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Abstract. We provide attacks and analysis that capture a tradeoff, in
the ideal-permutation model, between the speed of a permutation-based
hash function and its potential security. For collision-uniform, fixed-
permutation-order compression functions, we show that any 2n-bit to
n-bit construction will have unacceptable collision resistance it makes
fewer than three n-bit permutation invocations, while a 3n-bit to 2n-
bit construction will have unacceptable security if it makes fewer than
five. Collisions can be found in a rate-α fixed-permutation-order hash-
function built from n-bit permutations in about N1−α queries, where
N = 2n. Our results provide guidance when trying to design or analyze
practical permutation-based hash functions about the limits of what can
possibly be done.

An earlier version of this paper appeared in Eurocrypt 2008.

1 Introduction

Overview. Consider the problem of constructing a cryptographic hash function
where, for reasons of speed, assurance, or minimalism, you’ve decided to base
your design on an off-the-shelf blockcipher, say AES, with an n = 128 bit block-
size and a small, fixed set of keys. To keep things modular, you’ve decided to
first build a 3n-bit to 2n-bit compression function from your n-bit permutations
π1, . . . , πk. You plan to prove your construction sound in the ideal-permutation
model, where the adversary has black-box access to the forward and backwards
direction for each πi.

Perhaps surprisingly, the design problem just described is extremely chal-
lenging. If you write a construction down, chances are good that, after a while,
you’ll find an efficient attack. It’s quite unlikely you’ll find an easy proof. At
least this was our experience, and over a period of many months.

In this paper we partially explain where the design difficulty is coming from.
Basically, the problem is that it costs a surprisingly large number of permuta-
tion invocations to buy a reasonable level of security. In particular, compressing
3n bits to 2n bits needs at least five permutation invocations just to break
the birthday bound of N0.5 queries (where N = 2n) that motivates having
a double-length construction in the first place. And even with five permuta-
tions there is still going to be a collision-finding attack that uses about N0.6
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queries, which isn’t all that great. These claims assume the compression func-
tion is collision-uniform, a technical condition that one expects to be met by
any desirable-in-practice design.

In prior work, Black, Cochran, and Shrimpton [2] showed that any rate-1
iterated hash function whose compression function uses a single permutation
call must be insecure in the ideal-permutation model.3 In the present work, the
Black et al. result is seen as a point on a continuum: while one permutation
call is not enough, more and more calls buys you, potentially, better and better
security. Concretely, we exhibit a quantifiable tradeoff between the number of
permutation calls and the effectiveness of a corresponding attack. The attack’s
effectiveness diminishes rather slowly with the number of permutation calls.

The problem of constructing a cryptographic hash function from a fixed-key
blockcipher dates to Preneel, Govaerts, and Vandewalle [8]. They explain the
utility of this problem and specify a family of solutions with inverse rates of 4–8.
For the concrete parameters they suggest, a compression function mapping 310
bits to 256 bits using four calls to 64-bit permutations, our pigeonhole-birthday
attack (Theorem 2) shows an adversary will probably have the information it
needs to construct a collision after making about two million queries, assum-
ing the compression function is collision-uniform. While this doesn’t mean that
there’s a computationally efficient way to find the collision, it does suggest that,
for the stated parameters, one won’t be able to prove a decent security bound
in the random-permutation model.

We want to emphasize at the outset that this paper is about attacks, not
constructions or their security proofs. It remains an intriguing open question if,
for every choice of parameters, there is a construction whose provable security
matches that given by our attacks. Our guess is that the answer is yes, which
would mean that the results of this paper are tight.

Our results and their interpretation. Let us now summarize our results
one-by-one. First we look at the collision resistance of a permutation-based com-
pression function. We show that if a collision-uniform compression function maps
mn bits to rn bits using k calls to n-bit permutations—a signature we abbrevi-
ate as m k→ r, eliding n—then an adversary will be able to find a collision using
some4 N1−(m−0.5r)/k queries, where, again and throughout, N = 2n. In partic-
ular, a 2 2→ 1 collision-uniform compression function can be broken with about
N1−(2−0.5)/2 = N1/4 queries, which is unacceptably few, while a 3 4→ 2 collision-
uniform compression function can be broken in about about N1−(3−1)/4 = N1/2

queries, which, for a double-length construction, is again too few. The collision-
uniformity condition, defined in Section 5, demands that the output of the com-
pression function should behave, more or less, as a random function would with
respect to collisions.

3 The rate of a permutation-based hash function is α if it processes αn bits worth of
data with each n-bit permutation invocation. The inverse rate β = 1/α is therefore
the number of permutation calls used per n bits of input.

4 In summarizing our results we omit distracting multiplicands or addends that have
a second-order effect.



Security/Efficiency Tradeoffs for Permutation-Based Hashing 3

Our bounds suggest a qualitative difference in behavior between the m k→ 1
(single-length) and the m k→ 2 (double-length) settings: in the first case k = 3
permutations is enough to potentially achieve the optimal security of N1/2

queries, while in the second case no number of permutation calls can ever achieve
the optimal security of N queries (even without collision-uniformity). It has re-
cently been shown that one can asymptotically achieve the optimal security of
N1/2 queries with a 2 3→ 1 compression function [9], one of the rare choices of
parameters for which a m k→ r construction is known to have a security bound
matching that of our attacks.

Next we put compression functions aside and look at collision resistance for
a full-fledged permutation-based hash function H: {0, 1}∗ → {0, 1}rn. We show
that if the rate of the hash function is α then an adversary can find collisions
with about N1−α queries. In particular, rate-1 hash functions are completely
insecure, as already discovered by Black et al. for the special case of iterated hash
functions using a single permutation call per iteration. In addition, a rate-1/2
double-length hash function (r = 2) will admit an N1/2-query attack. As this
is what one expects from a single-length construction, the conclusion is that a
double-length construction must have a rate of less than 1/2. These bounds do
not require the hash function to be collision-uniform.

We also look at the preimage resistance of permutation-based compression
functions and hash functions. In the former case, a preimage for an m k→ r con-
struction can be found in about N1−(m−r)/k queries, assuming the compres-
sion function is preimage-uniform, a notion defined in Section 7. In particular,
preimages can be found in any preimage-uniform 2 3→ 1 design with about N2/3

queries. (Happily, the 2 3→ 1 construction we mentioned asymptotically matches
this bound [9].) So while collision-resistance can be “as good as a random func-
tion” with a 2 3→ 1 design, no such design can be comparably good with respect
to preimage resistance, at least not if the outputs behave randomly (which is
of course desirable). For a full-fledged rate-α hash function, a preimage can be
found in about N1−α queries, which is, rather oddly, the same as for collision
resistance.

In a somewhat different spirit, Section 8 of this paper considers the number
of bits that a permutation-based compression function must keep in memory in
order to be collision resistant. We show that an m → r compression function
must, at some point during its computation, keep strictly more than mn bits in
memory, or else it will suffer from devastating attacks. If we imagine that the
compression function is built from n-bit wires connecting the permutations, then
the compression function must, at some point, maintain at least m + 1 active
wires to have any hope for collision resistance.

Appendix A sketches a generalization of the attack of Black et al. Theirs is a
collision attack on permutation-based iterated hash functions that use a single
permutation call per iteration; here we adapt it to the case where k permutation
calls are made per iteration. The attack is only applicable to iterated designs,
and our version of it uses a heuristic assumption, but the bound is slightly better
than that of our attack for an arbitrary hash function.
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Document history. An earlier version of this paper appeared in Eurocrypt [10].
The current paper incorporates revisions responsive to a manuscript by Stam [13],
which looked at the collision resistance of compression functions in the absence
of the uniformity assumption. To clarify matters, we have made our (collision)
uniformity assumption more quantitative and conspicuous. We have also intro-
duced the corresponding assumption for preimage resistance, which had been
inadvertently omitted from our earlier work.

2 The Model

Consider a compression function H: {0, 1}mn → {0, 1}rn built from black-box
n-bit permutations, where m > r ≥ 1 and n ≥ 1. Let us assume that for H
to process its mn-bit input requires making k calls, in order, to permutations
π1, . . . , πk: {0, 1}n → {0, 1}n. Then H necessarily takes the form illustrated in
Fig. 1, for some sequence of functions f1, . . . , fk, g. Along with permutations
π1, . . . , πk: {0, 1}n → {0, 1}n, functions fi: {0, 1}imn → {0, 1}n (i ∈ [1..k]) and
g: {0, 1}(i+1)mn → {0, 1}rn define H. In general, we do not require anything
of f1, . . . , fk, g beyond their having the specified domain and range.

Because π1, . . . , πk are always called in the order π1 and then π2 and so forth,
up to πk, we call the model just described the fixed-order model. It includes de-
signs where the permutations π1, . . . , πk are unrelated—the distinct-permutation
setting—and designs where a single permutation π (= π1 = · · · = πk) is always
called—the single-permutation setting. It does not include the case where the
identity of the permutation (ie, which πi is used at each step) is data dependent.
This restriction turns out not to be so significant—more on that in just a bit.

Let H be a fixed-order compression function, notation as above, and let A be
an adversary with access to oracles π1, . . . , πk (and, in principle, their inverses—
only that this isn’t needed in any of our attacks). The advantage of A in finding
collisions in H is the probability that A asks a sequence of queries such that
there exist distinct inputs v, v′ ∈ {0, 1}mn for which the adversary has asked all
necessary queries to compute H(v) and H(v′). This probability is over the ad-
versary’s coins and over uniform permutation oracles π1, . . . , πk. (This sentence
assumes the distinct-permutation setting. More generally, select a single ran-
dom permutation to model each distinct πi.) Note that we do not insist that the
adversary actually output a collision: we assert that it wins if a computationally-
unbounded adversary could compute a collision from what it knows. It is true
that this makes the attacks less “realistic” than if we had paid attention to the
attacker’s time and required it to print out its collision. But since our main goal
is to understand the limits of what is provably secure in the random-permutation
model, we can ignore time and adopt a liberal notion of adversarial success.

As mentioned already, one can generalize the fixed-order model by letting
the compression function choose which permutation to invoke at each step: in
Fig. 1, add in a line 3.5 saying j ← ei(v, y1, . . . , yi−1), and use j, not i, as the
subscript for π at line 4. This no-fixed-order model was employed by Black,
Cochran, and Shrimpton [2]. We ourselves prefer the fixed-order model, and as-
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1 algorithm H(v)
2 for i← 1 to k do
3 xi ← fi(v, y1, . . . , yi−1)
4 yi ← πi(xi)
5 w ← g(v, y1, . . . , yk)
6 return w

Fig. 1. Illustration and definition for a permutation-based compression function. Re-
garding π1, . . . , πk as oracles, functions f1, . . . , fk and g define the scheme, which maps
an mn-bit input v to an rn-bit output w.

sume it for quantitative results. Philosophically, letting permutation selection
vary according to the data being hashed would make permutation-based hash-
ing conceptually coincide with blockcipher-based hashing, contrary to the point
of our investigation. More pragmatically, good lower bounds in the (simpler)
fixed-order setting are already enough to imply good lower bounds in the (more
complex) no-fixed-order setting. To see this, note that if H is a no-fixed-order
compression function that makes k permutation calls, then there’s a functionally
identical fixed-order compression function H ′ that makes k2 calls: H ′ just queries
its k permutations in a round-robin fashion. Because of this, lower-bounds ap-
plicable to (the fixed-order) H ′ are inherited by (the no-fixed-order) H if one
simply replaces each k by k2. Since we are always thinking of k as a small con-
stant, the quantitative change in bounds is not so significant. In particular, every
qualitative conclusion that we draw in this paper is an accurate interpretation
of our results for the fixed-order model and the no-fixed-order model, too.

3 The Trivial Attacks

We begin by acknowledging two trivial but nonetheless significant attacks on any
permutation-based compression function, the exhaustion attack and the birthday
attack. The former attack asks all kN possible queries, where N = 2n. At that
point the hash of every message will be known and so, by the pigeonhole princi-
ple (remember that m > r), there will be messages known to collide. This implies
that it is, in some sense, futile to select an output length exceeding 2n bits, as
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2n bits are already enough to accommodate the maximum feasible security5.
With an output length of 3n bits, for example, you’ll never get a construction
withstanding anything near the optimal value of q = N3/2 queries, as no con-
struction can withstand more than q = N1+(lg k)/n � N3/2 queries (the “�” is
because we assume that k is a small number).

The birthday attack is to compute the permutations necessary to hash p =
q/k random messages. By the birthday phenomenon, one expects to see a col-
lision when p ≈ √2 ln 2Nr/2 ≈ 1.18Nr/2. For a proper upperbound, note that
when N ≥ 216, which we will henceforth implicitly assume, the probability of
a collision is at least 1/2 if p ≥ 1.18N1/2 balls are randomly and uniformly
thrown into N bins. We record the efficacy of our two attacks in the following
proposition.

Proposition 1. Let H: {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function, and let N = 2n. Then with

q=kN queries an adversary can find a collision with probability 1, and with

q=1.18kNr/2 queries an adversary can find a collision with probability ≥1/2.

In all theorem statements where, like above, q is an integer but the quantity
on the right may be fractional, it is implicit that q is obtained by rounding up
the expression on the right. Also, here and subsequently, it is not necessary to
restrict m and r to natural number; it is fine to select any rational values m
and r such mn and rn are positive integers.

4 The Pigeonhole Attack

We now give a more interesting collision attack on compression functions. It
succeeds, always, in about kN1−(m−r)/k queries.

Theorem 1. Let H: {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function, and let N = 2n. Then with

q = k (N1−(m−r)/k + 1) ≈ k N1−(m−r)/k

queries an adversary can find a collision in H. �

The concrete consequences of this are interesting. Suppose H is a 2 1→ 1 compres-
sion function. Then it can be broken in just q = 2 queries. So k = 1 permutation
calls certainly won’t do, as shown by Black, Cochran, and Shrimpton [2] in the
iterated hash-function setting. In addition, we see that a 2 2→ 1 compression
function can be broken in about N1/2 queries, which is optimal for a hash func-
tion of output length n, except that Theorem 1 states the collision can be found
with probability 1, whereas an ideal construction would require 2N queries for
the same result. Quantitative results are tabulated in the top half of Fig. 2.

5 This is assuming an information-theoretic adversary, whose only cost is the number
of queries made; a “real adversary” may well be hindered by a longer output.
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Proof. Let p = 	q/k
. In brief, the adversary chooses p queries to make to π1 that
enable him to “start” hashing the largest possible number of inputs (each input
requires a π1 query); then the adversary chooses p queries to make to π2 that
will enable him to continue hashing the largest possible number of inputs up to
and including the π2 step; and so on for π3, . . ., πk. If, at the end, the adversary
is still able to hash more than Nr inputs, then the adversary wins because some
two inputs necessarily collide. The proof simply consists of computing how large
p must be for the latter event to happen.

Note first the observation that if B balls are thrown into N bins the p ≤ N
most occupied bins must contain at least pB/N balls. We will repeatedly use
this observation below. Now with the hash function H specified by f1, . . . , fk, g,
choose a p-element set X1 ⊆ {0, 1}n that has a maximum number of preimages
under f1. By the observation just made, this maximum number of preimages is
at least pNm/N = pNm−1 points. The adversary will ask for π1 at each point
x1 ∈ X1. The adversary has so far made p queries and there are at least pNm−1

points v ∈ {0, 1}mn for which the adversary knows how to compute the first
permutation in the hash chain. Call this set of points V1. So |V1| ≥ pNm−1 and
for each point v ∈ V1 the adversary knows the corresponding x1, y1, and x2.
Next choose p points X2 ⊆ {0, 1}n with a maximum number of v ∈ V1 that
give rise to an x2 ∈ X2. Again by the observation that began this paragraph,
this set of points V2 has cardinality |V2| ≥ p|V1|/N ≥ p2Nm−2. Continue in
this way, selecting a set V3 where |V3| ≥ p3Nm−3 and making p more queries
so that the adversary will know how to compute the beginning computations of
a hash value for everything in V3, knowing everything up to and including the
third permutation π3. Continue until the adversary constructs a set Vk where
|Vk| ≥ pkNm−k and the adversary knows how to hash everything in Vk all the
way until the end.

If |Vk| ≥ pkNm−k exceeds Nr then, by the pigeonhole principle, there must
be two values in Vk that have the same hash, and this hash is known by the
adversary we have constructed. Thus the adversary will succeed in finding a
collision if pk > Nr−m+k, which is to say that it necessarily succeeds if p >
N (r−m+k)/k = N1−(m−r)/k. So the adversary will find a collision if 	q/k
 exceeds
N1−(m−r)/k (hence the chosen value of q). This completes the proof.

5 The Pigeonhole-Birthday Attack

In the proof above we used the fact that a collision is guaranteed as soon as
|Vk| ≥ pkNm−k > Nr. But it seems unlikely that one would really have to wait
so long as that; one expects, by the birthday phenomenon, to see a collision
around the time that |Vk| = Nr/2, or, to be more exact, around the time that
|Vk| = 1.18Nr/2. Solving pkNm−k ≥ 1.18Nr/2 for the integer p shows that
q = kp = k
(1.18)1/kN1−(m−0.5r)/k� ≤ k(1 + (1.18)1/kN1−(m−0.5r)/k) ≤ k(1 +
1.18N1−(m−0.5r)/k) ≈ kN1−(m−0.5r)/k, an improvement from the earlier bound
of q ≈ kN1−(m−r)/k by a multiplicative factor of Nr/2k. However, the analysis
just given pretended that the H-values that arose were uniform, which need
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not be the case. For example, one can easily “rig” the functions f1, . . . , fk, g of
Fig. 1 such that Vk will be independent of the answers to the adversary’s queries
and g is injective on Vk, leading to no collisions at all. (See Stam [13] for a more
interesting example in this connection.) Still, one does not expect a desirable-in-
practice compression function to have this sort of degeneracy; for a real-world
compression function, if you know the hash of 1.18Nr/2 points, probably you
know a collision.

The discussion above motivates the following definitions. Let H: {0, 1}mn →
{0, 1}rn be a compression function making calls to n-bit permutations π1, . . . , πk

and let A = {Aq : 1≤ q ≤ kN} be a family of adversaries where Aq makes at
most q queries to these permutations or their inverses. Let yieldH(Aq) be the
minimum number of strings that Aq learns to hash in the course of its attack,
let collH(Aq) be the probability that Aq finds a collision in H (ie, it asks the
queries to know one), and let coll∗H(Q) be the probability of a collision when Q
points are uniformly selected from the range of H. Then the collision-degeneracy
of H with respect to A is defined as the smallest real number λ = λH,A such that
collH(Aq) ≥ 1/2 whenever coll∗H(yieldH(Aq)/λ) ≥ 1/2.

For any adversary family A, the amount that λH,A exceeds 1 is a measure
of how peculiar H is with respect to the property of seeing collisions with their
anticipated probability. For example, if λH,A = 2 then yieldH(Aq) needs to be
twice the nominal 1.18Nr/2 before one is guaranteed that collH(Aq) ≥ 1/2.
Since a good compression function should emulate a random function as much
as possible, one expects that λH,A will not significantly exceed 1 for most A
when H is a desirable, real-world construction.

Consider now the specific family of adversaries A = {Aq} consisting of ad-
versaries running the greedy attack of Theorem 1. We call this the family of
greedy adversaries, and we define the collision-degeneracy of H as the collision
degeneracy λH = λH,A with respect to the family of greedy adversaries A. Recall
that Aq makes p = q/k queries to each permutation in a way that maximizes
the number of inputs that can be hashed up to that point. By the calculation
given at the beginning of this section, adversary Aq knows that hash of at least
pkNm−k strings. So if yieldH(Aq)/λH ≥ 1.18Nr/2 then collH(Aq) ≥ 1/2. Solving
the former inequality for q using the fact that yieldH(Aq) ≥ pkNm−k shows that
collH(Aq) ≥ 1/2 when q = k(1 + (1.18λ)1/kN1−(m−0.5r)/k) where λ = λH . This
establishes the following theorem.

Theorem 2. Let H: {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function. Let N = 2n. Then with

q = k(1 + (1.18λ)1/kN1−(m−0.5r)/k) ≈ 1.18 kλ1/k N1−(m−0.5r)/k

queries an adversary can find a collision in H with probability at least 1/2,
where λ=λH is the collision-degeneracy of H. �

Informally, we say that H is collision-uniform if λH is at most some small
constant, say λH ≤ 2. In brief, Theorem 2 says that for any collision-uniform
compression-function one can find a collision in about N1−(m−0.5r)/k queries.

The proceedings version of this paper limited the statement of Theorem 2 to
the case where λH ≤ 1. Stam subsequently found an interesting example showing
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atk adv m→ r bound 1 2 3 4 5 6 8

ph 1 2→ 1 N1−1/k 2 265.0 286.9 298.0 2104.7 2109.3 2115

ph 1 3→ 2 N1−1/k 2 265.0 286.9 298.0 2104.7 2109.3 2115

pb 0.5 2→ 1 N1−3/2k 2 233.1 265.7 266.2 266.6 266.8 267.2

pb 0.5 3→ 2 N1−2/k 1 3 244.3 266.1 279.2 288.0 299.0

Fig. 2. Attacks on an m k→ r compression function. Columns represent the attack, the
advantage lower bound, the compression parameters, the approximate value of q to
get this advantage, and numerical values for various k (using the exact formula) when
n=128. Rows represent the pigeonhole attack (ph) and the pigeonhole-birthday attack
(pd) where, for the latter, the compression function is collision-uniform with λ=1.

that a non-collision-uniform compression-function can have collision resistance
higher than N1−(m−0.5r)/k [13], illustrating that collision resistance can be in-
creased at the expense of maintaining a resemblance to a random function.

The Theorem 2 bound suffers from a peculiar behavior in the 2 k→ 1 case
when k ≥ 4, whence the theorem states that q ≈ N1−3/2k ≥ N5/8 queries are
sufficient for an attack—but where Proposition 1 said that q ≈ N1/2 queries
would be enough. The gap may be puzzling because the pigeonhole-birthday
attack is a type of birthday attack and, assuming collision-uniformity, it cannot
do worse than what Proposition 1 guarantees. The problem can be traced to
the pkNm−k lower bound for the number of outputs obtained by the pigeonhole
attack, which, in turn, stems from the observation made at the beginning of
Theorem 1 that when B balls are thrown into N bins, the p ≤ N most occupied
bins must contain at least pB/N balls. In fact one can strengthen this observation
by noting that the p ≤ N most occupied bins must contain at least μp,N (B) balls,
where μp,N (B) is p
B/N� if p ≤ B mod n or B ≡ 0 mod n, and p	B/N
+B mod
N otherwise. One thus gets at least μ

(k)
p,N (Nm) outputs from the pigeonhole

attack (the k-th iterate of the function), better than the approximation pkNm−k.
To find the “real” p needed by the attack one can solve for the least integer p

such that μ
(k)
p,N (Nm) ≥ 1.18λNr/2. As this is somewhat hard to compute, an

alternative is to note that, at the end of the pigeonhole-birthday attack, there
are at least p = 	q/k
 strings that the adversary knows how to hash, and so
p = 1.18λNr/2 queries are enough. We can therefore sharpen the statement of
Theorem 2 to select q as the minimum of the current value of q and 1.18λkNr/2+
k ≈ 1.18λkNr/2, since p = 	q/k
 > q/k − k. In Fig. 2 we use this tighter bound
to compute the row-3 entries.

Interpretation. Assuming a non-degenerate compression function, for 2→ 1
hashing the analysis indicates that, with k = 2 permutations, a collision will be
found in around N1/4 queries. This is excessively low, making k = 3 permutations
the best one can hope for in this case. With k = 3 permutations the bound jumps
to around N1/2 queries, which is of course optimal for a hash function producing
an n-bit output. This suddenly-optimal behavior is qualitatively different from
what happens when the output length is 2n bits or more, in which case more
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permutation calls (potentially) buys more security, but where optimal collision
resistance can never reached. For 3 → 2 hashing the adversary can break the
construction in around q = N1−2/k queries (still assuming non-degeneracy).
Since a double-length construction ought to withstand significantly more than
N1/2 queries (otherwise, it makes more sense to use a single-length construction),
the conclusion is that k = 5 permutations is the minimum number of calls that
makes sense for a desirable-in-practice 3→ 2 compression function.

6 Attacks on Rate-α Constructions

Theorems 1 and 2 can be recast in terms of what they say about a permutation-
based hash function with a given rate (as opposed to what they say about a com-
pression function with a given number of blockcipher calls). Let H : {0, 1}∗ →
{0, 1}rn be a fixed-order hash function based on an n-bit permutation. This
means that the algorithm is of the form specified in Fig. 1, except that the in-
put v may have any length, sequences π1, π2, π3, . . . and f1, f2, f3, . . . are thought
of as infinite, and the number k of permutation invocations is a function k = k(v)
of the input v. Then we say that H has rate α if α is the largest real num-
ber such that hashing a message M requires at most |M | / αn permutation
calls. (One could also add in an additive constant δ to account for padding or
other extra work done at the end of processing the message.) The inverse-rate,
β = 1/α, is the number of permutation calls per n-bits of message processed;
hashing M requires at most β |M |/n permutation invocations. We now show
that the pigeonhole attack implies a tradeoff between the (potential) security of
a permutation-based hash function and its rate.

Theorem 3. Let H: {0, 1}∗ → {0, 1}rn be a permutation-based hash function
with rate α = 1/β and let N = 2n. Then with

q = 	β
ln(2)αnr + α�
(eN1−α + 1) ≈ 1.89nrN1−α

queries an adversary can find a collision in H. �

Proof. For any m ≥ 1 we can restrict H to inputs of length mn, whence H
becomes a compression function H ′: {0, 1}mn → {0, 1}rn that makes at most
k = 	βm
 permutation calls. By Theorem 1, a collision for this compression
function can be found with probability 1 in k(N1−(m−r)/k+1) ≤ k(N1−α+r/k+1)
queries, where again k = 	βm
 (the inequality holds because α ≤ m/k). We set
m = 
ln(2)αnr + α� so k = 	β
ln(2)αnr + α�
 (chosen by calculus to minimize
kN1−α+r/k). Then k ≥ β
ln(2)αnr+α�−1 ≥ β(ln(2)αnr+α)−1 = ln(2)nr and
Nr/k ≤ N1/ ln(2)n = e, so k(N1−α+r/k + 1) ≤ 	β
ln(2)αnr + α�
(eN1−α + 1), as
desired.

Ignoring the leading multiplicative and additive factors in Theorem 3 we can
summarize the result as saying that any rate-α permutation-based hash function
will fail when the number of queries gets to around q = N1−α. In Fig. 3 we
tabulate this more precisely, indicating the sufficient number of queries to break
permutation-based hash functions of various rates. Note that Theorem 3 does
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atk adv bound 2 3 4 5 6 8

ph 1 1.89 nr N1−α N0.57 N0.74 N0.82 N0.87 N0.90 N0.95

pb 0.5 0.94 nr N1−α N0.56 N0.73 N0.81 N0.86 N0.90 N0.95

tree 0.5 2 β N1−α N0.52 N0.69 N0.77 N0.83 N0.86 N0.91

Fig. 3. Collision-finding attacks on a permutation-based hash H: {0, 1}∗ → {0, 1}rn

with rate α. Columns represent the attack, the advantage upperbound, and threshold
values q with n = 128, r = 2, and β = 1/α ∈ {2, 3, 4, 5, 6, 8}. The row-2 result as-
sumes collision-uniformity with λ=1 and the row-3 result (see Appendix A) make an
analogous assumption and requires the H to be constructed by an iterated design.

not require a uniformity assumption. That said, one can slightly improve the
bound by assuming H is collision-uniform and employing Theorem 2 instead
of Theorem 1. The gains are small; for λ = 1 the number of queries (and the
adversary’s probability of success) is halved.

We comment that, in Theorem 2, the number of distinct permutations used
by the hash function does not matter, as long as they are consulted in a fixed
order. Potentially, the hash function might never reuse the same permutation
twice, but it would still suffer from the same attack.

7 Attacking Preimage Resistance

We adopt as a notion of preimage resistance that the adversary is presented a
random range point w ∈ {0, 1}rn and succeeds if it finds (or simply knows from
its query history) a preimage for it.

The intuition behind our preimage attacks is that the pigeonhole attack of
Theorem 1 yields the hash of as many points as there are points in the compres-
sion function’s range; one then expects any point in the range to be inverted with
some constant probability. However there is a subtle issue: knowing the hash of
many distinct inputs does not equate with knowing many distinct outputs; if
the compression function suffers from many collisions, maybe only a few outputs
are gleamed even though many inputs that can be computed. This idea can be
leveraged to give examples of compression functions that have good preimage
resistance, use only one permutation call, and where the domain is arbitrarily
bigger than the range. See Fig. 4. Thus to state a meaningful bound some sort
of uniformity assumption must be made about the compression function. This
motivates the definition that follows.

Let H: {0, 1}mn → {0, 1}rn be a compression function making calls to n-
bit permutations π1, . . . , πk and let A = {Aq : 1 ≤ q ≤ kN} be a family of
adversaries where Aq makes at most q queries to these permutations or their
inverses. As before, let yieldH(Aq) be the minimum of strings that Aq learns
to hash. Let preimH(Aq) be the probability that Aq(x) finds a preimage for x
in the experiment where x ∈ {0, 1}rn is chosen uniformly. Let preim∗

H(Q) be
the probability that a fixed (or, equivalently, a uniformly chosen) x ∈ {0, 1}rn

is among H ′({1, . . . , Q}) when H ′ is a uniformly chosen function with the do-
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...

xm-1

w
 n n

Fig. 4. A degenerate compression function from the standpoint of preimage resistance.
The existence of such designs motivates the notion of preimage uniformity.

main and range of H. Then the preimage-degeneracy of H with respect to A
is the smallest real number δ, = δH,A such that preimH(Aq) ≥ 1/2 whenever
preim∗

H(yieldH(Aq)/δ,) ≥ 1/2. The probability is taken over π1, . . . , πk, the coins
of Aq (if any), and the random range point x implicitly provided to Aq.

Similarly to collision resistance, we define the preimage-degeneracy δH of H
to be the preimage degeneracy δH,A of H with respect to the family of greedy ad-
versaries A from Theorem 1. We say that a compression function H is preimage-
uniform if δH is less than a small constant, say δH ≤ 2. As with collision resis-
tance, one expects that a “good” (desirable in practice) compression function H
will be preimage-uniform, since a random function is preimage-uniform.

Standard probability computations show that, for a random function H ′

from {0, 1}mn to {0, 1}rn and an arbitrary (or uniform) point x ∈ {0, 1}rn, we
will have Pr[x ∈ H ′({1, 2, . . . , t})] ≥ 1/2 when t ≥ ln(2)Nr for any distinct
points 1, 2, . . . , t. Thus it is sufficient to learn the hash of at least ln(2)δH,N

r

points in order to invert a point with probability 1/2. Solving the inequality
yieldH(Aq) ≥ pkNm−k ≥ ln(2)δH,N

r for q = kp gives the following theorem
based on the pigeonhole attack.

Theorem 4. Let H: {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function and let N = 2n. Then with

q = k((ln(2)δ)1/kN1−(m−r)/k + 1) ≈ kδ1/kN1−(m−r)/k

queries an adversary can invert a random point with probability at least 1/2,
where δ = δH is the preimage-degeneracy of H. �

By restricting a hash function to a fixed input and considering the resulting
function as a compression function one can apply Theorem 4 to obtain a bound
on the preimage resistance of a hash function. For this purpose, say that a hash
function H has preimage-degeneracy δH if the restriction of H to inputs of size
{0, 1}mn is a compression function with preimage-degeneracy at most δH for all
m. We then easily get:
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Theorem 5. Let H: {0, 1}∗ → {0, 1}rn be a permutation-based hash function
with rate α = 1/β. Let N = 2n and δ = max(δH , 1). Then with

q = δ ln(2)	β
ln(2)αnr + α�
(eN1−α + 1) ≈ 1.89δnrN1−α

queries an adversary can invert a random point with probability 1/2. �

Proof. Apply Theorem 4 to the compression function obtained by restricting H
to inputs of length m = 
ln(2)αnr + α�. One uses k ≥ 1 to upper bound
(δH,A ln(2))1/k by δ ln(2).

It is interesting that breaking the preimage resistance of a preimage-uniform
permutation-based hash function is essentially no harder than breaking its col-
lision resistance. In addition, while one may hope to get near-optimal collision
resistance with a 2 3→ 1 compression function, the preimage resistance will be
nowhere near optimal for a preimage-uniform hash function: preimage-resistance
will fail by around N2/3 queries, whereas one might hope for something that
works up to around N queries. But, as with the collision-resistance of double-
length constructions, one can hope to push up the preimage resistance to close
to N queries by using more and more permutation calls.

8 The Too-Few-Wires Attack

In this section we switch from considering the number of permutations used
by a compression function to considering the amount of memory it requires.
Mainly we show that a compression function that maps mn bits to rn bits must
keep more than mn bits of information in memory at some point during its
computation—otherwise it will offer essentially no collision resistance.

Instead of thinking about memory it is useful to think in terms of wires. If
we imagine that the compression function is built from n-bit wires connecting
the permutations and processed at different points by arbitrary functions, our
result implies that at least m + 1 wires must be used at some point during the
computation—one one more wire than there are input wires.

Naturally one needs to define what it means for a compression function to
“keep mn bits in memory” during a computation. The model is as follows: we
imagine the mn bits to be kept in m “buckets” of n bits each. At any stage,
the buckets may either be processed by an arbitrary function fi : {0, 1}mn →
{0, 1}mn; or else one of the buckets may be hit with a permutation πi, replacing
the contents of that bucket with the output of the permutation. The buckets are
initialized with the input to the compression function, and the computation is
terminated by an arbitrary function mapping {0, 1}mn to {0, 1}rn.

One may assume that no two functions fi and fj are ever applied one right
after the other (else one could replace them with their composition), and one
can assume that permutations are always applied to the first bucket (as the
fi functions can be used to switch bucket contents). Thus if the compression
function uses k permutations (π1, . . . , πk) and we denote by π̄i the map from
{0, 1}mn to {0, 1}mn that is πi on the the first bucket and the identity on all
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f0

π1

f1

π2

f2

π3

f3

π4

f4

Fig. 5. The structure of a compression function that maps mn bits to rn bits using mn
bits of memory where m = 3, r = 2, and k = 4. Each wire represents n bits. Functions
f0, f1, f2, f3, and f4 are all arbitrary.

others, then the hash of v ∈ {0, 1}mn is fk(π̄k(fk−1(π̄k−1(. . . f0(v) . . . )))) where
fk: {0, 1}mn → {0, 1}rn and fi : {0, 1}mn → {0, 1}mn for i < k. Figure 5 shows
the basic structure, with buckets drawn as wires. The sequence of permutations
(π1, . . . , πk) may be distinct or include repetitions, but we assume that the per-
mutations are applied in a fixed order, namely that which permutation is applied
at a given point does not depend on the contents of the buckets at that point
(this restriction can in fact be removed with only a slight increase in the com-
plexity of the attack, so this assumption is mainly made for simplicity). We then
have the following:

Theorem 6. Let H: {0, 1}mn → {0, 1}rn be a permutation-based compression
function using k permutation calls and mn bits of memory. Then a collision can
be found in 2k queries. �

Proof. With notation as in the paragraph before Theorem 6, let j be the least
number such that fj is not a permutation. Note that j is well-defined since fk

is not a permutation. Fix any two distinct inputs u and v in {0, 1}mn such
that fj(u) = fj(v). Because f0, . . ., fj−1 are permutations we can compute
u′ = f−1

0 (π̄−1
1 (f−1

1 (. . . π̄−1
j (u) . . . ))) and v′ = f−1

0 (π̄−1
1 (f−1

1 (. . . π̄−1
j (v) . . . )))

with 2j ≤ 2k permutation calls. Observe that fk(π̄k(fk−1(π̄k−1(. . . f0(u′) . . . ))))
= fk(π̄k(fk−1(π̄k−1(. . . f0(v′) . . . )))) since fj(u) = fj(v) and we are done.

One can generalize this result. Assume that we have at our disposal k ideal
primitives ρ1, . . . , ρk, which are functions from {0, 1}mn to {0, 1}mn and such
that (i) finding a collision for ρi costs qi expected queries to ρi, unless ρi is a
permutation, in which case (ii) finding a preimage for ρi costs one query. (An
n-bit permutation can be seen as such a primitive, acting only on the first n
bits.) A compression function using (ordered) calls ρ1, . . . , ρk and mn bits of
memory can be modeled as above, with mn-bit to mn-bit functions f0, . . . , fk

interwoven with ρ1, . . . , ρk. Then one can easily adapt the proof of Theorem 6 to
show that the cost of finding a collision for the compression function is at most
max(qi)+2k, where the max is taken over all i such that ρi is not a permutation,
and is defined as 0 if all the ρi’s are permutations. (Proof: take the least j such
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that either fj or ρj is not a permutation; in the former case let u, v be colliding
inputs of fj , in the latter case let u, v be colliding inputs of ρj paid for with qj

queries; then push back u, v to inputs u′, v′ for the original function using the
fact that all ρi’s and fi’s for i < j are permutations.)

This observation has some interesting consequences. For example, say that
ρ1, . . . , ρk are random functions from n bits to n bits, so that it costs 2n/2 queries
to find a collision for given ρi. Then a compression function from mn bits to rn
bits using mn bits of memory, m > r, will have collision resistance of at most
2k + 2n/2, where k is the number of times the random function is called. This
is unsatisfactory if r ≥ 2. It does not matter whether the random functions are
distinct or not, nor how many of them are used.

One can also apply the argument to a blockcipher-based construction, say one
with n-bit keys and blocks. First define what it means for a blockcipher to “act”
on mn bits: one could assume, say, that the first bucket of n bits is used for the
blockcipher’s key, that the second bucket of n bits is used for the blockcipher’s
input, and that the blockcipher’s output replaces either the first or second bucket.
If the blockcipher’s output replaces the key, then the blockcipher application is
not a permutation and has collision resistance of 2n/2 (a collision can be obtained
by keeping the word constant and tweaking the key); otherwise the blockcipher
application constitutes a permutation. Thus, any mn-bit to rn-bit blockcipher-
based compression function using only mn-bits of memory in the sense described
has collision resistance of ∼ 2n/2, which is once again unsatisfactory if r ≥ 2.

As an example of the findings in this section in action, suppose that someone
proposes a 3n-bit to 2n-bit compression function as shown in Fig. 5, but where we
have 10 rounds and each fi has some combinatorially strong mixing properties.
It will not matter that there are a large number of rounds or that the mixing is
strong; the scheme will be breakable in a handful of queries. The issue is that the
first collision in any of the fi’s can be “pushed back” through the permutations
to make two colliding inputs. Then suppose that, to prevent the pushing back,
the designer replaces each x �→ πi(x) by the feed-forward gadget x �→ x⊕πi(x).
Then the number of required wires has gone up by 1, and the attack is blocked.
However if we treat the gadget x⊕πi(x) as a primitive, the number of wires is
back down to 3 and the generalized attack shows that a collision can be found in
2n/2 queries, or the number of queries necessary to find a collision for the gadget
x⊕πi(x). This is insufficient in a scheme that outputs 2n bits.

Finally, we comment that it was not important for the attacks of this section
that the input length and output length of the compression be multiples of n;
all that matters is that the input has at least one more bit than the output.
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A The Tree Attack

This collision-finding attack is applicable only to an iterated hash function. For
that setting and with typical parameters, it does a bit better than the pigeonhole-
birthday attack. We describe the attack both for that reason and because it
generalizes the interesting attack of Black, Cochran, and Shrimpton [2].

When we say that H is an iterated permutation-based hash function we mean
that it processes one sn = (m−r)n-bit word of message with each iteration, using
a compression function H ′: {0, 1}mn → {0, 1}rn. Hash function H is defined by
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H(w1 · · ·w�) = h� where hi = H ′(hi−1 ‖wi) and h0 ∈ {0, 1}rn, the initial chain-
ing value, is a constant. The compression function H ′(h,w) is g(h,w, y1, . . . , yk)
where xi = fi(h,w, y1, y2, . . . , yi−1) and yi = πi(xi). The construction uses k
calls to process sn bits, so its rate is α = s/k = (m−r)/k. Natural variants
to this model, like letting the compression function H ′ depend on the position
index i, are immaterial in the sequel.

As the name suggests, the tree attack is associated to a certain tree, which
we will call the known-hash tree. The known-hash tree is constructed determin-
istically from a set of queries. Before describing anything else, we show how to
construct the known-hash tree from a set of queries

The known-hash tree is a subtree of an infinite rooted tree called the full
tree. The full tree has k + 1 types of nodes, which we denote type 0, type 1, . . .,
type k. A node of type i has children only of type i + 1, except for a node of
type k, which has children of type 0. The root of the full tree has type 0. Nodes
of type 1, . . . , k have outdegree N and nodes of type 0 have outdegree Ns. (As
usual, N = 2n.) The outgoing edges from nodes of type 1, . . . , k are labeled
with all the values from 0 to N − 1, whereas the outgoing edges from nodes of
type 0 are labeled with all the values from 0 to Ns − 1. Every node of type 0
has an associated value in {0, 1}rn defined inductively as follows: the root has
value h0 and a non-root node v of type 0 has value g(h,w, y1, . . . , yk) where h is
the value of the first node u of type 0 on the path from v to the root, and where
w, y1, . . . , yk are the values on the edges of the path from u to v. Nodes of type
1, . . . , k also have values, defined as follows: the value of a node v of type i ≥ 1
is xi = fi(h,w, y1, y2, . . . , yi−1) where h is the value of the first node u of type 0
on the path from v to the root, and where w, y1, . . . , yi−1 are the values of the
edges on the path from u to v.

This completes the description of the full tree. The known-hash tree is a
subtree of the full tree. It is defined from a set of queries Q = {(i1, xi1 , yi1), . . .,
(iq, xiq

, yiq
)} made by the adversary, where πij

(xij
) = yij

for all 1 ≤ j ≤ q. A
node v of the full tree is in the known-hash tree if and only if for every node
vi �= v of type i ≥ 1 on the path from v to the root the query (i, xi, yi) is in Q
where xi is the value of vi and where yi is the value of the outgoing edge of vi

on the path to v. It follows that if v is in the known-hash tree then so are all of
its ancestors, so this is defines a valid (but possibly infinite) tree.

If a node v of type 0 is in the known-hash tree then the adversary knows the
hash of the word w1w2 · · ·wm where w1, . . . , wm are the values of the outgoing
edges of the nodes of type 0 on the path from the root to v. This hash is in fact
equal to the value of node v. One can also see that every node of type i ≥ 1
has outdegree ≤ 1 in the known-hash tree, since for every value xi there is only
one yi such that πi(xi) = yi. However the outdegree of every node of type 0
is always Ns, since if a node of type 0 is in the known-hash tree then so, by
definition, are all of its children. We will call the reduced outdegree of a node v
of type 0 the number of outgoing edges from v that lie on a path to a node of
type 0 further down the tree from v. The reduced known-hash tree, or simply
reduced tree, is the restriction of the known-hash tree to nodes of type 0, where
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there is an edge from u to v in the reduced tree if and only if u is the first node
of type 0 on the path from v to the root in the known-hash tree. Note that the
outdegree of a node v in the reduced tree is equal to the reduced outdegree of v
in the known-hash tree. One can define a natural bijection from the outgoing
edges of v in the reduced tree to those outgoing edges of v in the known-hash
tree that lie on a path to some node of type 0 further down. Using this bijection
we can label in the natural way the edges of the reduced tree with values from
{0, 1}sn. Then every path in the reduced tree corresponds to a word whose hash
can be computed by the adversary, with the value of that hash being the value
of the terminal node for that path. Thus the reduced tree gives a sort of digest
of which hashes the adversary can compute6 from the queries Q.

For the attack, the adversary will make queries so as to grow the known-hash
tree in a greedy fashion. It will make queries to π1, . . . , πk in cyclical order. When
the adversary makes a query to πi it will choose a value xi that maximizes the
number of terminal nodes of type i in the known-hash tree that have value xi;
that is, the adversary simply chooses the value such that there are a largest
possible number of terminal nodes of type i with that value in the known-hash
tree (here a terminal node is a leaf of the known-hash tree). If there are no
terminal nodes of type i, the adversary can make an arbitrary query to πi.
We assume the adversary makes kp queries in all, namely p queries to every
permutation. Note that at any given query the known-hash tree could “blow
up” and go to infinity; the number of added edges may be much larger than the
number of terminal nodes.

This completes the description of the attack. We will now argue that, for q
sufficiently large, the adversary has a good chance of obtaining a collision. First
note that with kp greedy queries (not the ones we have described above), the
pigeonhole argument shows that we can compute the value of the compression
function on at least

Nr+s
( p

N

)k

(1)

points in the domain D = {0, 1}r+s of the compression function. This means that
the average over the values h ∈ {0, 1}rn of the number of points w ∈ {0, 1}sn for
which we can compute the value of the compression function on input h ‖ w is

Nr+s
( p

N

)k

/Nr = Ns
( p

N

)k

. (2)

On the other hand, the same average is approximated by the average outdegree
of a node in the reduced tree after the adversary has carried out the above
tree attack: every node corresponds to a value of h, and every outgoing edge
corresponds to a value of w for which the output of the compression function on
6 The adversary may even know how to compute more hashes than those given from

the reduced tree, for example if the function g(h, w, y1, . . . , yk) ignores some of the
yi’s, making it not necessary to know their values. However since we are describing
an attack and not a proof of security, this is irrelevant.
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input h ‖ w is known. The (heuristic) assumption underlying the tree attack is
that for moderately large values of p, this outdegree average should approximate
the average (2); after all, both the pigeonhole attack and the tree attack choose
queries greedily. Then if (2) is moderately large, say equal to 2, we expect the
reduced tree to have average outdegree close to 2. But any tree with average
outdegree exceeding 1 must be infinite, and must also have unbounded width;
thus the reduced tree has blown up to infinity and we can find a collision by the
pigeonhole principle (and even find a collision at the same level of the tree—
meaning a collision of equal-length strings—because the width is unbounded).

To be more concrete, say that we choose p = q/k large enough that

Ns
( p

N

)k

≥ 2 (3)

Then one would expect that with some constant probability close to 1, but say
with at least probability 1/2, the tree attack yields a reduced tree of average
outdegree exceeding 1. Then the reduced tree has blown up to infinity and we
hold a collision. This would give us an attack with probability of success 1/2.
The cost of the attack would be q = kp where

p =
⌈
21/kN1−s/k

⌉
≈ 21/kN1−s/k , (4)

which is to say q ≈ k 21/k N1−α ≤ 2k N1−α, because α = s/k. This is an
improvement on the bound for the pigeonhole-birthday attack since we expect k
to be significantly smaller than n.

Theorem 7. Let H: {0, 1}∗ → {0, 1}rn be an iterated permutation-based hash
function with rate α, its underlying compression function employing k permuta-
tion calls, and let N = 2n. Then, under the assumptions on H described above,
with

q ≈ 2k N1−α

queries an adversary can find a collision with probability ≥ 1/2. �

Most iterated hash functions have s = 1, in which case k = k/s = 1/α = β
and the bound of Theorem 7 can be rewritten as 2β N1−α; this is the version of
the bound used for the numerical examples of Fig. 3. Note that for α = k = 1,
the case considered by Black et al. [2], the tree attack gives a bound of q = 2
queries. This may seem seem small, but as Black et al. note, any construction in
which for any h, x1 ∈ {0, 1}n there is some w ∈ {0, 1}n such that x1 = f1(h,w)
can indeed be broken in two queries, using the same argument as for the tree
attack (in such a construction, the tree trivially blows up to infinity after just two
queries, with uniform reduced outdegree of 2). Moreover, natural constructions
will have this feature since it seems undesirable for the function f1(h, ·) to contain
collisions (as a function from {0, 1}n to {0, 1}n). However, for constructions that
are artificially designed to hold off the attack, the bound 2kN1−α may be overly
optimistic when it is very small (but in this case one does not much mind being
off).
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