ECS 150 Written Homework #2 Due date: Beginning of Final Exam

- 1. What are the possible return values of the fork() system call?
- 2. The three possible runstates of a process are RUNNING, READY, and WAIT-ING. Is it possible for a process to transition from READY state into WAITING state? If so, how? If not, why not?
- 3. What is the response ratio of a process? Why would we use this metric instead of turnaround time, service time, etc.?
- 4. What is libc?
- 5. If all processes in a system arrive at the same time, which scheduling algorithm will give the optimal average turnaround time? Explain briefly why this is.
- 6. What advantage does a scheduler with processor affinity provide over a scheduler that doesn't take it into account?
- 7. What does it mean to mask a signal for a process?
- 8. What is wired memory?
- 9. What is the most important design goal of a kernel memory allocator?
- 10. Describe how a Unix shell can implement input/output redirection for its child processes. What system calls allow this and how are they used?
- 11. What is advisory locking? How does it differ from mandatory locking?
- 12. What is the superblock of a filesystem?
- 13. What is an advantage of a symbolic link over a hard link?
- 14. Assume we have a "mini" version of UFS that stores only 4 data block pointers in the inode and can store 10 pointers in an indirect block. How would we fine the 63rd data block of a file on disk given its inode?
- 15. Where are filename to file mappings stored by the filesystem?

16. Page replacement. Fill in the following tables.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mem)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4 Y 524 3 Y 5243 6 2 43	
3 Y 5243 6 2	
$ \begin{array}{c} 6\\ 2 \end{array} $	
2	
6	
5	
1	
7	
1	
4	
6	
5	
2	
• Optimal Algorithm	``
Page Referenced Page Fault? Result (pages in	mem)
\mathbf{F} \mathbf{V} \mathbf{F}	
D I D	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	