
Developing Embedded Multi-threaded Applications with
CATAPULTS, a Domain-specific Language for Generating

Thread Schedulers ∗

Matthew D. Roper
Department of Computer Science

University of California, Davis
Davis, CA 95616-8562 USA

roper@cs.ucdavis.edu

Ronald A. Olsson
Department of Computer Science

University of California, Davis
Davis, CA 95616-8562 USA

olsson@cs.ucdavis.edu

ABSTRACT
This paper describes CATAPULTS, a domain-specific lan-
guage for creating and testing application-specific user level
thread schedulers. Using a domain-specific language to write
thread schedulers provides three advantages. First, it mod-
ularizes the thread scheduler, making it easy to plug in
and experiment with different schedulers. Second, using
a domain-specific language for scheduling code helps pre-
vent several of the common programming mistakes that are
easy to make when programming in low-level C or assembly.
Finally, the CATAPULTS translator has multiple backends
that generate code for different languages and libraries. This
makes it easy to prototype an embedded application on a
regular PC, and then develop the final version on the em-
bedded hardware; the CATAPULTS translator will take care
of generating the appropriate code for both the PC proto-
type and the final embedded version of the program. Using
our implementation of CATAPULTS for Z-World’s embed-
ded Rabbit processors, we obtained a performance gain of
about 12.6% at the expense of about 12.7% increase in code
size for a fairly typical embedded application.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems; D.1.3
[Programming Techniques]: Concurrent Program-
ming; D.2.4 [Software Engineering]: Software/Program
Verification; D.2.11 [Software Engineering]: Software
Architectures; D.4.1 [Operating Systems]: Process
Management

∗This work is partially supported by Z-World, Inc. and the
University of California under the MICRO program. The
National Science Foundation partially supported our equip-
ment through grant EIA-0224469.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05,September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

General Terms
Languages, Performance, Design, Experimentation

Keywords
Thread scheduling, domain-specific languages, user-level
threads, application-specific schedulers

1. INTRODUCTION
Embedded control systems are generally responsible for

handling several concurrent tasks (e.g., driving different
pieces of hardware) and thus lend themselves to a multi-
threaded design. This model is intuitive to program in be-
cause it allows each task to be programmed in relative iso-
lation and makes it easy to follow the flow of control inside
the task. Threads can either be scheduled cooperatively,
where each thread has control of the processor until it ex-
plicitly yields it, or preemptively, where context switches
are triggered at regular intervals by a timer interrupt. Re-
gardless of which type of threading is used, the algorithm
used to schedule threads can have a significant impact on
the overall performance of the system. With the limited re-
sources available on an embedded system, the overhead of
inefficient context switching is much more noticeable than
it would be on regular computer, which has much more pro-
cessing power.

This paper introduces CATAPULTS, a system for devel-
oping application-specific schedulers, and shows how to use
CATAPULTS for embedded systems applications. Generat-
ing specialized schedulers for a specific application improves
performance not only by minimizing inappropriate context
switches, but also by speeding up the scheduling algorithm
itself; i.e., information such as thread priority or number of
activations should only be tracked and processed if an appli-
cation actually needs it to make good scheduling decisions.
Unnecessary bookkeeping can be eliminated.

Our approach uses a domain-specific language for writ-
ing application-specific schedulers. It provides three major
benefits. First, all scheduling code is collected into a sin-
gle, replaceable component. The programmer need only
fill in the body of various scheduling events (e.g., “new
thread,” “quantum expired,” “thread terminated,” etc.) in
an aspect-oriented manner. Second, using a domain-specific
language allows much better static analysis to be performed
than if the scheduler were directly written in low-level C

or assembly language (as most embedded applications are).
For example, it is impossible to “lose” a reference to a thread
using our language. Finally, using a domain-specific lan-
guage allows multiple translation backends to be developed
in order to target different threading libraries or program-
ming languages; this is especially useful when simulating the
system on a regular PC before developing the actual embed-
ded version.

Our primary targets for CATAPULTS are small, resource-
constrained embedded controllers with low processing power.
Such systems generally run the control software directly on
the hardware, without the support of a real time operating
system. Although we are currently working on extensions
to CATAPULTS to aid in the development and verification
of soft realtime schedulers, these are not a primary focus of
our current implementation.

The rest of this paper is organized as follows. Section 2
provides an introductory example of a CATAPULTS sched-
uler for a representative embedded application. Section 3
gives an overview of related work. Section 4 describes the
purpose and design of the CATAPULTS system. Section 5
provides details on the organization of the CATAPULTS
domain-specific language. Section 6 describes how the com-
ponents of the system were implemented. Section 7 discusses
our experience, including performance results, of using CAT-
APULTS on representative embedded applications. Finally,
Section 8 provides some discussion, describes possible av-
enues for future exploration, and concludes the paper.

2. AN INTRODUCTORY EXAMPLE
CATAPULTS is most easily introduced by providing an

example of applying it to a simple, hypothetical multi-
threaded application: the embedded control system of a
weather monitoring station. The application has to monitor
several temperature sensors (which have to be checked with
different frequencies), drive a display that changes when the
temperature reaches a certain threshold, and perform var-
ious calculations while the hardware is idle. Such a situ-
ation is relatively easy to model in a multi-threaded ap-
plication: one thread is assigned to each temperature sen-
sor, one thread drives the output display, and one or more
threads perform miscellaneous calculations during the pro-
cessor’s idle time.

Control systems of this form are common applications for
languages on embedded systems such as Dynamic C [12], an
extended subset of C that runs on Z-World’s 8-bit Rabbit
processors (Dynamic C and our implementation of CAT-
APULTS on it are discussed in Section 6.2). Although
straightforward to implement, a standard Dynamic C im-
plementation as described would fail to utilize the processor
fully because Dynamic C’s native thread scheduler uses a
simple first come, first serve algorithm. Even though some
threads do not need to run as often as other threads or only
really need to run when certain application-level conditions
occur, the Dynamic C scheduler has no such knowledge. It
schedules the threads in an inefficient manner, resulting in
unnecessary context switches and additional overhead. In
our weather monitoring example, the “slow” sensors will be
queried for information as often as the “fast” sensors, even
though they won’t be ready to report information each time.

Using CATAPULTS can make such an application more
efficient. It allows the programmer to quickly and easily
create a thread scheduler tailored specifically for this appli-

cation. Figures 1 through 8 show the scheduler specification
(some minor details are omitted to save space).

Our example scheduler begins with a thread definition
section, shown in Figure 1. It specifies what attributes the
scheduler should track for each thread. In this example, only
a single attribute (“state”) is declared to track the status of a
thread (i.e., whether the thread is new, running, suspended,
blocked on I/O, etc.).

thread {
int state; // new, running, suspended, etc.

}

Figure 1: Thread attribute declarations

Next, the scheduler declares which per-thread application
variables should be imported into the scheduler. Importing
an application variable into the scheduler allows the sched-
uler to monitor the variable for changes made by the appli-
cation and also allows the scheduler to modify the variable’s
contents (which is a useful way of communicating informa-
tion back to the application). Per-thread variables imported
this way can be referenced exactly like regular thread at-
tributes in event handler code. Application variable imports
are discussed in depth in Section 5.2. Figure 2 illustrates
the per-thread imports for our example; a single applica-
tion variable (“threadclass”) is imported, which allows the
scheduler to determine the scheduling class (“slow sensor”,
“display”, etc.) to which a given thread belongs.

threadimports {
// possible values are thread class constants
// defined in data section
int threadclass default 0;

}

Figure 2: Thread import declarations

The scheduler specification must also include declarations
for any global objects used by the scheduler, including both
global variables and constants of primitive types (i.e., inte-
gers and floats) and thread collections (queues, stacks, etc.,
provided by the runtime system; see Section 5.1).

Figure 3 shows this data declaration section for our exam-
ple scheduler. Several thread collections are declared to hold
different classes of threads: new (i.e., just created) threads
are placed on a stack, sensor threads are divided depend-
ing on their speed between two queues, a thread reference is
used to hold the single thread that drives the display, and
another queue is used to hold the calculation threads. Regu-
lar variables of primitive types (just integers in this case) are
also defined here to keep track of the last time a thread of a
specific class ran, and constants are defined for the different
scheduling classes to which a thread can belong.

Just as a scheduler may need to import thread-specific
attributes from the application, it may also need to mon-
itor or update regular (global) application variables. For
CATAPULTS to link a general application variable with an
identifier in the scheduler, the imported variable must be
declared in an imports block, along with a default value to
use in case the application does not register the variable or
the variable needs to be used by the scheduler before the ap-
plication has a chance to register it. In our example, a single

data {
threadref current; // current thread
threadref next; // next thread (named yield)
stack NQ; // new threads
queue standard_sensors; // sensors
queue slow_sensors; // sensors monitored

// less frequently
threadref display; // display driver
queue calculations; // calculation threads
// Last time various thread types ran
int last_display, last_sensor1, last_sensor2;

const int UNKNOWNCLASS = 0,
SENSOR1CLASS = 1, SENSOR2CLASS = 2,
DISPLAYCLASS = 3, CALCCLASS = 4;

}

Figure 3: Global data declarations

global variable (“temperature”) is imported from the appli-
cation. This variable will be used later, in the scheduler’s
event handlers, to determine whether or not the display out-
put thread should be run.

imports {
int temperature default 0;

}

Figure 4: Application variable imports

The remainder of the scheduler definition consists of event
and query handlers. These handlers, which resemble C func-
tions, are callbacks that the base threading library has been
modified to call when it needs to perform a scheduling action
or get information from the scheduler (see Section 6.2). The
difference between an event handler and a query handler is
the type of action performed. Event handlers are used when
the base threading library is directing the scheduler to per-
form a specific action (e.g., “suspend this thread”). Event
handlers are intended to perform side effects by manipulat-
ing the scheduler’s global data structures; they return no
value. In contrast, query handlers are used when the inter-
nals of the base threading library need to know something
about the scheduler (e.g., “how many threads are currently
in the system?”); query handlers return a value and must
not have any side effects. Figures 5-8 contain a subset of the
example scheduler’s event and query handlers (the full set
of event and query handlers is not reproduced here to save
space).

event init {
last_display = 0;

}

event newthread(t) {
t => NQ; // Place t on ’new thread’ queue

}

Figure 5: Event handlers to initialize the scheduler
and handle new thread creation events

After writing an entire specification, such as that in Fig-
ures 1 through 8, the developer then runs the CATAPULTS
translator on the specification. It produces a scheduler tar-

event schedule {
threadref tmp;

// Move new threads to their appropriate containers
// if we know what type of thread they are yet.
foreach tmp in NQ {

if (tmp.threadclass == SENSOR1CLASS)
tmp => standard_sensors;

else if (tmp.threadclass == SENSOR2CLASS)
tmp => slow_sensors;

else if (tmp.threadclass == DISPLAYCLASS)
tmp => display;

else if (tmp.threadclass == CALCCLASS)
tmp => calculations;

}

// Update last run times
last_display++; last_sensor1++; last_sensor2++;

// Determine next thread to run:
// - run target of named yield, if any
// - run display if temperature >= 100 and display
// hasn’t been updated in over 10 ticks
// - run regular sensor if none run in 3 ticks
// - run slow sensor if none run in 6 ticks
// - else run calculation thread
if (|next| == 1) { // |next| = size of next

next => current; // (|next| is 1 or 0 here)
} else if (temperature>=100 && last_display>10) {

display => current;
last_display = 0;

} else if (last_sensor1>3 && |standard_sensors|>0) {
standard_sensors => current;
last_sensor1 = 0;

} else if (last_sensor2>6 && |slow_sensors|>0) {
slow_sensors => current;
last_sensor2 = 0;

} else {
calculations => current;

}

dispatch current;
}

Figure 6: The main scheduling event handler

geted for a particular backend. The developer then links
that scheduler together with the application code.

If the developer decided to prototype/simulate the sys-
tem on a regular PC before actually developing the embed-
ded Dynamic C version, the scheduler specification could be
passed through a different CATAPULTS backend to gener-
ate scheduling code for whatever language and library was
being used for the prototype.

3. RELATED WORK
Very little work has been done in the area of domain-

specific languages for writing schedulers. The most closely
related project is Bossa [2], a system for generating Linux
kernel schedulers using a domain-specific language. Although
Bossa is similar in nature to CATAPULTS, it aims to solve
a different set of problems. Since Bossa deals with operating
system schedulers instead of application-level schedulers, its
primary focus is on safety rather than performance or ex-
pressibility. In Bossa, all operations are guaranteed to be
safe, but this limits the overall power of the language. For
example, Bossa does not allow any form of unbounded loop;

event switch_out(t) {
if (t.threadclass == SENSOR1CLASS)

t => standard_sensors;
else if (t.threadclass == SENSOR2CLASS)

t => slow_sensors;
else if (t.threadclass == DISPLAYCLASS)

t => display;
else if (t.threadclass == CALCCLASS)

t => calculations;
}

event set_next_thread(t) {
t => next;

}

Figure 7: Event handlers for context switching away
from a thread and performing a named yield to a
specific thread

query threads_ready {
return |standard_sensors| +

|slow_sensors| +
|display| +
|calculations|;

}

Figure 8: An example query handler that returns
to the base threading library the number of threads
currently ready to run in the system

in contrast, CATAPULTS provides traditional for, while,
and do loops for cases where a safer foreach loop does not
suffice. Our compiler will generate a warning if it cannot be
sure that the loop will terminate. CATAPULTS also differs
from Bossa in that Bossa is tightly coupled with a specific
target language and platform (i.e., it generates Linux ker-
nel C code). CATAPULTS allows different backends to be
written for different target platforms and languages.

Modularizing scheduling code has also started to receive
some attention from Linux kernel developers. A recent Linux
kernel patch [7] separates all scheduling logic out into a sepa-
rate kernel source file, thus making it much easier to replace
the kernel scheduler. Although it appears that this plug-
gable scheduler framework is unlikely to be accepted into
the mainline kernel, it has received notable support and is
being developed as an external patch to the kernel. This
pluggable scheduler framework provides some of the benefits
that systems such as Bossa or CATAPULTS do — modu-
larization and ease of replacement — but lacks the porta-
bility and safety benefits that can be obtained from using a
domain-specific language like CATAPULTS. Had it existed
early enough, the pluggable scheduler framework would have
been an excellent foundation on which to build Bossa or
other kernel-based frameworks.

Other applications of domain-specific languages for em-
bedded systems include Hume [5]. Hume aims to provide
a language for programming embedded systems that in-
cludes high-level features such as automatic memory man-
agement, exception handling, and polymorphic types, while
guaranteeing application resource usage and timing behav-
ior. Hume is intended for actual application development
and although threads are provided, their scheduling cannot
be changed from the builtin round-robin algorithm.

4. DESIGN
Allowing application programmers to replace the thread

scheduler, a very highly tuned component of most software
systems, is a controversial approach. Although errors in-
troduced in the scheduling specification can result in poor
performance or instability, well-written schedulers can result
in significantly improved performance. The use of CAT-
APULTS is an optimization with a tradeoff: higher per-
formance at the cost of additional work writing a CATA-
PULTS scheduler and less assurance of stability. We expect
applications to be written without regards for the sched-
uler, and then, if higher thread performance is necessary, an
application-specific scheduler can be written and plugged-in.
The most “dangerous” feature of CATAPULTS is the use
of imported application variables (discussed in Section 5.2)
since it allows direct interaction between the application and
the scheduler. Importing application variables is an optional
feature that allows more specialized scheduler development
at the cost of tighter coupling between the application and
scheduler; the application developer can decide whether this
tradeoff is worthwhile for the specific application. Even if
application-specific schedulers that import application vari-
ables are not desired, performance can often be enhanced
simply by selecting an appropriate generic scheduler for the
application. In this case, the scheduler can be developed
and fine-tuned by a third party, which makes the use of a
CATAPULTS scheduler just as safe and easy as using the
original, built-in scheduler.

The CATAPULTS scheduling language was designed with
three major goals in mind: modularization and pluggabil-
ity of scheduling logic, prevention of common programming
errors encountered in schedulers, and portability across dif-
ferent scheduling libraries with different capabilities. This
section discusses these three goals. A fourth important goal,
good performance, is implicit in the design decisions made
for CATAPULTS and is discussed in Section 7.

4.1 Modularization
Although threading libraries on embedded systems are

generally far simpler than their PC counterparts, modify-
ing or replacing the scheduling algorithm used by a thread
library is still a non-trivial task. Although it may be easy to
locate the function that picks the next thread, most thread-
ing libraries have other scheduling code spread throughout
the library (e.g., code that manipulates queues of threads
when various events occur). Tracking down every such
reference to the scheduler’s data structures is tedious and
error-prone. For example, although the GNU Pth thread-
ing library [4] isolates its main scheduling routine in a file
pth sched.c, making any large changes to the Pth scheduler
(such as replacing Pth’s new thread queue, ready queue, etc.
with different data structures and thread organizations) can
require code modifications to more than 20 files. Further-
more, if the developer wishes to actually change the data
structures used to store threads (e.g., add a new queue for
threads of a specific type), the modifications required be-
come even more invasive.

With CATAPULTS we overcome this problem by allowing
the developer to write the scheduler specification indepen-
dently from the rest of the threading library. The CATA-
PULTS translator will then weave the user-specified schedul-
ing code into the rest of the threading library to create a
version of the library that is specialized for the specific ap-

plication. Thus, it is very easy to try out different scheduling
strategies.

4.2 Error Prevention
Threading libraries for embedded systems are often writ-

ten in C or low-level assembly since these are the languages
that are most often used for application development. Al-
though C and assembly are very powerful languages, they do
very little to prevent programming errors, especially when
manipulating complex data structures via pointers. When
such errors occur in thread schedulers, they often take the
form of a thread coexisting on two different data structures
at once (essentially duplicating a thread) or of a thread’s
reference being “lost” by the scheduler. Even in higher-level
languages these types of mistakes are often easy to make and
they are often very hard to track down and debug since the
exact scheduling conditions that trigger the bug may not be
easy to reproduce.

CATAPULTS provides a very simple (yet seemingly suffi-
cient for most schedulers in our experience) set of data struc-
tures for storing collections of threads: threadrefs, stacks,
queues, and lists that are sortable on any thread attribute
(e.g., priority). All of these containers are unbounded ex-
cept for threadrefs, which are bounded containers with a
single slot. For convenience, individual threadrefs can be
grouped into arrays, but each element of the array must
be accessed directly; the array itself is not considered to
be a thread collection. CATAPULTS enforces the invariant
that each thread in the system is contained in exactly one
collection at any time; this is a strength of CATAPULTS
because thread references can never be duplicated or lost
due to programmer error (although they can be explicitly
destroyed when no longer needed). The only way to add
or remove a thread from a container is to use the thread
transfer operator, whose syntax is src => dest;. Each type
of thread container has predefined logic that specifies how
threads are inserted and removed by the transfer statement
(e.g., removal occurs at the end of queues, but at the begin-
ning of stacks). When this transfer operator is encountered
in a scheduler specification, the CATAPULTS translator at-
tempts to verify statically that there will be at least one el-
ement in the source container; if this cannot be guaranteed,
the CATAPULTS translator inserts runtime assertions into
the generated code. Similar checks are made to ensure that
a bare thread reference used as the destination of a trans-
fer statement does not already contain a thread. All thread
transfer operations fall into one of four cases and cause the
following types of checks to be performed:

threadref => threadref Attempt to statically determine
that the source threadref is full and that the target
threadref is empty. If either of these cannot be deter-
mined with certainty, runtime assertions are inserted
into the generated code.

threadref => unbounded container Attempt to stati-
cally determine that the source threadref is full. If
unable to determine statically, a runtime assertion is
inserted into the generated code.

unbounded container => threadref Attempt to stati-
cally determine that the source container contains at
least one thread and that the target threadref is empty.
If either of these cannot be determined with certainty,
runtime assertions are inserted into the generated code.

unbounded container => unbounded container
Attempt to statically determine that the source
container contains at least one thread. If unable to
determine statically, a runtime assertion is inserted
into the generated code.

It should be noted that due to CATAPULTS’ use of callback-
like event and query handlers, the empty or full status of a
container can only be inferred intra-handler and not inter-
handler. Since event handlers can be called in any order,
the contents of all containers (with the exception of thread-
refs used as parameters to a handler) are completely un-
known at the start of an event handler. As thread trans-
fers are performed, it will become statically apparent that
some containers are not empty (i.e., they have had threads
transferred into them) or that some threadrefs are definitely
empty (they have had a thread transferred out of them).
So in general, less than half of this kind of container checks
can be done statically at compile time — only when a con-
tainer has been previously operated on by the current event
or query handler can any information about its contents be
inferred.

4.3 Portability
One of the primary goals of CATAPULTS is to make it as

portable and retargettable as possible. CATAPULTS is not
restricted to generating code for any one threading library;
different code generation modules can be plugged in to allow
generation of scheduling code for different libraries or even
different languages. At the moment we have backend code
generators for Dynamic C (a C-like language with threading
features that is used to program ZWorld’s embedded Rabbit
controllers [12]) and GNU Pth [4] (a powerful cooperative
threading library for PC’s); writing more backends for other
languages will be straightforward.

The fact that CATAPULTS can compile to different tar-
get languages and libraries and has backends for both em-
bedded systems and regular PC’s is especially advantageous
when simulating or prototyping a system on a PC and then
re-writing a final version on the actual embedded hardware.
CATAPULTS allows the programmer to develop a sched-
uler once and then (assuming a CATAPULTS code genera-
tion module exists for both languages), simply recompile to
generate schedulers for both the prototype and final system,
even though they are using different languages and thread-
ing libraries.

Ideally, CATAPULTS would be able recompile schedulers
for different threading packages with no modifications to the
scheduler specification at all. However, since CATAPULTS
allows programmers to write callback routines for various
scheduling events, it may be necessary to add code to the
scheduler specification when switching to a more featureful
output module. For example, a scheduler developed for use
with Dynamic C need only specify callback code for a ba-
sic set of thread events (thread creation, thread selection,
etc.). If that scheduler specification is then used to gener-
ate a scheduler for a more advanced threading library, such
as Pth, additional code will need to be written to specify
what actions to perform on Pth’s more advanced schedul-
ing events (e.g., OS signal received, I/O operation complete,
etc.). Each CATAPULTS backend code generation module
includes a list of the scheduling events that must be specified
in order to create a complete scheduler; if a code generation
module is used with a scheduler specification that does not

include one or more of the required events, an error will be
returned and translation will stop.

Although both of the backends that we have developed
so far have used a cooperative approach to task switch-
ing, CATAPULTS is also applicable in preemptive environ-
ments. Schedulers for a preemptive threading library would
take the same form as those for cooperative libraries ex-
cept that they would require the addition of a handful of
additional event/query handlers to deal with the preemp-
tive aspects of the library (e.g., “quantum expired” event,
“timeslice remaining” query, etc.). Porting an existing co-
operative scheduler to a preemptive library would simply
require the addition of these few additional handlers.

5. LANGUAGE DETAILS

5.1 Data Types
CATAPULTS provides a typical set of primitive types.

In addition, CATAPULTS provides several thread container
types for organizing the threads in the system: queue, stack,
pqueue, pstack, and threadref. A pqueue (or pstack) is
similar to a queue (or stack), but its threads are ordered
by a user-specified key. A threadref can hold at most one
thread. As mentioned in Section 4.2, all threads must be
present in one and only one of the scheduler’s thread con-
tainers at any time and the thread transfer operator is used
to move threads between containers.

5.2 Imported Application Variables
The primary goal of CATAPULTS is to not only make it

easier to write new thread schedulers in general, but to al-
low the development of application-specific schedulers for the
absolute maximum performance on a specific application.
Since optimal scheduling decisions often require knowledge
about the internal state of an application, CATAPULTS
provides a means for applications to register their internal
variables with the scheduler. Once a variable is registered
with the scheduler, it is linked with a corresponding variable
declared in the ‘imports’ section of the scheduler specifica-
tion (Section 2). Any changes that the application makes to
the variable will immediately be visible through the linked
scheduler variable and vice versa.

As seen in Section 2, CATAPULTS allows two types of
variables to be registered (imported) with the scheduler:
general (global) application variables and per-thread instance
variables. Registering general variables is useful for pro-
viding the scheduler with information about the status or
load of the system as a whole; common examples include
the number of open network connections in a multithreaded
Internet server or the number of calculations completed in
a scientific application. In contrast, registering per-thread
instance variables with the scheduler is useful for tracking
information that the application stores for each thread. Per-
thread instance variables are useful not only for monitoring
information that the application would be tracking anyway
(e.g., the number of packets that have been processed on
a network connection for an Internet server), but also for
specifically directing scheduler behavior from the applica-
tion, e.g., threadclass declared in Figure 2 and used in
Figures 6 and 7.

Imported application variables are the most controver-
sial feature of CATAPULTS since mixing application-level
data with scheduler logic can be seen as a dangerous en-

tanglement of separate system levels. This optional feature
provides a tradeoff to the application programmer: it be-
comes harder to change the application without also making
changes to the scheduler, but performance can be signifi-
cantly improved by making use of application-level informa-
tion.

Although registering variables requires some modification
to the base application and removes the transparency of
CATAPULTS, the modifications required are minimal; only
a single registration statement is necessary near the begin-
ning of the program for each variable that is to be registered
with the scheduler.

5.3 Verbatim Statements and Expressions
CATAPULTS provides verbatim statements and expres-

sions, which allow the programmer to include a block of code
(either a statement-level block or a single expression) of the
target language directly in the scheduler. For example, a
scheduler that uses a random number generator to make
some of its scheduling decisions will use verbatim statements
to generate random numbers because CATAPULTS has no
instructions to do so. Thus, the programmer can express
anything that could be coded in the target scheduler’s pro-
gramming language at the expense of some portability (i.e.,
the verbatim statements and expressions will need to be re-
written for each target language/library to which the sched-
uler is compiled).

6. IMPLEMENTATION
This section describes two key parts of the CATAPULTS

implementation: its frontend and one of its backends. As
noted earlier, CATAPULTS supports multiple backend code
generators. Each is written as a separate module, which
makes it easy to add new backends for other languages and
libraries. We have currently implemented two such code
generation modules for CATAPULTS: a Dynamic C backend
(for embedded systems) and a GNU Pth backend (for PC’s).
Below, we focus on the Dynamic C backend; Reference [11]
discusses the Pth backend.

6.1 The Frontend
The CATAPULTS translator is written in Python using

PLY (Python Lex/Yacc) [3]. The translator uses very sim-
ple propagation-based static analysis to track the various
invariants described in Section 4.2. Specifically, this static
analysis is used to track the following information:

• presence or absence of threads on a container or in a
thread reference

• failure to store a thread passed as a parameter into a
permanent container in an event handler that requires
this (e.g., newthread(t))

• failure of a query handler to return a value

• failure of an event handler to produce a side effect

• code following a dispatch or return statement

• statically known variable values

As discussed in Section 4.2, CATAPULTS generates runtime
assertions in the generated code for scheduler code that it
cannot analyze statically.

6.2 The Dynamic C Backend
To apply CATAPULTS in an embedded environment, we

developed a CATAPULTS backend for Dynamic C, an ex-
tended subset of C that is used to program Z-World’s 8-
bit Rabbit devices. Dynamic C includes builtin cooper-
ative multithreading in the form of costatements and co-
functions, but only allows a round-robin scheduling policy
for the threads. Although it is possible to use tricks to
accomplish dynamic scheduling in Dynamic C [10], doing
so requires invasive changes to the application itself, which
results in confusing code and does not integrate well with
CATAPULTS. Instead we chose to integrate CATAPULTS
with the cmthread.lib threading library that we had previ-
ously written for Dynamic C. cmthread.lib is a substitute for
Dynamic C’s language-level multithreading and provides an
API that is more consistent with other popular threading
API’s such as Pth or Pthreads. cmthread.lib also provides
better performance in many cases.

Dynamic C applications run in an embedded environment
with no operating system. Our Dynamic C backend gen-
erates a custom version of the cmthread.lib library that
contains the custom generated scheduling code inline. The
modifications to cmthread.lib to make it work with CATA-
PULTS are minor: about 100 new lines of code were added
to the original 457 lines. Because this new code is being
generated by CATAPULTS, its formatting sometimes splits
what would normally be one line of code over several. So, a
fairer estimate is about 50 lines of new code. Also, a good
portion of this code is functions that simply do callbacks.

(In contrast, our Pth implementation dynamically loads
schedulers at runtime [11], which is neither possible nor ad-
vantageous in the Dynamic C environment; it therefore uses
indirect function calls via function pointers, which incurs
some additional overhead.)

7. EXPERIENCE
Below, we describe some of our experiences using CAT-

APULTS for embedded systems applications. We have also
used CATAPULTS with the Pth backend for regular PC ap-
plications such as the CoW web server and numerous small
schedulers [11].

7.1 Weather Monitoring Station Application
In order to measure the benefit of using CATAPULTS on

an embedded application, we simulated the weather mon-
itoring station example described in Section 2. Since we
do not have access to real weather monitoring hardware, we
wrote a Dynamic C application with the appropriate control
logic and replaced actual sensor and display hardware I/O
with small loops. The CATAPULTS scheduler specification
described in the example in Section 2 was used to control
thread scheduling. The complete specification (including the
minor details omitted in Figures 1-8) was a total of 174 lines
of code and was translated into 546 lines of Dynamic C. In
contrast, the original cmthread.lib library on which CATA-
PULTS’ output is based is a total of 457 lines of Dynamic C
code. Although space is a scarce resource on embedded sys-
tems, this size increase is quite reasonable considering how
much more sophisticated the generated scheduler is than the
simple first-come, first-serve scheduler in cmthread.lib. The
CATAPULTS library also links with another 517 line aux-
iliary library that contains implementations of the various

thread container types provided by CATAPULTS. The Dy-
namic C compiler will only link in the functions from this
auxiliary library that are actually used by the specific appli-
cation, so only a couple hundred of these lines are likely to be
included in any given application. So, comparing only lines
of code is somewhat misleading; comparing code size is more
useful. After compiling the simulation application along
with the threading library, the total code size downloaded
to the Rabbit processor was, as shown in Table 1, 23808
bytes when the generated CATAPULTS library was used as
compared to 21120 bytes when the generic cmthread.lib was
used (i.e., a 12.7% increase in size).

To measure the performance difference between the CAT-
APULTS generated scheduler and generic cmthread.lib
scheduler, we executed the control simulation until a total of
10000 executions of the “calculation” threads had run and
then measured the total runtime. When using the generic
cmthread.lib, we allow threads to notice that they have no
work to do and yield immediately; this eliminates the ad-
ditional overhead of useless hardware I/O, but still incurs
the overhead of an unnecessary context switch. As shown in
Table 1, the simulation completed almost 10 seconds faster
when using the CATAPULTS-generated scheduler (a 12.6%
speedup).

7.2 CoW Web Server
We also adapted CoW [6], a cooperatively multithreaded

web server, to use a CATAPULTS scheduler. The version
of CoW that runs on the Rabbits uses the standard Dy-
namic C first-come, first-serve scheduler. Although CoW,
provides satisfactory performance with this generic sched-
uler, we realized that performance could be improved by
using an application-specific scheduler.

Unlike PC-based threading libraries like GNU Pth, the
cmthread.lib library on which CoW is built does not have
a notion of “blocked on I/O” threads. This is because
the TCP interface provided by Dynamic C requires manual
pumping and polling by the application; there is no operat-
ing system to monitor the sockets and raise I/O events to
the threading library. This deficiency means that all CoW
handler threads are always on the ready queue and that dur-
ing execution, there is a context switch into each handler
thread. Quite often it is determined that no socket events
have occurred (no new data for a reading thread, no new
connection for a listening thread, etc.) and another context
switch happens immediately. This extra context switching is
wasteful; our CATAPULTS scheduler allows us to eliminate
this cost.

CoW uses a separate thread to perform the necessary
pumping/polling of all the TCP sockets. Only after an iter-
ation of this thread will handler threads see changes in the
status of their TCP sockets. Our CATAPULTS scheduler
makes use of this knowledge as follows:

• When a handler thread context switches out, instead
of putting the thread back on the ready queue, the
scheduler now checks to see what action the thread
is currently performing. If the thread is performing
a socket operation, the thread is moved to a separate
queue (LISTENQ for listening threads, READQ for
reading threads, etc.). This thread can make no fur-
ther progress until its socket operation completes, so
it is isolated from the ready queue.

Table 1: Comparison of CATAPULTS threading library and generic cmthread.lib

Lines of Compiled Simulation
Code Code Size Duration

Generic cmthread.lib 457 21120 bytes 76.508 sec
Generated CATAPULTS library < 546+517 23808 bytes 66.837 sec

Table 2: Comparison of CoW web server throughput (with 4 handler threads) under generic and CATAPULTS
schedulers.

of clients generic scheduler (bytes/sec) CATAPULTS scheduler (bytes/sec) Increase in Throughput (ratio)

1 4245.23 5958.96 0.40
2 7359.28 12028.24 0.63
4 16181.50 18571.56 0.15
6 20567.03 21488.52 0.04
8 23407.21 24906.37 0.06
10 7451.62 26542.34 2.56
12 6477.88 16513.81 1.55

Table 3: Comparison of CoW web server throughput (with 8 handler threads) under generic and CATAPULTS
schedulers.

of clients generic scheduler (bytes/sec) CATAPULTS scheduler (bytes/sec) Increase in Throughput (ratio)

1 4460.36 5390.08 0.21
2 8738.18 9621.48 0.10
4 15653.21 17587.51 0.12
6 21623.12 21712.17 0.00
8 26289.43 23062.81 -0.12
10 33543.06 26981.74 -0.20
12 38085.71 30544.68 -0.20

• When the TCP driver thread finishes a pump/poll run
and is switched out, the scheduler performs additional
logic before selecting the next thread to run; it checks
for updates in the status of sockets on the blocked
queues (i.e., new connections on listening thread sock-
ets, new data on reading thread sockets, etc.). If such
socket events have occurred, then the corresponding
thread is moved back to the ready queue.

The complete CATAPULTS scheduler specification for CoW
appears in Reference [9].

We benchmarked CoW with both the generic scheduler
and the specialized CATAPULTS scheduler using a varying
number of web clients. Tables 2 and 3 presents the results. It
is interesting to note that while the CATAPULTS scheduler
always provided a speedup in the four handler thread case, it
only provided a speedup for lower numbers of web clients in
the eight handler thread case. This makes sense intuitively.
First, consider the eight handler thread case. Part of the
performance benefit of the CATAPULTS scheduler is that
threads that are listening for incoming connections are not
scheduled in the ready queue with threads that are actually
processing requests. As the number of web clients increases,
the server will become overloaded and all handler threads
will be working all the time and will not spend any time
waiting on the listening queue, thus erasing the benefit of
isolating listening threads. Furthermore, since these bench-
marks were run across a 100 mbit switch, there was very
little network latency between the server and the clients, so

threads spent little (if any) time waiting on the read queue
and write queue. The additional bookkeeping overhead of
moving handler threads to these separate queues and imme-
diately back actually decreased the throughput of the sys-
tem. We expect that if we were to run these tests across
a larger network, reading and writing delays would allow
threads to actually spend significant time on the reading
and writing queues, which would result in significant perfor-
mance gains for all numbers of web clients.

In contrast, a performance gain was always measured when
only four handler threads were used. In this case, the lower
number of threads allowed the TCP thread to cycle back
and run again more quickly. The lower thread cycle time
made it possible for the TCP thread to run again before
reading and writing operations had completed for some of
the handler threads, so the use of separate reading and writ-
ing queues provided an advantage, even on the low latency
network.

8. CONCLUSION
Although real world embedded systems are likely to have a

very diverse set of scheduling requirements, we have applied
CATAPULTS to what we believe to be a typical embedded
system and have achieved very positive results. Performance
gains are likely to vary widely depending on the complex-
ity of the scheduling algorithm required by a given system
and by the penalty incurred by inefficient thread scheduling,
but we have shown that developing custom thread sched-

ulers with CATAPULTS is relatively straightforward and
can provide significant performance gains. Moreover, using
CATAPULTS provides more safety and portability.

We have a number of plans for future exploration. We
realize that many schedulers share common code and data
structure organization, so we would like to make it possible
to derive new schedulers from existing ones and then over-
ride specific parts in an object-oriented manner. Hierarchi-
cal thread scheduling (e.g., as discussed in Reference [1]) is
another area we would like to explore; CATAPULTS could
be extended to develop different scheduling algorithms for
different subgroups of threads. Such hierarchical schemes
would allow different people to develop different schedulers
for subgroups of threads in an application and then sched-
ule those subgroups according to a higher-level scheduler. It
would also be interesting to explore the possibility of creat-
ing schedulers graphically with a GUI design tool; this would
be especially attractive to engineers of a mechanical system
who do not have a lot of experience with software develop-
ment. Finally, CATAPULTS could be extended to work in
a distributed environment with systems like DesCaRTes [8]
that distribute threads over a network of embedded, unipro-
cessor controllers.

Acknowledgments
Jason Cheung, especially, and Glen Sanford helped with the
development and testing of CATAPULTS. The referees pro-
vided very helpful comments.

9. REFERENCES
[1] D. Auslander, J. Ridgely, and J. Ringgenberg. Control

Software for Mechanical Systems: Object-Oriented
Design in a Real-Time World. Prentice Hall PTR,
2002.

[2] L. Barreto and G. Muller. Bossa: A language-based

approach for the design of real time schedulers. In
10th International Conference on Real-Time Systems
(RTS), 2002.

[3] D. Beazley. PLY (Python Lex-Yacc).
http://systems.cs.uchicago.edu/ply/.

[4] R. S. Engelschall. GNU Pth - the GNU Portable
Threads. http://www.gnu.org/software/pth/.

[5] K. Hammond and G. Michaelson. Hume: a
domain-specific language for real-time embedded
systems. In Proceedings of the Second International
Conference on Generative Programming and
Component Engineering, 2003.

[6] T. Ishihara and M. D. Roper. CoW: A cooperative
multithreading web server.
http://www.cs.ucdavis.edu/~roper/cow/.

[7] C. Kolivas. Pluggable CPU scheduler framework,
October 2004. http://groups-beta.google.com/
group/fa.linux.kernel/msg/891f15d63e5f529d.

[8] J. T. Maris, M. D. Roper, and R. A. Olsson.
DesCaRTes: a run-time system with SR-like
functionality for programming a network of embedded
systems. Computer Languages, Systems and
Structures, 29(4):75–100, Dec. 2003.

[9] M. D. Roper. CATAPULTS scheduler code for
embedded CoW webserver.
http://www.cs.ucdavis.edu/~roper/catapults/

examples/cmthreadcow.sched.

[10] M. D. Roper. Dynamic threading and scheduling with
Dynamic C.
http://www.cs.ucdavis.edu/~roper/dcdynthread/.

[11] M. D. Roper and R. A. Olsson. CATAPULTS:
Creating and testing application-specific user level
thread schedulers. in preparation.

[12] Z-World Inc. Dynamic C user’s manual.
http://www.zworld.com/documentation/docs/

manuals/DC/DCUserManual/index.htm.

