value K such that when

protocol P is run in the presence of an adversary A, the total number of bits sent out by

uncorrupted processors is at most K. The total number of bits sent out by uncorrupted

processors is
P

r;i Æ(i 62 �A(s
(r�1)1
A ))(jM r

i j +
P

j jm
r
ij j), where Æ is 1 for a true predicate, 0

for a false predicate. The communication complexity is \1" if no such number exists. The

communication complexity is regarded as a a function of jcj.

2.4 Secure Function Evaluation

With the language of Sections 2:2 and 2:3 in hand, we begin to phrase our de�nition of

security. We begin by providing some intuition as to what correctly and privately computing

a function should mean in the presence of an adversary as strong as the one we have de�ned.

2.4.1 The Ideal Evaluation

A secure protocol should mimic|as closely as possible|the computation of a function f by

an ideal protocol for computing it. An ideal protocol for f can be considered as achieving

security by adopting a model of computation which provides a trusted party for computing

the function. The rest of the parties, though, are subject to corruption. We describe the

ideal protocol somewhat more colorfully below.

Imagine distributively computing f : (�`)n ! (�l)n by playing the following game.

Each player sits at a table, his private input string written underneath the lead plate in

front of him. One by one, the adversary \corrupts" some of the players, removing a player's

lead plate and learning the information written beneath it. Then the adversary substitutes

(fake) input strings x0T in front of each of these corrupted players, and she replaces the lead

plates. Once the plates have all been replaced, the value of fi(x
0
T [ xT ), magically appears

underneath the plate of each player i. In this way, each player i has computed f evaluated

at a vector of inputs which|though partially determined by the adversary|still, has been

correctly evaluated at a point x0T [xT , where x
0
T was chosen independent of the good players

private inputs.

After the adversary learns the fi(x
0
T [ xT )-values for the already-corrupted players i,

one by one, she may corrupt additional players j. Removing their lead plates, the adversary

learns their xj- and fj(x
0
T [ xT )-values. All together, she may corrupt a total of t players.

Turning the ideal protocol into a definition. The formalization of security at-

tempts to ensure that the computation of f by the protocol is \just like" the computation
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of f by the ideal protocol which computes f . Unfortunately, it is not obvious what \just

like" really means. We attempt to imitate the ideal computation in all essential ways.

For example, in the ideal protocol, the adversary \knows" what values x0T she substitutes

in under the plates of corrupted players, and she \knows" what her share of the output is

as a result of these substitutions. If a protocol does not enjoy this property, might it still

be secure in some signi�cant sense? Absolutely. But our viewpoint is that all important

aspects of the ideal protocol should be mimicked in a protocol we call secure|and the

adversary's substitution on a given run of a value x0T (a value she is aware of) on behalf

of the corrupted players would seem to be an important aspect of the ideal protocol. See

Section 2:5 for some additional discussion.

2.4.2 Ideal Evaluation Oracles

To formalize our notion of security, we develop an abstraction for how an adversary can

corrupt players and steal information in the ideal protocol for computing f . Though the

following notion does not appear explicitly in our formalization of security, the language it

o�ers in useful, and the informal description is helpful in understanding the formalism of

Section 2:4:3. In Chapter 4, we will will speak in terms of oracles to make more under-

standable the proof of that chapter.

We imagine a special type of oracle, Ot(~x; ~�; f), whose behavior is dictated by the

players' inputs ~x 2 (�`)n, their histories ~� 2 (��)n, the function f to be computed, and the

bound t 2 [0::n] on the number of processors the adversary is allowed to corrupt. We now

describe how this oracle behaves.

The oracle accepts two types of queries:

� A component query is an integer i, i 2 [1::n]. It is answered by (xi; �i) if t or fewer

component queries have been made so far, and no output query has been made so far;

it is answered by ((xi; �i); yi) if t or fewer component queries have been made so far,

and the proper output query x0T previously made resulted in a response ~y = f(x0T[xT ).

Additional component queries are answered by �.

� An output query is a tagged vector x0T . The query is valid if T consists precisely of the

component queries made so far, and if this is the �rst output query. Asking a valid

output query x0T results in the oracle computing ~y = f(x0T [ xT ), and answering yT .

An output query which is not valid is answered by �.

Let us emphasize that the oracle is willing to answer at most t component queries. If the

oracle is asked an improper output query (that is, T is not the set of previous component

queries), or if the oracle is asked more than one output query, it does not give the requested

information. Note that we do allow component queries to follow the output query, so

long as the total number of component queries is bounded by t. Also, component queries

behave di�erently depending on whether or not the output query has been made: if the
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output query has been made, then a component query returns (in addition to the requested

component) the queried player's \share" of the function value.

Clearly what you (as a t-adversary) can learn when speaking to a ideal evaluation oracle

exactly coincides with what you can learn in the ideal computation of f . Privacy is then

easy to formalize using ideal evaluation oracles: roughly said, the ensemble of views you

get as an adversary interacting with the protocol is indistinguishable from an ensemble of

views you can generate without speaking to the network, but speaking to some algorithm

equipped with ideal evaluation oracle, instead.

Actually, we will de�ne not only privacy but correctness, too, through the interaction

of an algorithm with its ideal evaluation oracle.

If Ot(~x; ~�; f) is an oracle, we will sometimes omit the subscript t and the parenthesized

arguments ~x, ~� and f , and write simply O, instead. The response to a component query

of i is then written simply as O(i), and the response to an output query of x0T is written

simply as O(x0T ).

The description of an ideal evaluation oracles just given handles vector-valued functions.

In fact we will be interested both in secure computations in which every player will get his

own private output, and in secure computations in which all players will get a common|and

thus public|output.

For the purpose of computing string-valued functions, the de�nition of component

queries can be simpli�ed: a component query i returns xi if there have been t or fewer

component queries so far; there is no need to return the value yi for queries made after the

output query.

2.4.3 Simulators

We now introduce a key tool for achieving our de�nition of security: simulators. This notion

was also central to the de�nition of zero-knowledge proofs, of which protocols for secure

function evaluation are an extension. There are, however, several adjustments to be made,

reecting the several di�erences of context.

2.4.3.1 Informal description

Simulators talk to adversaries. A simulator is an algorithm which interacts with an

adversary with \mechanics" similar to the interaction between an adversary and a protocol,

as suggested by Figure 2:2. We describe this mechanics below. Later we will concentrate

on those simulators interacting with which is indistinguishable|to the adversary|from

interacting with a network.

We point out that we are demanding more of our simulators than is customary to

demand of simulators for zero-knowledge proofs [GMR85]. Our simulators are required to

lay down a conversation with an adversary in a message-by-message manner, something
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Figure 2.2: A protocol can be shown private by constructing a simulator S such that the

adversary A has no idea if she is talking to the actual network N or a simulated network

maintained by S.

which has never been demanded in simulation for zero-knowledge proofs. Cr�epeau [Cr90]

also explicitly demands this type of simulation, and it is discussed by Kilian as well [Ki89].

This restriction is central to achieving our notion of correctness, since it is through this

mechanics of the adversary speaking to the simulator that a meaningful \committal" can be

associated with the execution of an adversary with a network, not just with a simulator. We

caution that this restriction is di�erent from the \black-box" notion sometimes considered

for zero-knowledge proofs.

Simulators own ideal evaluation oracles. It will be the simulator's responsibility

to send to the adversary messages which would \appear" to be from the network itself.

To this end, a simulator is provided an ideal evaluation oracle. When and only when the

adversary A with which simulator S speaks corrupts a processor i, simulator S makes a

component query of i. Once, and only once, the simulator makes an output query x0T ,

where T is the set of processors currently corrupted by A. We will say that the simulator

does this at some point just following the the completion of an adversary round, after the

adversary's outgoing messages have been composed and sent to the simulator. Presumably,

the simulator's output query was required to provide the next round of messages going to

the adversary from the simulator on behalf of the uncorrupted players.

A simulator is sometimes productively thought of as the \subconscious" of an adversary

who is endowed with an ideal evaluation oracle, but who does not having bene�t of a network

with which to compute. Everything that a simulator gives to an adversary an adversary

could give to herself|if only she had the oracle.

Dependency of S on A. There are issues involved in deciding to what extent the simu-

lator's behavior may depend on the adversary A with which it interacts. At one extreme,

the simulator might \see" the adversary's current state, the advice string which A has been

given, and the coins which A ips; and the simulator algorithm may depend in an arbitrary
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manner on the adversary's algorithm itself. This is the least restrictive requirements for a

simulator, giving rise to the weakest notion of security.

At the other extreme (and there are many in the middle), the simulator knows nothing

of the adversary's program, advice, coins, or internal state, and it must provide its messages

without such bene�t, based only on the traÆc exchanged between itself and the adversary.

This is the most restrictive requirement for a simulator, giving rise to the strongest notion

of security. We adopt this notion here. Note that it is completely meaningful to have such

a simulator interacting with an adversary who computes an arbitrary function.

Computing the output query. How does the simulator compute its output query?

Necessarily, it is a function of the simulator's coins, its oracle responses, and the traÆc of

exchanges between itself and the adversary. But we wish to be less generous. Why?

Key to achieving strong notions of reducibility and independence (see Section 2:5) is

that the adversary should know the output query. But if we allow the simulator to compute

its output query without any restrictions, then the adversary|not knowing the simulator's

coins|cannot possibly know this. One (particularly restrictive) way to demand that the

adversary knows the output query (meaning that she could compute it, if she wanted to),

is to demand that the simulator's output query must be an eÆciently computable function

AI (for \adversary input") of just the traÆc of message exchanges. Though less restrictive

notions are possible (and are in fact necessary to properly deal with secure computation

in the broadcast model), the issue is always the same: how to ensure that the adversary

knows what the output query is, in the sense that it can be calculated by the adversary in

roughly the time allotted for the execution.

Adversary output. In the ideal computation of a protocol, the adversary necessarily

learns not only what she has sent o� to the trusted server, but she also learns what the

trusted server returns to her (that is, her share of the output). Through the AI function we

have mimicked the former; through the AO function (for \adversary output") we imitate

the later. Like the adversary input, the adversary output AO is an eÆciently computable

function of the traÆc. In an r-round execution of a protocol, the adversary's share of the

common output is yT = AO(c; � r1A ), where T = corrupted (� r1A ) is the set of players who

are corrupted when the protocol terminates.

� Strong simulatability. We emphasize that the restriction that AI and AO be ef-

�ciently computable functions on the traÆc is a lot to demand. More general notions of

simulatability are less restrictive on this point. The spirit of de�nitions which capture the

sense in which the adversary is aware of her input and output is the same, but is not dealt

with here. Refer to [MR91].
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2.4.3.2 Formal description

Definition of a simulator. We de�ne a simulator as a triple consisting of the simulator

algorithm proper and two associated (total) functions on the traÆc. These specify what

the adversary has e�ectively sent to the trusted server and received from the trusted server.

De�nition 2.4.1 A simulator S = (S;AI;AO) is a polynomial-time computable function

S : ��|{z}
common
input

� ��|{z}
current
state

� �!|{z}
simulator
coins

! ��|{z}
new
state

;

together with a polynomial-time computable adversary input function

AI : ��|{z}
common
input

� ��|{z}
traÆc

! 2[1::n]��
�| {z }

substituted
values

[ fnot-nowg;

and a polynomial-time computable adversary output function

AO : ��|{z}
common
input

� ��|{z}
�nal
traÆc

! 2[1::n]��
�| {z }

deserved
output

:

The function AI has the property that for any traÆc � r1A , either AI(c; � r1A ) = not-now or

else AI(c; � r1A ) 2 corrupted (� r1A )��`(�r1
A

). In the later case, AI(c; s�r1A ) = not-now for all

�r < r.

A simulator interaction function is either of the following polynomial-time computable func-

tions:

1. a next action function � : �� ! fcompute; protocol-doneg, and

2. a give-to-adversary function � : �� ! ��.

A simulator con�guration is an element of ��|{z}
simulator's

state

� �!|{z}
simulator's

coins

.

Discussion. As before, the simulator interaction functions are �xed maps which determine

their range points in a natural, easily encoded manner from their domain points.

Recall that we chose to say that the adversary does not terminate; the protocol is said to

terminate in the adversary round following the termination of all uncorrupted processors.

Since there is no protocol running when an adversary interacts with a simulator, it is a

simulator's responsibility to e�ectively indicate when the protocol should be regarded as

being over. It does this with its next action function, �.

The simulator's other interaction function is used to read o�, from the simulator's com-

putational state, what it provides to the adversary with whom it is interacting.
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Running an adversary with a simulator. When having an adversary interact with a

protocol, the adversary went through the following sequence of con�gurations:

C
r(�+1)
A =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(A(c; sr�A ); rr�A ; ar�A ; �
r�
A ; � r�A ) if ~�(sr�A ) = compute

(sr�A �r
r�
A1; r

r�
A2r

r�
A3 � � � ; a

r�
A ; �

r�
A ; �

r�
A ) if ~�(sr�A ) = ip-coin

(sr�A �a
r�
A1; r

r�
A ; ar�A2a

r�
A3 � � � ; �

r�
A ; � r�A ) if ~�(sr�A ) = get-advice

(sr�A �s
r1
i � �

r1
i �xi� �m

r
1i� � � � � �m

r
ni ; if ~�(sr�A ) = corrupti

rr�A ; ar�A ; �
r�
A [ fig; and r > 0

� r�A �i� s
r1
i ��

r1
i �xi� �m

r
1i� � � � � �m

r
ni )

(sr�A � s
r1
i ��

r1
i �xi ; if ~�(sr�A ) = corrupti

rr�A ; �r�A ; �r�A [ fig and r = 0

� r�A �i� s
r1
i ��

r1
i �xi )

Cr�
A otherwise

Cr1
A =

8>>>>>>><>>>>>>>:

(sr�A ; r
r�
A ; ar�A ; �

r�
A ; if 9 � 2N s.t. r > 0

� r�A �
~M r
1� � � � ~M

r
n� ~m

r
11� � � � � ~m

r
1n� � � � and ~�(sr�A ) = round-done

� � � � ~mr
n1� � � � � ~m

r
nn )

(sr�A ; r
r�
A ; ar�A ; �

r�
A ; �

r�
A ) otherwise

C
(r+1)0
A =

8>>>>>>>><>>>>>>>>:

(sr1A �
�M r+1
1 � � � � � �M r+1

n � �mr+1
11 � � � � � �m

r+1
1n � � � � � �m

r+1
n1 � � � � � �m

r+1
nn ;

rr1A ; ar�A ; �
r1
A ; if r > 0

� r1A �
�M r+1
1 � � � � � �M r+1

n � �mr+1
11 � � � � � �m

r+1
1n � � � � � �m

r+1
n1 � � � � � �m

r+1
nn )

(sr1A �; r
r1
A ; ar1A ; �r1A ; � r1A ) if r = 0

The boxed quantities indicate the points at which the the adversary has obtained informa-

tion from the players in the network, and where this information appears in the updated

traÆc. The idea for de�ning the behavior of a simulator interacting with an adversary is

to have the simulator|rather than the protocol|provide the boxed quantities, above.

To run an adversary A having associated adversary input function AI with a simula-

tor S, common input c = 1k#1n#1`#1l#1m#Cc (where Cc speci�es a function fc : (�
`)n !

(�l)n), adversary coins rA, adversary advice aA, simulator coins rS , and oracle Ot(~x; ~�; f),
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where ~x 2 (�`)n and ~� 2 (�m)n, the boxed quantities above are replaced by that informa-

tion which the simulator returns|as speci�ed by �|and the simulator's state is allowed

to progress in time in a manner analogous to a protocol's progress in time.

To describe this, �x the notation that

Cr�
S = (sr�S ; r

r�
S );

and let the adversary con�gurations progress according to

C
r(�+1)
A =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(A(c; sr�A ); rr�A ; ar�A ; �
r�
A ; �

r�
A ) if ~�(sr�A ) = compute

(sr�A �r
r�
A1; r

r�
A2r

r�
A3 � � � ; a

r�
A ; �

r�
A ; � r�A ) if ~�(sr�A ) = ip-coin

(sr�A �a
r�
A1; r

r�
A ; ar�A2a

r�
A3 � � � ; �

r�
A ; �

r�
A ) if ~�(sr�A ) = get-advice

(sr�A �s
r1
i � �(s

r(�+1)
S ) ; if ~�(sr�A ) = corrupti

rr�A ; ar�A ; �r�A [ fig; and r > 0

� r�A �i� �(s
r(�+1)
S ) )

(sr�A � �(s
r(�+1)
S ) ; if ~�(sr�A ) = corrupti

rr�A ; �r�A ; �r�A [ fig and r = 0

� r�A �i� �(s
r(�+1)
S ) )

Cr�
A otherwise

Cr1
A =

8>>>>>>><>>>>>>>:

(sr�A ; r
r�
A ; ar�A ; �

r�
A ; if 9 � 2 N s.t. r > 0

� r�A �
~M r
1� � � � ~M

r
n� ~m

r
11� � � � � ~m

r
1n� � � � and ~�(sr�A ) = round-done

� � � � ~mr
n1� � � � � ~m

r
nn )

Cr�
A otherwise

C
(r+1)0
A =

8>>>>>>>>><>>>>>>>>>:

(sr1A � �(s
(r+1)0
S ) ;

rr1A ; ar�A ; �
r1
A ; if r > 0

� r1A � �(s
(r+1)0
S ) )

(sr1A �; r
r1
A ; ar1A ; �r1A ; � r1A ) if r = 0
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while the simulator's con�gurations progress according to

Cr�+1
S =

8>><>>:
(S(c; sr�S �O(i); rS); rS) if �(sr�A ) = corrupti

Cr�
S otherwise

Cr1
S = Cr�

S if 9� 2 N s.t. ~�(sr�A ) 2 fround-done; protocol-doneg

C
(r+1)0
S = (S(c; sr1S �O(AI(c; �

r1
S )); rS); rS)

where

O(i) =

8>>>>>>><>>>>>>>:

(xi; �i) if 8�r < r, AI(c; � �r1A ) = ;

((xi; �i); yi) if 9 �r < r s.t.

x0T = AI(c; � �r1A ) 6= not-now

and ~y = fc(x
0
T [ xT )

O(x0T ) = yT where ~y = fc(x
0
T [ xT )

and O(not-now) = �.

In de�ning simulators for string valued computation, the de�nition of component queries

is simpli�ed to O(i) = (xi; �i) but the rest of the de�nition of a simulator interacting with

an adversary is unchanged.

Termination. A simulator is said to terminate in round r if r is the �rst round for which

�(sr0S ) = protocol-done. The adversary with which the simulator interacts is then said to

terminate at the end of its round r.

Adversary's view. In an execution e of an adversary A with a simulator, the view

of A in this execution is \everything the adversary sees" before termination: that is, the

triple (�A; r
0
A; a

0
A) consisting of the traÆc, the adversary's coins actually consumed, and the

adversary's advice which is consumed.

Requirements on AI and AO. For S = (S;AI;AO) to be a simulator establishing the

security of some protocol P , we demand that in any r-round execution of an adversary A

with P , that there is exactly one value r0 � r such that AI(� r
01

A ) = x0T 6= not-now.

Additionally, AO(� r1A ) 2 corrupted (� r1A )� �`(�r1
A

).

That is, the adversary input assumes a well-de�ned vector of \substituted inputs" x0T
at some point in the execution, and the adversary output, evaluated at the �nal traÆc,

speci�es a meaningful output on behalf of the corrupted processors.
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2.4.4 Ensembles for Secure Function Evaluation

The parameter set L(f). A vector-valued function family f is a way to interpret each

common input c as a map fc : (�
`c)nc ! (�lc)nc ; a string-valued function family f is a

way to interpret each common input c as a map fc : (�
`c)nc ! �lc . The description of fc

appears on the common input following the usual quantities. Thus to each function family

f = ffcg we associate the k-indexed family of languages L(f) = fLk(f)g given by

Lk(f) =
[

n�3; k;`;l;m�0

f(~x; ~�; aA; c) : ~x 2 (�`)n, ~� 2 (�m)n, aA 2 �!, and

c = 1k#1n#1`#1l#1m#Cc; where Cc speci�es a

function fc from the function family fg

of all possible inputs, histories, adversary advice strings, and common inputs, in any

\proper" initial con�guration of the network.

Restricting our attention to proper initial con�gurations (with the void set of initially

corrupted processors), the initial con�guration of the players and the adversary are uniquely

identi�ed by a vector (~x; ~�; aA; c; ~r; rA). This is a point in Lf (k) together with coins ~r for

the players and rA for the adversary.

Just as (~x; ~�; aA; c; ~r; rA) speci�es the initial con�guration of the players and the adver-

sary, a point (~x; ~�; aA; c; rS ; rA) uniquely speci�es the initial con�gurations of the adversary

and a simulator S. This is a point in Lf (k) together with simulator coins, rS , and adversary

coins, rA.

The adversary's view. Consider an adversary, A, attacking a protocol, P . Let f = ffcg

be a function family. With a proper initial con�guration speci�ed by (~x; ~�; aA; c; ~r; rA),

there is an associated view which will be held by the adversary at termination (if the

protocol terminates). Omitting mention of ~r and rA, there is an associated distribution

on adversary views induced by the taking each bit in ~r and rA to be selected uniformly at

random. We let

A-VIEWP
k (~x; ~�; aA; c)

denote this distribution of adversary views. Read this as the view which A gets when

speaking to the network running protocol P . When ~x, ~�, aA and c are not regarded as

�xed, but are allowed to vary in Lk(f), then A-VIEWP
k (~x; ~�; aA; c) becomes an ensemble

EA-VIEWP
k (~x; ~�; aA; c) indexed by k and parameterized by L(f). Sometimes we simplify

the notation by writing EPk(~x; ~�; aA; c) or EPk in place of EA-VIEWP
k (~x; ~�; aA; c).

The simulated view. Consider an adversary, A, interacting with a simulator, S. Let f =

ffcg be a function family. With a proper initial con�guration speci�ed by (~x; ~�; aA; c; rS; rA),

there is an associated view which will be held by the adversary at termination (if the protocol

terminates) when A talks to simulator S, where S has an ideal evaluation oracle O(~x; ~�; fc).
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Omitting mention of rS and rA, there is an associated distribution on adversary views

induced by the taking each bit in rS and rA to be selected uniformly at random. We let

A-VIEWS
k (~x; ~�; aA; c)

denote this distribution of adversary views. Read this as the view which A gets when

speaking to the simulator S. When ~x, ~�, aA and c are not regarded as �xed, but are allowed

to vary in Lk(f), then A-VIEWS
k (~x; ~�; aA; c) becomes an ensemble EA-VIEWS

k (~x; ~�; aA; c)

indexed by k and parameterized by L(f). Sometimes we simplify the notation for this

ensemble by writing ESOk (~x; ~�; aA; c) or ES
O
k in place of EA-VIEWS

k (~x; ~�; aA; c).

Network input. Consider an adversary, A, attacking a protocol, P . Let f = ffcg be

a function family, and let S be a simulator with adversary input function AI. With a

proper initial con�guration speci�ed by (~x; ~�; aA; c; ~r; rA), there is (as long as the protocol

terminates) a well de�ned tagged vector x0T which is the x0T -value obtained by evaluating

the adversary input function AI on traÆc values � r1A for r = 0; 1; : : :, until a value di�erent

from not-now is obtained. De�ne

NI(~x; ~�; aA; c; ~r; rA) = x0T [ xT :

This is the n-vector of good players' private inputs \shu�ed in" with the values entered

into the computation by the adversary, as indicated by AI. It is called the network input

function, and, intuitively, it speci�es, on a particular run, what the network has committed

to on this run.

Network output. Consider an adversary, A, attacking a protocol, P . Let f = ffcg be

a function family, and let S be a simulator with adversary output function AO. With a

proper initial con�guration speci�ed by (~x; ~�; aA; c; ~r; rA), there is (as long as the protocol

terminates) a well de�ned tagged vector y0T which is the result of applying the AO-function

to the traÆc � r1A which has occurred when the adversary terminates. De�ne

NO(~x; ~�; aA; c; ~r; rA) = y0T [ yT

where yT is the vector of outputs of good players. The vector above consists of good players'

outputs \shu�ed in" with the output values for the adversary speci�ed by the function AO.

The function NO is called the network output, and speci�es, intuitively, what the good

players did compute as output values, and what the adversary could compute as output

values on behalf of the corrupted players.
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2.4.5 The De�nition of Secure Function Evaluation

We are now ready to de�ne what it means for a protocol P to securely evaluate a function

family f = ffcg.

Computational security. We �rst de�ne what it means for a protocol for function

evaluation to be secure with respect to a computationally bounded adversary.

De�nition 2.4.2 Protocol P t-securely computes f = ffcg if there is a simulator S =

(S;AI;AO) such that for any polynomial-time t-adversary A,

� (Privacy) EA-VIEWP
k (~x; ~�; aA; c) Lk(f)

� EA-VIEWS
k (~x; ~�; aA; c).

� (Correctness) For some negligible function �(k), for all (~x; ~�; aA; c) 2 Lk(f),

Prob~r;rA [NO(~x; ~�; aA; c; ~r; rA) 6= fc(NI(~x; ~�; aA; c; ~r; rA))] � �(k):

De�nition 2:4:2 can be explained as follows. When the adversary talks to the network,

what she is learning is that which she can computationally closely approximate given an

ideal evaluation oracle. How the adversary would compute the output query to this oracle

de�nes what she commits to on a run of the protocol with the simulator. According to this

function, when the adversary talks to the network, what she does is to e�ectively commit

to a value x0T . By the time the adversary terminates, she is in possession of a value yT ,

T � T . During this run, almost certainly the good players computed yT = fT (x
0
T [ xT )

and the adversary has learned yT = fT (x
0
T [ xT ).

Statistical and perfect security. We now de�ne what it means for a protocol for

function evaluation to be secure with respect to an adversary with unlimited computational

power. The only change that is made is to require statistical closeness for privacy. The

following notion is also called information-theoretic security.5

De�nition 2.4.3 Protocol P statistically t-securely computes f = ffcg if there is a simulator

S = (S;AI;AO) such that for any t-adversary A,

� (Privacy) EA-VIEWP
k (~x; ~�; aA; c) Lk(f)

' EA-VIEWS
k (~x; ~�; aA; c).

� (Correctness) For some negligible function �(k), for all (~x; ~�; aA; c) 2 Lk(f),

Prob~r;rA [NO(~x; ~�; aA; c; ~r; rA) 6= fc(NI(~x; ~�; aA; c; ~r; rA))] � �(k):

There is a corresponding notion of perfect security, in which there is equality on the privacy

constraint, and no chance of error on the correctness constraint.

5For information-theoretic security, one might select a nonasymptotic notion of security: the distance

between EPk and ESk is at most 2�k, and the chance that the NO di�ers from f(NI) is at most 2�k.
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2.5 Discussion

A great many issues have been considered in constructing our de�nition of secure function

evaluation. In this section, we draw the readers attention to just a few of them. Greater

discussion and justi�cation for these notions will appear in the paper of Micali and Rog-

away [MR91].

The marriage of privacy and correctness. Some earlier de�nitional work treated

privacy and correctness as separate concerns that could be met independently. One must

be cautious of approaches like this: in many possible formalizations, protocols exist which

would be private with respect to one simulator, correct with respect to another simulator,

but not simultaneously private and correct with respect to any simulator.

The idea that correctness should be de�ned by using the same simulator existentially

guaranteed for privacy was one of the early ideas underlying this work. In fact, at this point

it seems crucial that privacy and correctness be interwoven: though privacy is a meaningful

notion in its own right, it is doubtful that a strong notion of correctness is possible without

its de�nition being entwine with that of privacy.

Statistical closeness for correctness. A protocol should compute what it is sup-

posed to compute|and not just something that \looks like" what the protocol is supposed

to compute. For example, a protocol for collaboratively ipping coins is not an acceptable

protocol for collaboratively computing range points of a pseudorandom generator. (Pseu-

dorandom generators are described in the next chapter.)

Reducibility. Cryptography is a slippery business. One demonstration of this lies in the

fact that many plausible de�nitions for secure function evaluation fail to make the \obvi-

ous" theorems true (or, if they are true, what their proofs are is unclear). Illustrating this,

many possible de�nitions of a secure protocol appear not to provably achieve the following

reducibility property, informally stated as follows: that a secure protocol for f in the \spe-

cial" model of computation which is like ours but which provides for the computation of g

as a \primitive" should remain a secure protocol for f when a secure computation for g is

inserted in place of using the primitive provided by the enriched model.

That is, suppose you have designed a secure protocol for some complicated task|

computing some function f , say. In an e�ort to make more manageable your job as protocol

designer, you assumed in designing the protocol that you had some primitive g in hand (an

oblivious transfer \box," say, for implementing a voting protocol). You proved that your

protocol P g for computing f was secure in a model of computation in which an \ideal"

computation of the primitive g was provided \for free." Now you have continued your work

and designed a protocol Pg which securely computes g. One would hope that you obtain

a secure protocol for f by inserting the code Pg wherever it is necessary in P g that g be

computed.
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Our de�nition of security admits such reducibility. However, stating this theorem pre-

cisely and proving that it holds would take us well a�eld of our goal.

Adversarial awareness. In the ideal computation of a function, the adversary neces-

sarily \knows" what she has sent o� to the trusted party on a particular execution of the

protocol. She knows that the function will be computed on this value, shu�ed in with

the good players' inputs. She knows what values, subsequently, are returned to her by the

trusted party.

Through the adversary input function, the adversary output function, and our notion of

correctness, we have required that all of this is directly paralleled in a protocol we call secure.

In particular, the adversary is \knows" the input she has e�ectively \sent o�" to the network

to compute on (in the sense that she could easily calculate this x0T value, using AI); she

knows that, almost certainly, the function will be computed on this value, shu�ed in with

the good players' inputs; and, �nally, the adversary is aware of what values, subsequently,

have been e�ectively returned to her (in the sense that she could easily calculate them,

using AO). A failure to mimic any of these properties of the ideal protocol would be a

signi�cant breach of the abstraction.

Independence. We wish to ensure the highest possible standard for independence|the

adversary's inability to signi�cantly correlate her behavior with the private input values

held by uncorrupted processors. Our de�nitions do this, though we shall not in this thesis

formalize statements which capture the extent to which independence has been obtained.



C h a p t e r 3

The Constant-Round Protocol

The protocol described in this chapter was invented with a goal of minimizing what would

seem to be the key resource for secure distributed computation|interaction. Of course as

interaction is minimized, other complexity measures must simultaneously be kept in check.

This chapter does not prove|or even rigorously state|anything about the protocol we

exhibit. This is left to Chapter 4. We begin with an overview.

3.1 Overview

To develop some intuition, we �rst look at why interaction rounds were formerly used in

such excess.

The gmw-paradigm. In the multiparty protocols of [GMW87, CDG87, GHY87, GV87,

BGW88, CCD88, BG89, RB89, GL90] and others, the underlying notions of security are

often quite di�erent, and so are the assumed communication models. Nonetheless, all of

them follow the same basic paradigm of Goldreich, Micali and Wigderson [GMW87], which

we now describe.

There are three stages to collaboratively compute the value of some function y =

f(x1; : : : ; xn). (For simplicity, take f to be a Boolean function of n binary strings.) In

the �rst stage, each player \breaks up" his private input into pieces, or shares, and dis-

tributes these pieces. When sharing a value b, for some parameter t, t < n=2, we require

that no t players get information about b from the shares received; and yet, the value b is

recoverable given the cooperation of the \good" players|even if the \bad" players try to

obstruct this recovery to the best of their abilities.

After the sharing stage, a computation stage follows, in which each player, given his own

shares of the input (x1; : : : ; xn), computes his own share of f(x1; : : : ; xn). To accomplish

58
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this, the function f to be evaluated is represented by a Boolean circuit, C. Thus, in

Stage 1, each player got shares of the values along the input wires of C. In Stage 2, for

each gate of the circuit, from shares for the input wires for this gate the parties compute

in a privacy-preserving manner, the shares for the output wire of this gate. In general, this

privacy-preserving computation employs interaction. In this way, the parties work their way

up the circuit, from leaves to root, and eventually hold shares for the value corresponding

to the output wire of circuit C.

In the third and �nal stage, the result of the function evaluation is recovered by having

the players properly combine the shares held for the output wire of the circuit C.

The problem. In view of even this brief description, it can be seen that all of these

protocols for secure function evaluation run in unbounded \distributed time"|that is, using

an unbounded number of rounds of communication. Even though the interaction for each

gate can be implemented in a way that requires only a constant number of rounds, the total

number of rounds will still be linear in the depth of the underlying circuit.

Bar-Ilan and Beaver [BB89] were the �rst to investigate reducing the round complexity

for secure function evaluation. They exhibited a method that (for information-theoretic

security) always saves a logarithmic factor of rounds (logarithmic in the total length of the

players' inputs), while the total amount of communication grows only by a polynomial fac-

tor. While their result shows that the depth of a circuit is not a lower bound for the number

of rounds necessary for securely evaluating it, the savings is far from being substantial in

the general setting. Thus, the key question for making secure function evaluation practical

or for understanding its complexity is:

How many rounds are necessary to securely evaluate a circuit, while keeping the

communication and local computation polynomial in the size of the circuit?

Constant round secure computation. Many of us believed that more complicated

functions (i.e., those with greater circuit complexity) required more rounds for secure eval-

uation. We now know this to be false, for the case of complexity-theoretic secure computa-

tion:

Main Theorem | Informal version There exists a protocol which, using a constant

number of rounds and a polynomial amount of communication, allows its participants to

evaluate any circuit securely. The protocol works in the model of computation described in

Chapter 2, in which parties can communicate privately in pairs and can broadcast messages

to everyone. It assumes the existence of a one-way function. The protocol tolerates any

polynomial-time adversary who can corrupt fewer than half of the total number of players.

Informally, the theorem says that interaction is like an atom. Without interaction secure

function evaluation is impossible; but with a tiny bit of interaction, it is fully possible. The

formal statement of the theorem above is given by Theorem 4:3:1.
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A new approach. Achieving low round complexity necessitates a break from the gate-by-

gate approach described above. The protocol described here is the �rst multiparty secure

function evaluation protocol which does this. Subsequently, Beaver, Feigenbaum, Kilian

and Rogaway [BFKR90] also developed a secure function evaluation protocol which does

not follow the gate-by-gate approach.

A bird's-eye view of the constant-round protocol. The method for achieving

fast secure function evaluation can be described as �nding the right way to generalize the

older two-party protocol of Yao [Ya86]. His approach|what I call computing a \garbled

circuit"|had been used within the GMW-paradigm for computing the desired \out-going

shares" of each gate from its \incoming shares" by engaging in many, suitably chosen, two-

party computations. This use, however, leads to an unbounded number of rounds. We,

instead, modify the construction \from the inside," generalizing it to many parties but

preserving the constant round complexity.

The idea is to have the community use the limited interaction available to it to construct

a publicly-known garbled circuit, along with a set of garbled inputs to feed to this circuit.

Taken together, the garbled circuit and the garbled input are called the garbled program.

The garbled program is suÆciently \scrambled" that its revelation does not divulge more

information than what is permissible to divulge. The garbled program is computed using

the older gate-by-gate approach to secure function evaluation. Once issued, each individual

player evaluates the garbled program on his own, without interacting with other players.

The garbled program is de�ned is a very special way, so as to allow the players to

compute this object in a way that permits them to perform the brunt of the scrambling

locally, rather than use intensive interaction to collaboratively scramble the program step-

by-step.

To eÆciently come up with the garbled program, the players join various pieces together,

each piece contributed by an individual participant. Of course, no player is trusted to

contribute a correct piece, so each player uses interaction to prove to the community that

he has done his work correctly. As usual, veri�cation is simpler than computation, and

correctness of very deep circuits (evaluated locally by individual players) can be veri�ed by

small, shallow circuits. These can be evaluated securely in a constant number of rounds

using the gate-by-gate approach of previous protocols. In the end, the community can be

certain that it is issuing a correct garbled program, which has been found with very little

interaction and is evaluated without any interaction at all.

Why bootstrapping helps. In the remainder of this chapter, even some of what is

described above is abstracted out, as we show how to implement a secure function evaluation

protocol on top of any other secure function evaluation protocol. In the next chapter, we

show that if the underlying secure function evaluation is correct and private, then the

protocol implemented on top of it will also be correct and private.
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How, intuitively, can we possibly gain something by implementing a secure function

evaluation protocol on top of another secure function evaluation protocol? Seems like a

strange strategy.

In general, if one wants to securely evaluate some function f in a particularly eÆcient

manner, one would expect to have to exploit the speci�c structure of the particular function.

But in devising a general method of producing secure protocols, the function being evaluated

is arbitrary, so there would seem to be no structure there to exploit. The bootstrapping

strategy works because the evaluation of f is implemented on top of the evaluation of a

function f̂ which is concoted to have a remarkably simple structure|so simple that f̂ can

be evaluated securely in constant rounds. Thus the arbitrary, \structureless" function f

necessarily does have enough structure to allow it to be distributively evaluated eÆciently.

Ideas from which the protocol springs. As mentioned, the idea of performing two-

party computation by using a garbled circuit is due to Yao [Ya86].

We require the use of a secure function evaluation protocol, as developed by [GMW87,

BGW88, CCD88, RB89]. To achieve constant round complexity, we demand that constant-

depth circuits can be evaluated in constant rounds; the exact statement of what is required

is given by Theorem 4:1:1. Any of the information-theoretic secure protocols mentioned

above, [BGW88, CCD88, RB89], can be implemented to have this property. We note that

the security of the constant round protocol, though, does not depend on situating it on top

of an information-theoretic secure protocol; a complexity-theoretic secure protocol would

do as well.

The protocol of [Ya86] required the intractability of factoring. This assumption was re-

duced to a trapdoor permutation in [GMW87]. The protocol we develop assumes the mildest

of common cryptographic assumptions|the existence of a one-way function. However, this

relaxation in assumptions is not new. Galil, Haber and Yung [GHY87] had already showed

that a pseudorandom generator suÆces to produce the underlying \encryptions" for the

garbled circuit that were formerly achieved using public-key cryptography in the [GMW87]

protocol. In [BG89], Beaver and Goldwasser explicitly recognize that a one-way function is

adequate for the job.

A detour. We have managed to state the general strategy for achieving fast secure function

evaluation without even hinting at what a garbled program looks like or how it is evaluated!

Before we rectify this, we take a short detour and describe a central tool needed to answer

these question: the tool is a pseudorandom generator.

3.2 Pseudorandom Generators

A pseudorandom generator deterministically stretches a short, truly random \seed" into

a longer \pseudorandom" string. The distribution induced on the pseudorandom strings
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when the seeds are sampled from uniformly at random is such that the pseudorandom

output \looks random" with respect to any polynomial-time computation.

This notion of a pseudorandom generator was �rst de�ned and investigated by Blum and

Micali [BM82], and by Yao [Ya82b]. These authors showed that pseudorandom generators

exist under appropriate complexity assumptions.

De�nition 3.2.1 A pseudorandom generator is a polynomial-time computable function G :

�� ! �� taking k-bit strings to Q(k)-bit strings, Q(k) > k, such that the k-indexed

ensembles EG(Uk) and EUQ(k) are computationally indistinguishable.

Call the function Q(k) in De�nition 3:2:1 the stretch of the generator G. The following

theorem appears in Boppana and Hirschfeld [BH88]. It says that the ability to stretch the

truly random seed just a little implies the ability to stretch it a lot.

Theorem 3.2.2 If there exists a pseudorandom generator with stretch k+1, then, for any

polynomial Q(k) � k + 1, there exists a pseudorandom generator with stretch Q(k).

A major e�ort has gone into weakening the conditions known suÆcient for the existence of

a pseudorandom generator, including the work of Levin [Le85], and of Goldreich, Krawczyk,

and Luby [GKL88]. This e�ort has culminated in the work of Impagliazzo, Levin and Luby

[ILL89], and H�astad [Ha90]. They characterize nonuniform and uniform pseudorandom

generation by the existence of nonuniform and uniform one-way functions, respectively.

(But recall that we are limiting the scope of our de�nitions to nonuniform notions.) We

now de�ne a (nonuniform) one-way function. Informally, this is an eÆciently computable

function whose inverse is computable only a negligible fraction of the time.

De�nition 3.2.3 A one-way function is a polynomial-time computable function f : �� !

�� such that for any polynomial-time \inverting" algorithm I and any in�nite string aI ,

�(k) = Probx2Uk

h
I(1k; f(x); aI) 2 f�1(f(x))

i
is negligible.

The existence of a function f 0 satisfying the de�nition above turns out to be equivalent to

the existence of a function f satisfying the apparently weaker condition that any inverting

algorithm should fail to invert f a signi�cant fraction of the time|more precisely, that

there exists a constant c such that for any inverting algorithm I and any in�nite string aI ,

�(k) = Probx2Uk

h
I(1k; f(x); aI) 62 f�1(f(x))

i
is at least n�c for all suÆciently large n [Ya82b]. Similarly, it is also equivalent to allow the

inverting algorithm to be a probabilistic polynomial-time algorithm; the probability that I

successfully inverts is now taken over the inverting algorithm's coins as well as over x 2 Uk.

A theorem mentioned previously is the following:
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Theorem 3.2.4 ([ILL89, Ha90]) A pseudorandom generator exists if and only if there

exists a one-way function.

As a simple example of the results cited, consider the multiplication function

f(x1x2) = x1 � x2;

where jx1j = jx2j + Æ, Æ 2 f0; 1g, and x1 � x2 is the product of x1 and x2, treated as

binary numbers. Suppose that every polynomial-time algorithm fails a fraction n�10 of the

time (for big enough n) to split a number x into numbers x1 and x2 with x1x2 = x and

jx1j = jx2j + Æ, Æ 2 f0; 1g, when x is the product of random numbers of lengths varying

by at most one. Then there exists a pseudorandom generator stretching length-k strings to

length 2�nk + 2 strings, where �n is any �xed polynomial in k.

3.3 High-Level Description

We have said that constant-round secure function evaluation is achieved by eÆciently issuing

to each player a garbled circuit and a set of garbled inputs at which to evaluate this circuit.

This section informally describes what a garbled program looks like, how it is evaluated,

why it is plausible that it can be computed quickly, and why it might be issued to the players

without compromising their private inputs. The next section more formally describes how to

collaboratively compute a function f given a protocol for computing some related function f̂ ,

instead.

The set-up. The players want to collaboratively evaluate some function. This function

must be represented somehow; we represent it by a Boolean circuit C. We assume that C

is made up of only two-input gates. Though the gates have bounded fan-in, they may have

unbounded fan-out. Each player knows the input bits along some of the input wires to C|

namely, player i, who possesses private input xi, knows the jxij bits along the input wires

which take xi. The community wants to learn the bits induced along the output wires.

Figure 3:1 is an example of a circuit three players may want to collaboratively evaluate.

The circuit has two gates and �ve wires. Players 1, 2, and 3 provide the bits x1, x2,

and x3 along wires 1, 2, and 3, respectively. Thus the players are trying to evaluate the

function f(x1; x2; x3) = x1x2 _ x3. We will suppose that x1 = 0, x2 = 1, and x3 = 1, so the

players should compute the bit 1.

(In this example, each player just provides a single bit, and there is only a single bit of

output. But neither of these facts will be relevant to the method we describe.)

Evaluating an (ungarbled) circuit. How would a circuit C normally be evaluated?

Here is one way to describe it.

See Figure 3:2. In the circuit C, each wire carries one of two possible signals|the formal



64

Gate 2

AND

Gate 1

OR

1 2 3

4

5

x1 x2 x3

Figure 3.1: A circuit for three players to distributively compute x1x2 _ x3.

string 0 or the formal string 1. The two possible signals are the same for each wire, and

everyone knows what the two signals associated to a wire are.

Each signal has a corresponding, \publicly-known" semantics. The 0-signal means that

the wire has semantics 0 (or \false"), while the 1-signal means that the wire has a semantics

of 1 (or \true").

If you know the signals along the incoming wires of a gate, you can mechanically prop-

agate a signal to the out-going wire of the gate. For example, an AND gate with incoming

signals of 0 and 1 gets an out-going signal of 0. In this way, signals propagate up the circuit,

from input wires to the output wires, eventually de�ning signals for all output wires. Since

the signals have a �xed, known, semantics, the circuit has then been evaluated.

Evaluating a garbled circuit. Evaluating a garbled circuit is not so very di�erent.

Once again, there will be wires, gates, and signals, and these will mirror the structure of

the corresponding \ungarbled" circuit. See Figure 3:3, which depicts a garbled circuit, and

information related to it.

Wires will still carry one of two signals|but this time, the signals will not be the

strings 0 and 1. Instead, each wire ! will have longer strings associated to it, signals s!0
and s!1 . These will be random strings of length nk + 1|random except that signal s!0 will

always end in a 0, and signal s!1 will always end with a 1.

Before, the signals associated with a wire were publicly known, and the same two signals

were associated with each wire. Now, the signals associated with a wire will be secret, and

they will vary from wire to wire.

Before, the two signals had a �xed semantics, 0 meaning 0 (false) and 1 meaning 1
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Gate 2

Gate 1

0$ 0
1$ 1

0$ 0
1$ 1

0$ 0
1$ 1

0$ 0
1$ 1

0$ 0
1$ 1

0 1 1

Figure 3.2: The circuit and its input. Each wire caries one of two signals, 0 or 1, with

associated semantics 0 $ 0 and 1 $ 1. To compute, signals are propagated mechanically

up the circuit.

(true). Now, the signals will have a secret, \hidden" semantics: s!0 having associated

semantics �! and s!1 having associated semantics �!. For wires other than the output

wires, this semantics is random, and is not known by anybody. In Figure 3:3, the signals s10
and s11 have been given the semantics 0 and 1, respectively, while s

2
0 and s

2
1 have semantics 1

and 0, respectively.

Just as evaluating an ungarbled circuit consists of learning the correct signal for each

wire by mechanically propagating signals up the circuit, evaluating a garbled circuit consists

of learning one of the two signals associated with each wire, and propagating these signals

up the circuit. Initially, you will hold (that is, you will \know") one of the two possible

signals for each input wire|you will hold the signal with the correct semantics for this

input wire. Holding a signal s!b for a wire ! will correspond to that wire having semantics

of �!�b. Given the two incoming signals for a gate, a method will be provided allowing you

to learn the correct out-going signal for that gate.

For example, in Figure 3:3, knowing s10 and s
2
0 \means" that the left and right incoming

wires to Gate 1 carry 0 and 1, respectively. Consequently, in evaluating this \garbled gate,"

the players should learn the signal s41, since this is the signal for the out-going wire which

carries the semantics of 0 ^ 1 = 0.

As mentioned, the s!0 and s!1 signals are concocted to be di�erentiable: we asserted that

the last bit of s!0 is a 0 and the last bit of s!1 is a 1. Thus these signals are referred to as

the even and odd signals, respectively. If you know a signal for a wire, you know whether

you possess the even or the odd signal for the wire, but this tells you nothing about the
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A2
00

A2
01

A2
10

A2
11

A1
00

A1
01

A1
10

A1
11

0$ s10
1$ s11

s20 $ 1

s21 $ 0

s30 $ 0

s31 $ 1

s40 $ 1

s41 $ 0

s50 $ 0

s51 $ 1

s10 s20 s31

Figure 3.3: A sample garbled circuit (the eight gate labels) and garbled input (the three

signals that are fed in along the input wires). Also shown are the two signals (secretly)

associated with each wire, and their corresponding (secret) semantics.

underlying semantics of the wire, because this was chosen at random independent of the

signal being even or odd.

An exception to this is made for output wires, for which we want the semantics to be

public. We simply assert that the even signals for these wires have semantics of 0, and

the odd signals have semantics of 1. Now when a player has computed the signals for the

output wires of a circuit, he has also computed the \semantics" of the circuit's output.

In evaluating the circuit of Figure 3:3, each player initially knows s10, s
2
0, and s31. The

�rst two of these are combined and|somehow|each player learns s41. Then s41 and s31 are

combined and|somehow|each player learns s51. Since this signal belongs to an output

wire and is odd, the circuit evaluates to 1.

How signals propagate across a gate. What, exactly, is this mechanism that allows a

player, given knowledge of two incoming signals to a gate, to compute the correct out-going
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A2
00

A2
01

A2
10

A2
11

0$ s101 � � � s
1
0n0 = s10

1$ s111 � � � s
1
1n1 = s11

s20 = s201 � � � s
2
0n0$ 1

s21 = s211 � � � s
2
1n1$ 0

s40 = s401 � � � s
4
0n0$ 1

s41 = s411 � � � s
4
1n1$ 0

Figure 3.4: A closer look at the signals associated with the wires of Gate 2, and their

corresponding semantics. Each signal consists of n length-k strings, and one additional bit.

signal for the gate?

Each gate g of the garbled circuit provides \help" for accomplishing this task for gate g.

The help is in the form of a table of four strings of length nk + 1. Each of these strings is

called a gate label. The garbled circuit is the collection of all of the gate labels for all of the

gates.

The four gate labels associated with gate g are written Ag
00, A

g
01, A

g
10, and Ag

11. If you

possess two even incoming signals for gate g, then Ag
00 allows you to compute the correct

out-going signal; if you possess an even signal for the left incoming wire of gate g and an

odd signal for its right incoming wire, then Ag
01 lets you recover the out-going signal; and

so forth.

We now describe how the out-going signal is computed from the incoming signals and

the gate labels.

The signals for a wire are not treated atomically. Rather, each signal is considered as

consisting of n strings of length k, together with one more bit that speci�es whether this

signal is even or odd. Figure 3:4 shows the makeup of the signals for Gate 2 of Figure 3:3,

together with their semantics.

Each of the n \pieces" of each incoming signal serves as the seed of a pseudorandom

generator G stretching k bits to 2(�nk + 1) bits, where �n is a �xed polynomial in k which

bounds the number of players, n, in terms of the security parameter used by the algorithm, k.

(For concreteness, we will later select �n = k10, quite arbitrarily.) De�ne G0
0 and G0

1 by

G(s) = G0
0(s)G

0
1(s), for jG

0
0(s)j = jG

0
1(s)j = �nk + 1, and set G0(s) = G0

0(s)[1 : nk + 1] and
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s G0
0(s) G0

1(s)

k �nk + 1 �nk + 1

-

G

Figure 3.5: The pseudorandom generator G, stretching k bits to 2�nk + 2 bits, for

�n = �n(k) a �xed polynomial in k. The map G de�nes G0(s) = G(s)[1 : nk + 1] and

G1(s) = G(s)[�nk + 2 : �nk + nk + 2].

A00

A01

A10

A11

�1 � � � �n a �1 � � � �n b

Gb(�1)� � � � �Gb(�n) � Ga(�1)� � � � �Gb(�n) � Aab

Figure 3.6: How the out-going signal for a gate is determined from the two incoming signals.

G1(s) = G0
1(s)[1 : nk + 1]. See Figure 3:5.

In evaluating the garbled circuit, for each wire incoming to some gate g, either G0

or G1 is computed at each of the n pieces of the incoming signal carried along that wire.

To illustrate, suppose that you possess two even signals coming into a gate g. That is,

both of the incoming signals are strings of length nk + 1 which end in 0. Then each of the

two signals, minus the last bit, is disected into n k-bit long strings. Apply G0 to each of

these 2n strings to get 2n strings of length nk + 1. The bitwise exclusive-or of all of these

images, also exclusive-or'ed with Ag
00, is the desired out-going signal for gate g.

More generally (had the signals not both been even), the out-going signal is computed

as follows. If the left incoming signal to gate g has parity a and pre�x �1 � � � �n (each �i

of length k); and the right incoming signal to gate g has parity b and pre�x �1 � � � �n (each

�i of length k); and the gate labels for this gate are A00; A01; A10; A11; then the out-going

signal is de�ned to be

Gb(�1)� � � � �Gb(�n) � Ga(�1)� � � � �Ga(�n) � Aab:
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This is illustrated in Figure 3:6.

The string Ag
00 can be thought of as the encryption of the out-going signal with the

correct semantics given that both incoming signals were even. To decrypt this encryption,

you must hold both of the two even incoming signals.

More generally, the convention on the signals being even and odd lets you know which of

the four gate labels is meaningfully decrypted given the \secret key" (�1 � � � �n a; �1 � � � �n b).

We have speci�ed what the garbled circuit looks like: it is the collection of Ag
ab-values.

The garbled input is the collection of those signals which carry the correct semantics for

each input wire of the circuit. In Figure 3:3, the garbled input consists of the strings s10s
2
0s

3
1,

while the garbled circuit is A1
00A

1
01A

1
10A

1
11A

2
00A

2
01A

2
10A

2
11. The garbled circuit together with

its garbled input is called the garbled program.

We have now described how to evaluate a garbled program, and how to understand the

result.

Why can a garbled program be found quickly? For any choice for the even and

odd signals of length nk+1 for the wires of the circuit C, and for any semantic assignment

! 7! �! for these signals, the gate labels for each gate are well de�ned so that the gate

computes correctly with respect to the assigned semantics. For example, in Figure 3:4, we

must arrange that

A2
00 = G0(s

1
01)� � � � �G0(s

1
0n) � G0(s

2
11)� � � � �G0(s

2
1n) � s41

for the garbled Gate 2 to compute correctly on two even incoming signals.

Though in this section we will not write out the general expression for what Ag
ab should

be, it is clearly a simple function of the signals and semantics for the three wires that touch

gate g. In particular, the gate labels depend only on local information. This means that in

calculating the garbled circuit, all the gate labels can be calculated in parallel. Since signals

and their semantics are selected randomly, the calculation of the garbled circuit completely

parallelizes. This will mean that while the communication complexity for computing the

garbled circuit depends on the size of the circuit C, the number of rounds will not.

Thus to achieve constant rounds the key is to ensure that the calculation of a single set

of gate labels can be accomplished in constant rounds. It is in order to accomplish this that

we have treated signals as consisting of n separate seeds to the generator G. In constructing

the garbled circuit, each player will be responsible for computing G on \his own" portion

of each signal. That is, each player i will be required to locally compute the image under G

of the ith piece of each signal; and he will enter this information into the collaborative

computation. For example, in Figure 3:3, player i|if honest|selects ten random length k

strings s!�i, where ! 2 [1::5], � 2 f0; 1g, applies G to each of these, and enters all of this

data into the collaborative computation. Applying the generator G to the strings may be

time-consuming|but this computation is done locally, not distributively. It is in this way

that the brunt of the scrambling operation is performed locally.
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Given the images of the seeds under the generator and the �!-values specifying their

semantics, the calculation necessary to compute the gate labels is �xed and straightforward;

it is not surprising that this can be performed eÆciently.

Why is the protocol private? The technical answer that \the simulation goes through"

is not particularly satisfying! We try to give some intuition why the strategy outlined might

be private.

The intent is that knowledge of two incoming signals for a gate gives rise to knowledge

of the correct out-going signal, and nothing else that is meaningful. So if you are magically

handed a garbled circuit and a garbled input to feed to it, you should learn only a randomly

selected signal for each wire not an output wire. For each output wire, you should learn

a random signal of the \correct" semantics. Apart from the output wires, knowledge of a

single signal for a wire should have no discernible meaning.

In some sense, the secure collaborative computation of the garbled program does amount

to magically being handed the garbled circuit and the garbled input|except that the signals

are not entirely secret, since each player knows one piece of each signal (the piece that player

\was responsible for"). The main concern, then, is that the garbled program does divulge

extractable information, even if taken together with those pieces of signals a bad player

might already know about. That is, as a dishonest player, you know one complete set of

signals for the input wires (from knowing the garbled input), and you know those pieces of

various other signals that your dishonest friends have told you about. But, since there is

some honest player who has not told you the seeds he was responsible for, you are denied

knowledge of some piece of each incoming signal that is not a garbled input. Intuitively,

in order for one of the gate labels to be meaningful, you must not be denied knowledge of

any of the 2n seeds whose images under the generator are exclusive-or'ed to decrypt the

out-going signal.

In fact, replacing a gate label for which you lack a seed required to \decrypt" that

gate label with a truly random gate label does not give rise to a noticeable change in

distributions. (Of course, we will be proving this.) Three of the four gate labels for each

gate will be like this, and so all of these can be exchanged with truly random strings without

a noticeable change in distributions. But this new distribution|a distribution on \fake"

garbled circuits|is easily generable. So, releasing a garbled circuit reveals no signi�cant

information, insofar as an indistinguishable \fake" garbled circuit can be released if one

knows only what the garbled circuit ought compute.

In the next section, we repeat the protocol more formally, without attempting to provide

additional intuition.
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3.4 The Protocol

Notation. We �x notation to be used throughout the remainder of the thesis. Let G denote

a pseudorandom generator that stretches a k-bit string s to a 2(�nk + 1)-bit string G(s),

where �n = k10 bounds the actual number of players, n, in terms of the security parameter, k,

which will be used by the protocol. (The constant 10 is an arbitrary constant.) Let G0

and G1 be given by G0
0(s) = G(s)[1 : �nk + 1]; and G0

1(s) = G(s)[�nk + 2: �nk + 2 + 2�nk + 2],

with G0 = G0
0[1 :nk + 1] and G1 = G0

1[1 :nk + 1].

We consider the collaborative computation of a string-valued function fc : (�
`)n ! �l.

This function is represented by a circuit Cc : (�
`)n ! �l, with fc(x1 � � � xn) = Cc(x1 � � � xn).

A description of this circuit appears on the common input c = 1k
0

#1n#1`#1l#1m#Cc.

The circuit Cc has � gates, which are labeled 1; 2; : : : ;�, and it has W wires, which are

labeled 1; 2; : : : ;W . The gates are taken to be two-input gates of arbitrary functionality and

arbitrary fan-out. Each gate has distinguished left and right incoming wire. The numbering

of wires is chosen so that the input wires are wires 1; : : : ; n`, and the output wires are wires

W � l+1; : : : ;W . The jth -bit of private input xi appears along input wire `(i� 1)+ j, and

the jth -bit of the output y appears along output wire W � l + j.

In the description of the protocol that follows, the index i ranges over the players,

i 2 [1::n]. The index ! ranges over the wires, ! 2 [1::W ], or|when indicated|some subset

of these wires (like the input wires). The index g ranges over the gates, g 2 [1::�].

Comments on the protocol. The following remarks and terminology will be used in

the proof presented in Chapter 4, or are otherwise useful in understanding the protocol.

� When run on common input c = 1k
0

#1n#1`#1l#1m#C, with k0 as the security

parameter speci�ed by c, the \true" security parameter k used by the players in

the protocol is not necessarily k0|because we insist that k be at least a polynomial

fraction of jcj. This is necessary because the adversary is given time polynomial

in jcj, rather than time polynomial in k. We enforce this requirement by saying that

k = maxfk0; jcj1=10g, where 10 is an arbitrary absolute constant. Because of this

convention, n is bounded above by a �xed polynomial in k, n � �n(k) = k10.

� The garbled circuit is the collection of gate labels issued to the players, Ag
ab 2 �

nk+1:

The garbled input is the collection of signals �! 2 �nk+1 issued to the players, one

for each input wire !. The garbled program is the garbled circuit together with the

garbled input. Thus a garbled program looks like

ŷ = A1
00A

1
01A

1
10A

1
11 � � �A

�
00A

�
01A

�
10A

�
11 �

1 � � � �n` 2 �l̂;

where l̂ = (4� + n`)(nk + 1).

� The mapping speci�ed by Step 1 from player inputs ~x and player random coins ~r

to the garbled program ŷ, is referred to as the function f̂ . The function f̂ can be
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considered as a map from (�
^̀
)n to �l̂, for ^̀= `+�, with � = 2kW +W � l. Of course

f̂ is actually a function family; it depends on the common input.

� The mapping speci�ed by Step 2 of the protocol, from the garbled program ŷ 2 �l̂ to

the string y 2 �` to which it evaluates, is called the evaluation function, Eval. We

write y = Eval(c; ŷ).

� In the evaluation of a garbled program ŷ, the collection of W signals which come to

be held are called the on-path signals. The other W signals are the o�-path signals.

The collection of � gate-labels which are used for computing the on-path signals|one

Ag
ab for each gate g|these are called the on-path gate labels. The other 3� gate labels

are called the o�-path gate labels.

Evaluating a garbled program entails learning the on-path signals and outputting the

parity of each on-path signal for each output wire, in the proper order.



73

Step 1: Collaboratively compute the garbled program ŷ.

Common Input: The shared string c = 1k
0

#1n#1`#1l#1m#C.

Private Input: Each player i has private input xi 2 �
`.

Coin Tosses: Each player i uses random coins ri 2 �2kW+W�l.

Compute: Players compute gate labels Ag
00; A

g
01; A

g
10; A

g
11 2 �

nk+1 and input

signals �! 2 �nk+1, for g 2 [1::�] and ! 2 [1::n`].

Let k = maxfk0; jcj1=10g. The parties information-theoretically b(n � 1)=2c-securely

compute (with security parameter k), gate labels and input signals, de�ned as follows:

(a) (i) Each string ri de�nes length k strings s
1
0i; s

1
1i; : : : ; s

W
0i ; s

W
1i and bits �

1
i ; : : : ; �

W�l
i

by asserting that ri = s10is
1
1i � � � s

W
0i s

W
1i �

1
i � � � �

W�l
i :

(ii) The private inputs x1; : : : ; xn de�ne the bits b1; : : : ; bn` associated with each

input wire, according to b1 � � � bn` = x1 � � � xn:

(iii) For b 2 f0; 1g, let s!b = s!b1 � � � s
!
bn b:

Comment: s!0 and s!1 are the even and odd signals associated to wire !.

(iv) De�ne

�! =

(
�!1� � � � ��

!
n for 1 � ! �W � l,

0 for W � l + 1 � ! �W
(3.1)

Comment: �! is the semantics of signal s!0 , and �! is the semantics of signal s!1 .

(b) For each input wire ! of the circuit, ! 2 [1::n`], the string �! is given by

�! = s!b!��! : (3.2)

Comment: That is, �! = s!0 if b! = �!, and �! = s!1 if b! 6= �! . In general, s!b��! is the

signal for wire ! which carries semantics b.

(c) For each gate g of the circuit, g 2 [1::�], the strings Ag
00, A

g
01, A

g
10 and Ag

11 are

de�ned as follows: let 
 denote the function computed by gate g, suppose the

left wire is wire �, the right wire is wire �, and the output wire is wire , for

�; �;  2 [1::W ]. Then, for a; b 2 f0; 1g, de�ne the gate label Ag
ab by

Ag
ab = Gb(s

�
a1)� � � � �Gb(s

�
an) � Ga(s

�
b1)� � � � �Ga(s

�
bn) �

s
[(���a)
(���b)]��

(3.3)

Comment: ���a is the semantics of the left wire if you possess a parity-a signal for the

left wire, and ���b is the semantics of the right wire if you possess a parity-b signal for the

right wire. In this case, the gate should output the signal of semantics (���a)
 (���b),

which is signal s
[(���a)
(���b)]��

.

Figure 3.7: Step 1: the parties collaboratively compute the garbled program ŷ.
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Step 2: Locally evaluate garbled program ŷ, computing y = Eval(ŷ).

Common Input: The shared string c = 1k
0

#1n#1`#1l#1m#C.

Input: A garbled program ŷ, i.e., gate labels Ag
00; A

g
01; A

g
10; A

g
11 2 �

nk+1,

and input signals �! 2 �nk+1, for g 2 [1::�], ! 2 [1::n`].

Output: The string y 2 �l that this garbled program \evaluates to."

Let k = maxfk0; jcj1=10g. Each player i behaves as follows:

Initially, player i is said to hold the signal

�! = �!1 � � � �
!
n lsb(�!);

for each input wire !, where j�!1 j = � � � = j�
!
n j = k.

Consider a gate g, having left input wire �, right input wire �, and output wire , with

�; �;  2 [1::W ]. Suppose inductively that player i holds the signal �� = ��1 � � � �
�
n a

for wire �, and the signal ��1 � � � �
�
n b for wire �, where j��1 j = � � � = j�

�
n j = j�

�
1 j =

� � � = j��nj = k and a; b 2 f0; 1g. Then player i computes and is said to hold the signal

� = Gb(�
�
1 )� � � � �Gb(�

�
n) � Ga(�

�
1 )� � � � �Ga(�

�
n) � Ag

ab (3.4)

for wire . In this way, �! values are computed for each wire ! of the circuit.

When a value �! is held for each wire ! of the circuit, each player i outputs

y = lsb(�W�l+1) � � � lsb(�W ) (3.5)

as his private output.

Figure 3.8: Step 2, in which the players, on their own, evaluate the garbled program ŷ.



C h a p t e r 4

Proving the Protocol Secure

4.1 Introduction

The protocol described in Chapter 3 is not speci�ed fully because we have not said how to

implement the secure function evaluation on which it rests. All we have speci�ed is what

we want to collaboratively compute, and how a computation of this is used to de�ne each

player's private output.

We will not remedy this; in fact, we will exploit it. Our strategy has been to abstract out

the speci�cs of the already very complicated information-theoretically secure collaborative

computation, and argue that|whatever its implementation|if it securely computes the

function f̂ that it is designed to compute, then the protocol as a whole securely computes

the function f that it was designed to compute.

Here, precisely, is what we will assume: that existing protocols|those of [BGW88,

CCD88, RB89]|can be used as the basis for proving Theorem 4.1.1, below. We do not say

what particular protocol is used|though, for concreteness, we state the theorem with the

bound on fault-tolerance of the [RB89] protocol, t = b(n�1)=2c. If a protocol with a weaker

bound on fault tolerance is used, this bound is simply mirrored as the fault-tolerance in

Theorem 4.3.1. If an error-free protocol is employed as the basis of Theorem 4.1.1, there

will, correspondingly, be no error in the correctness constraint for the complexity-theoretic

constant-round protocol.

Theorem 4.1.1 Let f = ffcg be a string-valued function family, in which each fc :

(�`c)nc ! �lc is described by a circuit Cc, with fc(x1 � � � xnc) = Cc(g1(x1) � � � gnc(xnc)),

where g : �� �N ! �� is polynomial-time computable and fCcg is a family of constant-

depth circuits, each containing only two-input NAND-gates and unbounded fan-in XOR-

gates. Then, for some absolute constant R, there is a polynomial-time, R-round protocol P

which information-theoretically t-securely computes f , where t = b(n� 1)=2c.
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More general statements than the one above are possible; this one is tailored to our speci�c

needs.

Theorem 4:1:1 says something more general than that a function can be information-

theoretically securely computed in constant rounds if it has constant-depth circuits. Rather,

it says that this is possible if each player need only apply a polynomial-time function to

his private input, and then the result of this computation is the input to a collaborative

computation of a function having constant-depth circuits.

The intuition why Theorem 4:1:1 holds is the following. Secure function evaluation

using the gate-by-gate approach was sketched in Chapter 1, and, for constant depth cir-

cuits, protocols employing this approach require a constant number of rounds. Further-

more, because of the speci�cs of the mechanisms for secure function evaluation developed

in [BGW88, CCD88, RB89], not only can the shared out-going bit for a bounded fan-in

gate be computed from the shared incoming bits in a constant number of rounds, but this

is possible for unbounded fan-in XOR gates, as well.1 For the function g that each player

is \asked" to contribute an image under, each player shares the preimage as well as the

image. He then \proves" to the community that the shared image was properly computed

from the shared preimage. Though this proof will use an amount of communication which

grows with the depth of a circuit for computing g, it requires only a �xed number of rounds.

How does Theorem 4:1:1 apply to us? Basically, the function we collaboratively evaluate

in Step 1 of the protocol of Chapter 3 does indeed factor into a \hard" part, g|which play-

ers evaluate locally|and an \easy part," Ĉc|which the players collaboratively evaluate.

Details specifying this decomposition are given in the proof of Theorem 4:3:1.

Since the round complexity for computing the output y in our protocol is precisely the

round complexity for computing the garbled program ŷ, and since the local computational

complexity of our protocol as a whole is within a polynomial factor of the local compu-

tational complexity for just computing ŷ, Theorem 4:1:1 assures us (after setting up the

appropriate language) of having speci�ed in Chapter 3 a constant-round, polynomial-time

protocol, P . However, showing that P t-securely computes fc is not a small task. In Sec-

tion 4:3 we do this. First, in Section 4:2, we establish some preliminaries needed for the

argument.

4.2 Preliminaries

In this section we collect up some facts which will be useful in proving our main result.

Perhaps the most basic fact we require is that indistinguishability of ensembles de�nes

an equivalence relation. In particular, indistinguishability is transitive (reexivity and sym-

1Alternatively, the result of Bar-Ilan and Beaver [BB89] allows any function with log-depth circuits to

be securely evaluated in a constant number of rounds. The unbounded fan-in XOR gates could thus be

replaced by a complete binary tree of bounded fan-in XOR gates, and then this result applied.
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metry are obvious).

Proposition 4.2.1 SupposeR and S are computationally indistinguishable ensembles, and

suppose S and T are computationally indistinguishable ensembles. Then R and T are

computationally indistinguishable ensembles.

Proof : The proof is a gentle introduction to a standard cryptographic argument. Suppose

for contradiction that R = ERk(!) is computationally distinguishable from T = ETk(!),

as ensembles over a common parameter set L = fLkg. Then there is a polynomial-time

distinguisher Da, a polynomial Q, and a collection of strings f!k 2 Lkg, such that���ED(1k; Rk(!k); !k; a)�ED(1k; Tk(!k); !k; a)
��� � 1 = Q(k)

for in�nitely many k 2 N. By the triangle inequality, for each such k, either���ED(1k; Rk(!k); !k; a)�ED(1k; Sk(!k); !k; a)
��� � 1 = 2Q(k)

or ���ED(1k; Sk(!k); !k; a)�ED(1k; Tk(!k); !k; a)
��� � 1 = 2Q(k)

(or both). Thus either there is an in�nite collection of k 2N such that���ED(1k; Rk(!k); !k; a)�ED(1k; Sk(!k); !k; a)
��� � 1 = 2Q(k);

or there is an in�nite collection of k 2 N such that���ED(1k; Sk(!k); !k; a)�ED(1k; Rk(!k); !k; a)
��� � 1 = 2Q(k):

In the former case, R is distinguishable from S, and in the later case, S is distinguishable

from T . This contradicts the theorem's assumption.

� Notation. The notation in the proof above, with all four argument to D, gets a bit tire-

some. So we will sometimes simplify expressions such as D(1k; Rk(!k); !k; a) to D(Rk(!)).

If you can not distinguish ensembles R and S based on a single sample, then you can not

distinguish R and S based on many sample points, either. (Recall that we are only dealing

with nonuniform indistinguishability.) The proof is implicit in Yao [Ya82b], and follows

the now standard \probability walk" argument, which we shall use again in the proof of

Theorem 4:3:1.

Proposition 4.2.2 If ensembles R and S are computationally indistinguishable over L =

fLkg, then, for any polynomialQ(k), RQ(k) and SQ(k) are computationally indistinguishable

over LQ(k) = fL
Q(k)
k g.
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Proof : Assume for contradiction that RQ(k) and SQ(k) are computationally distinguishable.

Then there is a distinguisher Da, a polynomial q, an in�nite set K, and a collection of

strings f!kg such that

jED(Rk(!k))�ED(Sk(!k))j � 1 = q(k)

for all k 2 K. We use D and a to construct a distinguisher �D�a for distinguishing R from S.

For i 2 [0::Q(k)] and ! 2 Lk, de�ne T
i
k(!) = Rk(!)

iSk(!)
Q(k)�i. Note that T 0

k (!) =

Sk(!), and T
Q(k)
k (!) = Rk(!). By the triangle inequality, for each k 2 K there must exist

a gk 2 [1::Q(k)] such that

�(k) =
���ED(T gk�1

k (!k))�ED(T gk
k (!k))

��� � 1 = Q(k)q(k):

(Informally, we have taken a \probability walk" between Rk(!k) and Sk(!k), using T
i
k(!k)

to specify a set of steps that take you from the one space to the other. Since the two

endpoints have signi�cantly di�erent expectations under D, some step in between must

have associated to it a nonnegligible \jump" in the induced expectations.)

Consider a \distinguisher" �Df~rk~skg, where each ~rk~sk 2 (��)Q(k)�1. This distinguisher

behaves as follows: it takes a sample x (which can be thought of as being either Rk(!k)-

distributed or Sk(!k)-distributed), and it computesD(1k; (r1k � � � r
gk�1
k xsgk+1

k � � � sQ(k)
k ); !k; a).

Observe that if each rik is drawn according to Rk(!k), and each sjk is drawn according

to Sk(!k), then

�(k) =
���E~rk~skE

�Df~rk~skg(Rk(!k))�E~rk~skE
�Df~rk~skg(Sk(!k))

���
� E~rk~sk

���E �Df~rk~skg(Rk(!k))�E �Df~rk~skg(Sk(!k))
��� :

Since the average of a bunch of elements cannot exceed the maximum of those elements,

the equation above implies that there exists, for each k, particular values r1k; � � � ; r
gk�1
k and

sgk+1
k ; � � � ; sQ(k)

k such that

�(k) �
���E �Df~rk~skg(Rk(!k))�E �Df~rk~skg(Sk(!k))

��� :
Letting �a reasonably encode the fgkg-values, these f~rk~skg-values, and the in�nite string a,

we have constructed a distinguisher �D�a which, along the in�nite set K, distinguishes R

and S by at least the inverse polynomial 1 = q(k)Q(k). This is a contradiction.

We draw the following immediate conclusion to Proposition 4:2:2, where �n = k10 (or any

other polynomial in k):

Lemma 4.2.3 Let G : �k ! �2�nk+2 be a pseudorandom generator, and let Q(k) be a poly-

nomial. Then the k-indexed ensembles EU(2�nk+2)Q(k) and E [G(Uk)]
Q(k) are computationally

indistinguishable.
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4.3 Proof of the Main Theorem

Our goal is to show the following:

Theorem 4.3.1 (Main theorem|string-valued computation) Assume a one-way

function exists, and let f = ffcg be a string-valued function family in which each

fc : (�
`c)nc ! �lc is described by a circuit Cc for computing it. Then, for some absolute

constant R, there is a polynomial-time, R-round protocol P that t-securely computes f ,

where t = b(n� 1)=2c.

We emphasize that the protocol P which Theorem 4:3:1 asserts the existence of is a �xed

protocol: in our formulation the common input contains a description of the function the

protocol distributively evaluates. Though the polynomial that bounds P 's running time

in terms of the length of the common input has degree which depends on the underlying

one-way function, the constant R does not depend on this.

Proof : We have described the protocol P in Chapter 3, given a protocol for information-

theoretic secure function evaluation. We must establish that this protocol securely com-

putes f . This entails exhibiting a simulator S = (S;AI;AO), and showing that the simu-

lator \works" to establish P 's privacy and correctness.

Part 1: Strategy, and exhibition of the simulator S.

A menagerie of protocols, simulators, and oracles. To describe the simulator S

and prove that it works, we will introduce some extra terminology. There are suÆciently

many terms that the table of Figure 4:1 may help the reader keep them straight. We begin

by de�ning the �rst row of terms in this table, taking a closer look at the secure computation

of Step 1.

The protocol P̂ . In Step 1 of the protocol, a player i gets private input xi 2 �` and

common input c = 1k
0

#1n#1`#1l#1m#C, where C speci�es �, W , and the topology of

a circuit on W wires and � gates, obeying the conventions indicated on Page 71. He

computes k = maxfk0; jcj1=10g, � = 2kW +W � l, ^̀= `+�, l̂ = (4�+n`)(nk+1), and ips

coins ri 2 ��. He then runs a protocol P̂ for secure function evaluation on private input

xiri 2 �
^̀
and common input ĉ = 1k#1n#1

^̀
#1l̂#1m#Ĉ, where Ĉ is a certain constant-

depth circuit of two-input NAND gates and n-input XOR gates, a description of Ĉ being

eÆciently computable from c. Circuit Ĉ speci�es the function f̂ which protocol P̂ computes

by asserting that

f̂(x1r1; � � � ; xnrn) = Ĉ(g1(cx1r1); � � � ; gn(cxnrn));

where

gi(cxiri) = xiriG(s
1
0i)G(s

1
1i) � � �G(s

W
0i )G(s

W
1i );
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P̂ The protocol which t-

securely computes f̂(~x~r).

Ŝ Simulator for this

protocol.

Ô = Ô(~x~r; ~�; f̂), the ora-

cle for the simulator Ŝ.

�P Player i selects ri  $,

computes ĉ from c, then

runs P̂i with private in-

put xiri and common in-

put ĉ.

�S Same as Ŝ apart from us-

ing ĉ instead of c and

a syntactic modi�cation

of strings handed over to

the adversary.

�O Selects ~r  $, then an-

swers according to

Ô(~x~r; f̂).

��O Same as �O, but \turns

o�" to query of j, for

some random j 2 [1::n].

�O Same as _O, but \turns

o�" to query of j, for

some random j 2 [1::n].

_S Same as Ŝ, ex-

cept garbled program is

evaluated.

_O Same as �O, but returns a

\fake" garbled program,

having random strings

for 3=4 of the gate labels.

P Same as �P , except out-

puts the evaluation of the

garbled program.

S Same as _S, except sim-

ulates the behavior of _O

using O.

O = O(~x; ~�; f); the oracle

for the simulator S.

Figure 4.1: A myriad of closely related protocols, simulators, and oracles. Omitted from

the table are the oracles Oi, for 0 � i � �, and the oracle O�. Only Ô and O are \true"

oracles; the rest are probabilistic algorithms of c, ~x, ~�, f , and the oracle's queries.

with s!bi de�ned from ri according to the equation of Step 1a(i) of the protocol P . The

de�nition of Ĉ can then be read o� the description of Step 1 of the protocol.

We assume that c is encoded within the circuit Ĉ, so that not only is the map c 7! ĉ

easily computed, but so to is the inverse map ĉ 7! c.

Applying Theorem 4:1:1, Step 1 of P can be performed in polynomial-time and constant

rounds. Since Step 2 requires polynomial-time and no communication at all, protocol P is

a polynomial-time, constant-round protocol.

Definition of Ŝ. Protocol P̂ is an information-theoretically secure protocol for f̂ . Let

Ŝ = (Ŝ;dAI;dAO) be the simulator which establishes the security of P̂ . Simulator Ŝ is given

access to an oracle O = O(~x~r; ~�; f̂).

It is through Ŝ, dAI, and dAO that S, AI, and AO will be de�ned. De�ning the

functions AI and AO is the easy part, so we dispense with it right o�.

Definition of AI. The adversary input function for S is de�ned as follows: AI(c; �) = x0T
when dAI(ĉ; �) = x0T r

0
T . That is|after adjusting the common input in the same way that P
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adjusts it for P̂|the adversary input function associated to S just \reads o�" the adversary

input as the appropriate substring of dAI, applied to the same conversation.

Definition of AO. As the adversary output function for Ŝ speci�es a garbled program,

the natural thing is to de�ne the adversary output function for S to simply evaluate that

garbled program: thus AO(c; �) is de�ned as Eval(ĉ;dAO(ĉ; �)).
Construction of S, at a glance. In what way does Ŝ fail to be a good simulator

for P ? At a glance, Ŝ would seem to be a completely di�erent beast from the simulator S

we wish to construct, because Ŝ has access to an O(~x~r; ~�; f̂)-oracle, while we only have

access to an O(~x; ~�; f)-oracle.

All the same, the simulator S we de�ne will behave very much like Ŝ. Except that

whenever Ŝ would interact with its oracle Ô(~x~r; ~�; f̂), simulator S will interact with its

oracle O(~x; ~�; f), instead. From this, it will come up with a response of its own creation.

For example, to a component query of i, the oracle won't simply return the pair (xi; �i),

but some (xiri; �i), instead. In e�ect, we construct a \fake" oracle, _O, which behaves like

the \real" oracle, Ô. Oracle _O is not really a \true" oracle at all, but a rather smart little

probabilistic algorithm.

This oracle substitution method is at the center of the proof described here. Because of

the complexity of the arguments involved, oracle substitutions are described as being made

in several stages.

The Ô(~x~r; ~�; f̂)-oracle, though not exactly (or even statistically) simulatable with only

the aid of an O(~x; ~�; f)-oracle, will be shown to be very closely approximable nonetheless.

In fact, our approximation _O to the oracle Ô will be such a good approximation that no

polynomial-time test could tell with which of the two oracles it was conversing (as long as

the polynomial-time test made fewer than n component queries to the oracle). In particular,

the view provided to some polynomial-time t-adversary A when talking to the simulator Ŝ

running under Ô(~x~r; ~�; f̂) will be computationally indistinguishable from the view provided

to A when it speaks to the simulator _S we construct running under the oracle _O we devise.

The meaning of P̂ 's privacy. The protocol P̂ t-securely computes f̂ in the information-

theoretic sense. The privacy part of this assertion means that for any polynomial-time t-

adversary A interacting with the network running P , the view A receives from the network

is very closely approximated by interacting with the simulator Ŝ, instead. In symbols,

and using the \shorthand" notation mentioned following the de�nitions of A-VIEWP
k and

A-VIEWS
k , we have, by assumption, that

EP̂k(~x~r; ~�; aA; ĉ) ' EŜ
Ô(~x~r;~�;f̂)
k (~x~r; ~�; aA; ĉ): (4.1)

Equation 4:1 asserts statistical indistinguishability of L(f̂)-parameterized ensembles. We

sometimes abbreviate statements like the one above to the less cumbersome E P̂k ' EŜ
Ô
k .
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Definition of �P . We de�ne a protocol �P \in between" protocols P̂ and P . This helps us

reason about P .

Protocol �P is identical to P apart from one matter: in protocol P , the garbled program ŷ

which P̂ computes is evaluated to a string y = Eval(ĉ; ŷ), and player i outputs y instead

of ŷ. Protocol �P does not do this; it simply outputs the garbled program ŷ.

In other words, �P instructs each player i to take his private input xi and his common

input c, and replace his private input by xiri and replace his common input by ĉ, where ri

is i's length-� pre�x of coins. After this initial replacement, �P instruct player i to behave

as P̂ dictates.

Definitions of �S and �O. Paralleling the modi�cation of P̂ to �P , we modify simulator Ŝ

to create a di�erent simulator �S, and modify oracle Ô to a make a di�erent oracle �O.

We consider a probabilistic analog to the oracle Ô, which we call �O. Oracle �O behaves

as follows: it selects a random ~r  (��)n, and then behaves like Ô(~x~r; ~�; f̂), returning

(xiri; �i) to a component query of i, and returning �yT = f̂(x0T r
0
T [ xT rT ) to an output

query of x0T r
0
T .

The simulator �S is very similar to the simulator Ŝ. It begins by mapping its common

input c to the string ĉ, and pretending, subsequently, that ĉ was the common input it was

issued. Additionally, when a processor i is corrupted, simulator Ŝ would normally provide

information to the adversary specifying the private input xiri of the corrupted processor,

its history �i, and its computational state s
r1
i : Simulator �S answers identically, except that

the private input of i is replaced by xi, and the computational state of i is syntactically

modi�ed so that ri speci�es the coins that were initially ipped when player i executes �P .2

Protocol �P is well-approximated by �S
�O. We argue later that Equation 4:1 and our

de�nitions of �P , �S, and �O imply that

E �Pk(~x; ~�; aA; c) ' E �S
�O
k (~x; ~�; aA; c): (4.2)

This is the content of Claim 4. Equation 4:2 asserts statistical indistinguishability of L(f)-

parameterized ensembles.

The simulator _S. When an adversary attacking the network running �P corrupts a pro-

cessor i in her �nal round, she discovers, encoded in i's computational state, i's private

output|the garbled program �y. Simulator _S is obtained from �S by replacing the string re-

turned by �S in response to any �nal-round corruption by the corresponding string in which

the speci�ed output value, rather than being the garbled program ŷ, is the value y that

this garbled program evaluates to. (For technical reasons|see page 90|we also demand

2Since �P is a protocol we specify the description of, there is no problem in determining how these coins

are to be inserted in a description of the computational state so as to \look" like a computational state

obtained from a processor running under �P .
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�O

1

8>>>>>>>>>>><>>>>>>>>>>>:

i1 -
(xi1ri1 ; �i1)�

...

ij -
(xijrij ; �ij )�

2

8><>:
x0T r

0
T -

ŷ = f̂(~x0T~r
0
T [ xT rT )�

3

8>>>>>>>>>>><>>>>>>>>>>>:

ij+1 -
(xij+1rij+1 ; �ij+1)�

...

it -
(xitrit ; �it)�

Figure 4.2: What the simulator _S asks of its oracle �O

that _S provides a distinguished forbidden-value to the adversary with which it speaks if _S's

oracle returns a distinguished forbidden-value. Oracles �O and _O do not return forbidden.)

We will later show (and it is pretty obvious, given Equation 4:2), that

EPk(~x; ~�; aA; c) ' E _S
�O
k (~x; ~�; aA; c): (4.3)

This is the content of Claim 5. Equation 4:3 asserts the statistical indistinguishability of

L(f)-parameterized ensembles.

The oracle _O. So far, the modi�cations to P̂ , Ŝ, and Ô have been simple, essentially

\syntactic" modi�cations. In essence, we have simply set ourselves up to do something

more interesting: to replace the oracle which knows about f̂ with an oracle that only knows

about f . That is, we will now replace the oracle �O by a \fake" oracle _O, realizable given

an oracle O = O(~x; ~�; f). We now describe the behavior of _O.

Let us consider the sequence of queries that _S makes to its oracle �O, and describe how

we will answer them with _O. See Figures 4:2 and 4:3.

As with any simulator interacting with its ideal evaluation oracle, there are three phases

of oracle queries: (1) the component queries; (2) the output query; and (3) additional

component queries.
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_O O(~x; ~�; f)

1

8>>>>>>>>>>><>>>>>>>>>>>:

i1 -
(xi1ri1 ; �i1)�

...

ij -
(xijrij ; �ij )�

2

8<: x0T r
0
T -

_y�

3

8>>>>>>>>>>><>>>>>>>>>>>:

ij+1 -
(xij+1rij+1 ; �ij+1)�

...

it -
(xitrit ; �it)�

i1
-

(xi1 ; �i1)
�

...

ij
-

(xij ; �ij )
�

x0T
-

y = f(x0T [xT )
�

ij+1
-

(xij+1 ; �ij+1)
�

...

it
-

(xit ; �it)
�

Figure 4.3: Alternatively, _S's queries can be answered by the \fake" oracle, _O, which uses

an O(~x; ~�; f) oracle to compose its answers.

The oracle _O begins by selecting a random ~r 2 (��)n. To a component query of i

(whether before or after the output query), _O will make an oracle call to its O(~x; ~�; f)-

oracle to learn xi and �i; it will then return (xiri; �i).

Note that the distribution on what _O returns in Phase 1 and Phase 3 of the oracle

queries is identical to the distribution that �O returns for these queries.

What remains is to describe how _O answers an output query of x0T r
0
T .

The oracle _O, on receiving the output query x0T r
0
T , makes a query of x0T to O(~x~�; f),

receiving a string y 2 �`. The strings y, r0T , rT , and additional random bits are used in

constructing _O's response

_y = A1
00A

1
01A

1
10A

1
11 � � �A

�
00A

�
01A

�
10A

�
11 �

1 � � � �n` 2 �l̂

to the output query. The string _y is called the fake garbled program, as opposed to the real

garbled program, �y, that oracle �O returns.

To construct the fake garbled program, de�ne ~r 00 = rT [ r0T and set s10is
1
1i � � � s

W
0i s

W
1i =

r00i [1 :2kW ]; where js!bij = k, for i 2 [1::n]. De�ne s!b = s!b1 � � � s
!
bnb for ! 2 [1::W ], b 2 f0; 1g.

What we have done is produce signals which are a proper \intermixing" of random strings

with those strings which the output query x0T r
0
T speci�es.
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A \random path" through the garbled circuit is selected by ipping a coin �! for each

wire ! that is not an output wire, ![1::W � l]. The fake garbled program, _y, will be devised

so that s!�! will be the signal held for wire ! when _y is evaluated, for ! 2 [1::W�l]. (Claim 3

establishes that this is really so.) For an output wire !, _y will be constructed so that the

semantically correct signal will be held, s!y[!�(W�l)]. For uniformity in notation, then, set

�! = y[! �W + l] for each output wire !, ! 2 [W � l + 1::W ].

The conditions speci�ed by the last paragraph are simple to satisfy by the appropriate

choice of fake input signals, �1 � � � �n`, and a correct de�nition of just one of the four gate

labels Ag
��, for each gate g. Namely, select fake garbled inputs of

�! = s!�! (4.4)

for each input wire !. Then, to a gate g with left input wire �, right input wire �, and

output wire , de�ne one of the four gate labels Ag
ab for each gate g according to

Ag
����

= G��(s
�
��1)� � � � �G�� (s

�
��n) � G��(s

�
��1

)� � � � �G��(s
�
��n

) � s� : (4.5)

We have thus speci�ed fake garbled input �1 � � � �n` of the fake garbled program _y, and we

have speci�ed, for each gate g, one of the four gate labels for g. All that remains unspeci�ed

in _y are the remaining three gate labels of each gate g. Set all 3� of these Ag
��-values to be

random strings of length nk + 1.

} } }

Having de�ned oracle _O and the simulator _S, we have de�ned the simulator S: S =

SO(~x;~�;f) is _S
_O, except that the oracle responses we have imagined being provided from _O

are computed by S itself, with the aid of its O(~x; ~�; f)-oracle. Notice that the responses

of _O are easily computable from the responses of O and some coin tosses.

Oracle _O well-approximates oracle �O. The main goal is to establish that

E _S
�O
k (~x; ~�; aA; c) � E _S

_O
k (~x; ~�; aA; c): (4.6)

This equation asserts computation indistinguishability of L(f)-parameterized ensembles.

The right hand side is, by de�nition, ESOk .

Equation 4:6 is still rather awkward to argue directly, so we argue instead (Claim 6)

that Equation 4:6 follows from

E _S
��O
k (~x; ~�; aA; c) � E _S

�O
k (~x; ~�; aA; c): (4.7)

for oracles ��O and �O, which are very much like �O and _O, respectively. The di�erence is that

each chooses a random j 2 [1::n] and, if there is ever a component query of j, it \shuts up,"
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refusing to answer any more questions. Equation 4:7 will then be argued by contradiction

(Claim 7), where assuming its falsity allows the breaking the pseudorandom generator G.

Summary of strategy. Before proceeding, we observe that, taken together, Equations 4:3

and 4:6 imply that P is t-private. The global strategy for arguing privacy, can be described

as:

EP̂k(~x~r; ~�; aA; ĉ)
Def
' EŜÔk (~x~r; ~�; aA; ĉ) =)

E �Pk(~x; ~�; aA; c)
Claim 4
' E �S

�O
k (~x; ~�; aA; c) =)

EPk(~x; ~�; aA; c)
Claim 5
' E _S

�O
k (~x; ~�; aA; c) Claims 6,7

� E _S
_O
k (~x; ~�; aA; c) Def

= ESOk (~x; ~�; aA; c):

Under each assertion is written the claim used to establish it. The \heart" of the proof|

and the only arguments which really depends on the clever de�nition of the protocol P|is

Claim 7, which begins on page 91. (On a �rst reading, it may be desirable to begin there.)

Part 2: The simulator S establishes security.

Claim 1: Evaluating ŷ gives y

We show that evaluating a (real) garbled program ŷ gives the value y which it \should"

evaluate to: for any x0T , r
0
T , xT and rT , y = Eval(ĉ; f̂(x0T r

0
T [xT rT )) is equal to f(x

0
T [xT ).

The argument is by induction on the depth of the circuit C de�ning f . We maintain the

following invariant: if, in the evaluation of ŷ = f̂(x0T r
0
T [ xT rT ), signal �

! = s!b is held for

some wire !, then wire ! carries the bit b��! when C is evaluated at x0T [ xT . Here, �
! is

de�ned from r = r0T [ rT according to

�! =

(
�n1 ri[2nW + !] for ! 2 [1::W � l], and

0 for ! 2 [W � l + 1::W ],

as with the equations of Steps 1a(i) and 1a(iv).

The invariant is seen to hold for input wires, since the signal issued for an input wire !

is �! = s!b!��! , by Equation 3:2, and this wire carries a truth value of b! = (b!��!)��!

in C.

Inductively, consider a gate g of functionality 
 having left incoming wire � (carrying a

signal �� = s���), right incoming wire � (carrying a signal �� = s�
��
), and out-going wire .

By Equation 3:4, the signal computed for wire  will be

� = G�� (s
�
��1)� � � � �G��(s

�
��n) � G��(s

�
��1

)� � � � �G��(s
�
��n

) � Ag
����

;

which, from the de�nition of Ag
����

, Equation 3:3, is

� = s
[(�����)
(�����)]��
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The inductive hypothesis says that the left incoming wire carries the bit ����� in C, and

the right incoming wire carries the bit �����. So we know that out-going wire for gate g

of C carries the bit (�����)
 (�����). Consequently, the signal � we have computed for

wire  is sb�� , where wire  carries the bit b in circuit C. This establishes the induction.

By Equations 3:1 and 3:2, we conclude that Eval(ŷ) = (0��W�l+1) � � � (0��W ) = y

Claim 2: Protocol P is correct.

We next argue that protocol P is correct. This follows from Claim 1 and de�nitions of AI

and AO.

The correctness of protocol P̂ implies that, almost certainly, each player outputs ŷ =

f̂(x0T r
0
T [ xT rT ) as a result of the execution of Step 1, where x0T r

0
T is the adversary's

committal in P̂ , as speci�ed by dAI.3 In the protocol P , each player then computes his

output y by evaluating this garbled program ŷ. We need that the y-value so computed

almost certainly equals f(x0T [ x
0
T
), where x0T is the adversary's committal in protocol P .

In fact, Claim 1 establishes that whenever each good player computes ŷ = f̂(x0T r
0
T [xT rT ),

for any r0T and rT , each player computes y = f(x0T [ x
0
T
). Thus, almost certainly, each

player, when running P , outputs y = f(x0T [ xT ), where x
0
T is given by AI and the output

attributable to the adversary is given by AO. This establishes correctness.

Claim 3: Evaluating _y gives y.

Very similar to Claim 1, we show that, in evaluating the fake garbled program _y, one

comes to hold the signal s!�! for each wire !. (By the same reasoning, \hybrid" garbled

programs|where some of the o�-path gate labels are meaningful and others are not|will

share this property.)

This holds by induction on the depth of the circuit C. For an input wire !, one holds s!�!

by the de�nition of �!, Equation (4:4). Inductively, from holding s��� for the left incoming

wire of some gate g, and from holding s�
��

for the right incoming wire of gate g, one computes

and holds, according to Equation 3:3,

� = G��(s
�
��1)� � � � �G�� (s

�
��n) � G��(s

�
��1

)� � � � �G��(s
�
��n

) � Ag
����

for the out-going wire  of gate g. From the de�nition of Ag
����

, Equation (4:5), this is

precisely s� .

We conclude that Eval( _y) = �W�l+1 � � � �W . By our choice of �! values on output

wires, Equation (4:3), this is precisely the string y returned from the oracle query O(x0T ),

y = f(x0T [ xT ).

Claim 4: Equation 4.2 is correct.

Let A be a t-adversary. By the privacy of P̂ , EP̂k ' EŜ
Ô
k , which is Equation 4:1. We wish

to show that Equation 4:2 holds, that E �Pk ' E �S
�O
k .

3That is, the good players do output the string ŷ in Step 1, while the adversary could compute ŷ by

evaluating dAO.
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First note that, for any distinguisher D̂a, for a negligible function �(k0),

�(k0) = max
(~x;~�;aA;c)2Lk0(f)

~r2(��c )nc

���ED̂(P̂k(~x~r; ~�; aA; ĉ))�ED̂(ŜÔk (~x~r; ~�; aA; ĉ))
���

� max
(~x;~�;aA;c)2Lk0(f)

8<:2��cnc X
~r2(��c)nc

���ED̂(P̂k(~x~r; ~�; aA; ĉ))�ED̂(ŜÔk (~x~r; ~�; aA; ĉ))
���
9=;

� max
(~x;~�;aA;c)2Lk0(f)

������ 2��cnc
X

~r2(��c)nc

ED̂(P̂k(~x~r; ~�; aA; ĉ)) �

2��cnc
X

~r2(��c )nc

ED̂(ŜÔk (~x~r; ~�; aA; ĉ))

������ : (4.8)

(Recall that D̂(Ek(!)) is short for D̂(1k; Ek(!); !; a), and k = minfk0; jcj1=10g.) That the

�rst quantity is negligible follows directly from P̂ 's privacy; the next inequality just says

that the average of a bunch of elements can not exceed the maximum of these element; and

the last line is the triangle inequality:
P
jAi �Bij � j

P
(Ai �Bi)j = j

P
Ai �

P
Bij.

Now, given a distinguisher �Da|think of this as having been designed for distinguishing

E �Pk from E �S
�O
k |given any such distinguisher, there is a distinguisher D̂a such that

E �D(1k
0

; �Pk0(~x; ~�; aA; c); (~x; ~�; aA; c); a) =

2��cnc
X

~r2(��c )nc

ED̂(1k; P̂k(~x~r; ~�; aA; ĉ); (~x~r; ~�; aA; ĉ); a) (4.9)

and

E �D(1k
0

; �S
�O
k0(~x; ~�; aA; c); (~x; ~�; aA; c); a) =

2��cnc
X

~r2(��c)nc

ED̂(1k; ŜÔk (~x~r; ~�; aA; ĉ); (~x~r; ~�; aA; ĉ); a): (4.10)

Namely, the distinguisher �D is de�ned as follows. It maps its �rst argument, k, to k0; it

maps its third argument, (~x~r; ~�; aA; ĉ), to (~x; ~�; aA; c); it maps its fourth argument to itself;

and it maps it second argument, which is the view �̂ of the adversary A, to an alternative

view ��, as follows: when �̂ indicates that a processor i is corrupted, and processor i had

private input xiri, the view �� is constructed so that xi is the private input and ri is the

pre�x of i's random string. That is, �� is a syntactic modi�cation of �̂ so that it is a view

that would appear to come from �P , not P̂ . After modifying the arguments in this way,

the distinguisher D̂ is applied to them. Equations 4:9 and 4:10 follow directly from the

de�nitions of P̂ ; �P ; Ŝ; �S; D̂, and �D.

Combining Equations 4:8, 4:9, and 4:10, we have that

�(k0) �
���ED( �Pk0(~x; ~�; aA; c)) �ED( �S

�O
k0(~x; ~�; aA; c))

��� ;
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which is precisely Equation 4:2.

Claim 5: Equation 4.3 is correct.

The last claim easily gives Equation 4:3. To see this, note that if EEk(!) ' EE
0
k(!) and h

is any function, then Eh(Ek(!)) ' Eh(E
0
k(!)). (Likewise, if EEk(!)�EE

0
k(!) and h is

eÆciently computable, then Eh(Ek(!)) ' Eh(E
0
k(!)).)

More explicitly, the only di�erence between �P and P is that P evaluates the garbled cir-

cuit which has been collaboratively computed, outputting this evaluation, while �P outputs

the garbled program itself. Let A be a t-adversary. By our de�nition of P and �P ,

Pk(~x; ~�; aA; c) = eval( �Pk(~x; ~�; aA; c)); (4.11)

where eval is the function on views that simply replaces the string encoding A's view with

the identical string, except that the garbled program �y which the view �� speci�es to be

output is, instead, evaluated, with the function Eval; it is this string which � = eval(��)

speci�es should be output. Likewise,

_S
�O
k (~x; ~�; aA; c) = eval( �S

�O
k (~x; ~�; aA; c)); (4.12)

as follows directly by the de�nition of _S and �S. Applying eval to both sides of Equation 4:2

gives

E eval( �Pk(~x; ~�; aA; c)) = E eval( �S
�O
k (~x; ~�; aA; c)):

Combining this with Equations 4:11 and 4:12 gives

EPk(~x; ~�; aA; c) ' E _S
�O
k (~x; ~�; aA; c);

as desired.

} } }

Definitions of ��O and �O. We are now ready to address the main concern, that the \fake"

oracle _O provides a very close approximation to �O|not in the information theoretic sense,

as with all modi�cations made so far, but with respect to polynomial-time computation.

Actually, it will be convenient to argue this indirectly, showing that �O remains closely

approximated by _O even if each of these oracles \shut up" if you ask some particular

randomly-chosen component query. Speci�cally, de�ne ��O and �O as identical to �O and _O,

respectively, except that each oracle initially chooses a random j 2 [1::n] and then, to a

component query of j, ��O and �O answer forbidden|rather than xjrj, as they otherwise

would. Once ��O or �O answers forbidden, they answer � on any subsequent queries. We now

show that it suÆces to show that ��O is well approximated by �O.
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Claim 6: If _S
��O � _S

�O, then _S
�O � _S

_O.

We may assume that Ŝ always makes exactly t component queries, since a simulator which

makes fewer queries than that can always be modi�ed to make exactly t component queries,

ignoring the unneeded responses. Notice that _S inherits this property from Ŝ.

To establish Claim 6, suppose for contradiction that

_S
��O
k � _S

�O
k ; (4.13)

yet

_S
�O
k 6� _S

_O
k : (4.14)

Equation 4:14 means that there exists a polynomial-time t-adversary A, a polynomial-time

distinguisher Da and a sequence f(~xk; ~�k; ak; ck) 2 Lk(f)g such that

�(k) =
���ED( _S

�O
k (~xk; ~�k; ak; ck))�ED( _S

_O
k (~xk; ~�k; ak; ck))

���
is nonnegligible. Henceforth we omit the arguments to the simulators, writing an equation

like the one above as simply

�(k) =
���ED( _S

�O
k )�ED( _S

_O
k ):
���

We will contradict Equation 4:13. To do this, de�ne a distinguisher D0, which is identical

to D except that D outputs the bit 0 on views containing a distinguished forbidden-value.

As mentioned on page 82, _S provides A with a distinguished forbidden-value when _S's oracle

responds forbidden. Then

ED0( _S
��O) = Prob

h
_S
��O
k does not get a forbidden

i
�

E
h
D( _S

��O
k )j _S

��O
k does not get a forbidden

i
(4.15)

= Prob
h
j  [1::n] : _S

�O
k does not ask component query j

i
�

ED( _S
�O
k ) (4.16)

= (1� t=n) ED( _S
�O
k ); (4.17)

where Equation 4:15 holds by our extension of D0
k to 0 on forbidden, and

E
h
D( _S

��O
k )j _S

��O
k does not get a forbidden

i
= ED( _S

�O
k )

follows because of _Sk making exactly t component queries. Similarly, we have

ED0( _S
�O
k ) = Prob

h
_S
�O
k does not get a forbidden

i
�

E
h
D( _S

�O
k )j _S

�O
k does not get a forbidden

i
= Prob

h
j  [1::n] : _S

_O
k does not ask component query j

i
�

ED( _S
_O
k )

= (1� t=n) ED( _S
�O
k ):
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Thus ���ED0( _S
��O
k )�ED0( _S

�O
k )
��� = (1� t=n) �(k)

� �(k)=2

is nonnegligible, contradicting Equation 4:13 and establishing Claim 6.

Claim 7: _S
��O � _S

�O.

Finally, we address the heart of the matter. Proceeding by contradiction, assume that

_S
��O 6� _S

�O: (4.18)

This means that there is a polynomial-time t-adversary A, a polynomial-time distinguisher

Da, a sequence f(~xk; ~�k; (aA)k; ck) 2 Lk(f)g, a polynomial Q(k), and an in�nite set K � N

such that ���ED(S
��O
k )�ED(S

�O
k )
��� > 1

Q(k)
(4.19)

for k 2 K.

We will use this to construct a probabilistic polynomial-time distinguisher (D0)a
0

for

distinguishing the ensembles

ERk = E(U2�nk+2)
2 and EPRk = E(G(Uk))

2;

where G : �k ! �2(�nk+1) is the pseudorandom generator used by protocol P . Recall that

�n = k10 is a bound on the size of n in terms of the associated security parameter k. The

existence of such a distinguisher contradicts Lemma 4:2:3.

To describe D0 and a0, �x k 2 K and let ~x = ~xk, ~� = ~�k, aA = (aA)k, and c = ck. Let

n; `; l;m;C;�; and � all be as indicated by c.

The distinguisherD0 takes as inputs the two strings, A0; B0 2 �2�nk+2. It uses a substring

of each of these strings to compute a \good guess" as to whether A and B are random or

pseudorandom. Let A0 = A0[1 :nk + 1], A1 = A0[�nk + 2 : �nk + nk + 2], B0 = B0[1 :nk + 1],

and B1 = B0[�nk + 2: �nk + nk + 2].

Definition of the oracle Oi. We de�ne a sequence of oracles, O0;O1; : : : ;O�, the �rst

oracle will be identical to �O, and each oracle will be successively more and more like ��O,

until O� =
��O. This might be depicted as

�O = O0 ) O1 ) � � � ) O��1 ) O� = ��O:

Passing from oracle Og�1 to oracle Og can be thought of as \�xing up" the gate labels

on gate g. That is, recall that �O provides \meaningless" (random) gate labels on three

of the four gate labels per gate, while ��O provides \correct" gate labels throughout. The

intermediate oracles have meaningful gate labels on more and more gates.
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The behavior of Oi is as follows. The oracle begins by selecting a random ~r 2 (��)n

and a random j 2 [1::n]. To a component query of j, Oi responds with forbidden, and it

responds with � to all queries following a forbidden response. Otherwise, to a component

query of � Oi responds with x�r�.

We must describe how Oi answers an output query of x0T r
0
T , returning some string

�y = A1
00A

1
01A

1
10A

1
11 � � �A

�
00A

�
01A

�
10A

�
11 �

1 � � � �n`;

which we now de�ne.

Exactly paralleling the de�nitions in the protocol and in the description of _O, de�ne

~r 00 = rT [ r 0T ; and set

s10is
1
1i � � � s

W
0i s

W
1i �

1
i � � � �

W�l
i = r00i ;

for i 2 [1::n], js!bij = k. For ! 2 [1::W ], declare

�! =

(
�!1� � � � ��

!
n if ! 2 [1::W � l], and

0 if ! 2 [W � l + 1::W ],

and set s!b = s!b1 � � � s
!
bn b: Let b

! be the value carried by wire ! of C when C is evaluated

at x0T [ xT , and de�ne �! = �!�b!:

Now to answer the output query, set �! = s!�! ; for ! 2 [1::n`]. This de�nes the garbled

input. To de�ne the gate labels, for a gate g of functionality 
, left incoming wire �, right

incoming wire �, and out-going wire , de�ne Ag
ab according to

Ag
ab =

8>>>>>><>>>>>>:

Gb(s
�
a1)� � � � �Gb(s

�
an) �

Ga(s
�
b1)� � � � �Ga(s

�
bn) �

s
[(a���)
(b���)]��

if g 2 [1::i] or ab = ����

Rg
ab otherwise

(4.20)

where Rg
ab is a randomly selected string from �nk+1.

Informally, we have put in correct gate-labels for all gates numbered 1; : : : ; i, and we

have also put in correct on-path gate labels for the remaining gates. The other 3(� � i)

gate-labels are garbage|just random strings.

Claim 8: ��O = O�.

This claim means that ��O and O� exhibit exactly the same (probabilistic) behavior when

used as ideal evaluation oracles which are asked at most t component queries.

This statement is immediate from the de�nitions of of ��O and O�. Both oracles choose

a random j 2 [1::n], and answer forbidden to a component query of j, answering � subse-

quently. Apart from that, both oracles return xiri (for a random ri) to a component query

of i. To an output query of x0T r
0
T , both oracles return f̂(x0T r

0
T [ xT rT ).
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Claim 9: �O = O0.

This claim means that ��O and O0 exhibit exactly the same (probabilistic) behavior when

used as ideal evaluation oracles which are asked at most t component queries.

As before, both oracles choose a random j 2 [1::n], and answer forbidden to a component

query of j, answering � subsequently. Both oracles then choose a random ~r, and, to a

component query of i, each answers xiri.

To an output query of x0T r
0
T , the oracle �O chooses a random path �1; : : : ; �W�l and

returns a random fake garbled program _y that computes f(x0T [xT ) along this path, having

random o�-path gate labels. On the other hand, Oi explicitly chooses no such random path;

the path is implicitly speci�ed by the ~r 00-values.

Still, the path chosen, being a function of the randomly selected �n1ri-values, is inde-

pendent of the values returned by the t < n component queries. Furthermore, the path

does not depend on the output query itself. Thus both oracle �O and O0 answer an output

query x0T r
0
T by a random path computing f(x0T [ xT ), with Unk+1-distributed o�-path gate

labels. This establishes Claim 9

Claim 10: There is a gk 2 [1::�] such that
���ED( _S

Ogk�1

k )�ED( _S
Ogk

k )
��� � 1 = �Q(k):

The claim follows immediately from Claims 8, 9, Equation 4:19, and the triangle inequality.

In common parlance, we have taken a \probability walk" through the oracles O0 ) O1 )

� � � ) O��1 ) O�. The distinguishing probabilities di�er at the two endpoints; somewhere,

there must be a nonnegligible \jump" in the distinguishing probabilities. We have let gk

denote a place in which there is a jump between the behavior induced by oracles Ogk�1

and Ogk . The same proof technique was used in the proof of Proposition 4.2.2.

} } }

Before proceeding, we make the following de�nition: �k, �k, and k denote the left incoming

wire, right incoming wire, and out-going wire to gate gk, respectively.

The oracle O�.4 The distinguisher D0, recall, takes a string A0A1B0B1 2 �4(nk+1)

(extracted from A0B0). Consider the oracle O�, whose behavior depends on such a string

A0A1B0B1, de�ned to behave as follows: it ips coins to determine the values j, ~r, and R
g
ab,

exactly as Ogk did before. Component queries are answered as Ogk would answer them.

Then, to an output query of x0T r
0
T , the values ~r

00, s!bi, �
!
i , �

!, s!b , b
!, �! and �! are all

computed as Ogk would compute these values. However, in forming the garbled program y�,

the Ag
ab-values are computed di�erently than they were for Ogk|but just for the case of

4Introduced for the bene�t of readers who believe there have not been enough oracles described in this

proof.
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gate gk. Namely, set

Ag
ab =

8>>>>>><>>>>>>:

Gb(s
�
a1)� � � � �Gb(s

�
an) �

Ga(s
�
b1)� � � � �Ga(s

�
bn) �

s
[(a���)
(b���)]��

if g 2 [1::gk] or ab = ����

Rg
ab otherwise

(4.21)

where

G�(s
!
Æi) =

8>><>>:
A� if ! = �k and i = j and Æ = ��k

B� if ! = �k and i = j and Æ = ��k

G�(s
!
Æi) otherwise

for �; Æ 2 f0; 1g. We can describe the preceding as follows. Player j's contribution to the left

wire feeding gate gk is A0A1 for the (supposed) generator output corresponding to the o�-

path signal. For the right wire, his contribution is B0B1 for the (supposed) generator output

corresponding to the o�-path signal. Now if A0A1 and B0B1 really are pseudorandom, this

is what player j should contribute for these wires, and we will compute a meaningful set

of o�-path gate labels for this gate. But if A0A1 and B0B1 are truly random, then this

contribution will cause all of the o�-path gate labels to be random. We formalize this as

follows:

Claim 11: If A0 and B0 are G(Uk)-distributed, then O
A0A1B0B1
� = Ogk .

Claim 12: If A0 and B0 are U(2�nk+2)-distributed, then O
A0A1B0B1
� = Ogk�1.

The �rst of the these two claims is immediate. The only concern is that a component query

would necessitate revealing a preimage under the generator of an A or B-value. We don't

have any such values to reveal. Fortunately, we have arranged that a component query of j

need only return a value of the response forbidden.

The second of the these claims is just a little more complicated. The behavior of O� and

Ogk�1 potentially di�er only by the gate labels associated to gate gk. In Ogk�1, random

strings are used for the three o�-path gate labels. In O�, on the other hand, the three

o�-path gate labels are produced according to Equation 4:21. The calculation of these gate

labels can be viewed as XOR-ing three �nk+1-valued random variables, X1, X2, and X3,

with random variables A0, B0, and A1, respectively, where X0, X1, and X2 are independent

of A0, B0, and A1, respectively. Thus, when A0 and B0 are U2�nk+2-distributed, the three

o�-path gate-labels are Unk+1-distributed.

Wrapping up. We now complete the proof of Claim 7. Observe that, given ~x; ~�; aA; c and

gk, and given A and B, it is easy to compute a sample from _SO� in time polynomial in jcj.

The distinguisher D0, using advice which encodes both the (in�nite collection) of strings

a0 = f(~xk; ~�k; (aA)k; ck; gk)g and the in�nite string a in a reasonable manner, and using A
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and B, works as follows: it computes a sample � from _SO
AB
� and then computes the bit

D(1k; �; (~xk; ~�k; (aA)k; ck); a). It output this bit. We know that

��ED0(Rk)�ED0(PRk)
�� � 1

�kQ(k)
�

1

k10Q(k)

for all k 2 K. This contradicts the assumption given by Equation 4.18, and so have

established Claim 7, as well as the Theorem 4.3.1.

4.4 Postmortem

We begin with a few comments about the proof of Theorem 4:3:1.

Requirement on honest majority. The assumption that t < n=2 was only required

because Theorem 4:1:1 requires this; a garbled program reveals no useful information as

long as t < n. Indeed, the proof we have given remains unmodi�ed to establish this claim,

apart from relaxing the bound in the conclusion of Claim 6 to \� �(k)=n � �(k)=k10."

Generality of techniques. Some of the techniques used in the proof of Theorem 4:3:1

are applicable to other simulator arguments. One of these methods is considering the

probabilistic analog of deterministic protocols and simulators, as we did in passing from P̂

to �P and from Ô to �O. Another is considering oracles which \shut up" when asked oracle

queries they �nd inconvenient to answer. The high-level method of replacing one oracle by

another|the \oracle substitution argument" we have employed|is likely to be generally

applicable.

Vector-valued secure computation. For simplicity, we have described the protocol

for string-valued computation. There is no diÆculty extending the protocol to vector valued

computation, and there is no diÆculty carrying the proof over to this case, as well.

To collaboratively compute a vector-valued function f : (�`)n ! (�l)n, the players

compute, instead, a string-valued function f� : (�
`+l)n ! �`l, de�ned by y� = f�(~x~r) =

(r1�f1(~x)) � � � (rn�fn(~x)). To compute f , each player is instructed to choose a random

ri 2 �l and then run the protocol for securely computing f�. Then, each player i outputs

yi = ri�y�[(i � 1)l + 1 : il]. Using this method, the following extension of Theorem 4:3:1

can be obtained:

Theorem 4.4.1 (Main theorem|vector-valued computation) Assume a one-way

function exists, and let f = ffcg be a vector-valued function family in which each

fc : (�
`c)nc ! (�lc)nc is described by a circuit Cc for computing it. Then, for some absolute

constant R, there is a polynomial-time, R-round protocol P that t-securely computes f ,

where t = b(n� 1)=2c.
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