
ECS 150 – Operating Systems

ECS 150 – Operating Systems

Matt Roper

March 29th, 2007

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux

Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows

Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS

FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .

Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris

AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX

Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix

DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX

RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux

TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Operating Systems – Some Examples

Desktop/Workstation/Server Operating Systems

Linux
Windows
Mac OS
FreeBSD, NetBSD, OpenBSD, . . .
Solaris
AIX
Minix
DOS
. . .

Embedded or Realtime Operating Systems

QNX
RTLinux
TRON

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Purposes of an Operating System

So we can name all these different operating systems. But why do
they exist? What is their underlying purpose?

An operating system has two primary responsibilities:

Managing the computer’s resources (processor, memory, I/O
devices)

Providing a standard interface for users and user software

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Purposes of an Operating System

So we can name all these different operating systems. But why do
they exist? What is their underlying purpose?

An operating system has two primary responsibilities:

Managing the computer’s resources (processor, memory, I/O
devices)

Providing a standard interface for users and user software

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Resource Management: Examples

Time-slicing of many concurrent applications onto a limited
number of physical processors.

Allocation of physical memory to several applications.

Organization and bookkeeping of a disk file system.

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Resource Management: Examples

Time-slicing of many concurrent applications onto a limited
number of physical processors.

Allocation of physical memory to several applications.

Organization and bookkeeping of a disk file system.

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Resource Management: Examples

Time-slicing of many concurrent applications onto a limited
number of physical processors.

Allocation of physical memory to several applications.

Organization and bookkeeping of a disk file system.

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Standard Interface: Examples

The operating system hides many low level details from application
programmers.

Suppose you’re writing a program that simply opens a file and
reads some text. Simple. . . now suppose that file happens to reside
on a floppy disk.

the hardware interface for a floppy disk drive controller
supports 16 different commands (reading/writing data,
moving the disk head, etc.)

each one of those commands requires loading several bytes
into a register

each command requires 13 parameters each

Aren’t you glad the OS takes care of these details for you?

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Standard Interface: Examples

The operating system hides many low level details from application
programmers.

Suppose you’re writing a program that simply opens a file and
reads some text. Simple. . .

now suppose that file happens to reside
on a floppy disk.

the hardware interface for a floppy disk drive controller
supports 16 different commands (reading/writing data,
moving the disk head, etc.)

each one of those commands requires loading several bytes
into a register

each command requires 13 parameters each

Aren’t you glad the OS takes care of these details for you?

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Standard Interface: Examples

The operating system hides many low level details from application
programmers.

Suppose you’re writing a program that simply opens a file and
reads some text. Simple. . . now suppose that file happens to reside
on a floppy disk.

the hardware interface for a floppy disk drive controller
supports 16 different commands (reading/writing data,
moving the disk head, etc.)

each one of those commands requires loading several bytes
into a register

each command requires 13 parameters each

Aren’t you glad the OS takes care of these details for you?

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Standard Interface: Examples

The operating system hides many low level details from application
programmers.

Suppose you’re writing a program that simply opens a file and
reads some text. Simple. . . now suppose that file happens to reside
on a floppy disk.

the hardware interface for a floppy disk drive controller
supports 16 different commands (reading/writing data,
moving the disk head, etc.)

each one of those commands requires loading several bytes
into a register

each command requires 13 parameters each

Aren’t you glad the OS takes care of these details for you?

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Standard Interface: Examples

The operating system hides many low level details from application
programmers.

Suppose you’re writing a program that simply opens a file and
reads some text. Simple. . . now suppose that file happens to reside
on a floppy disk.

the hardware interface for a floppy disk drive controller
supports 16 different commands (reading/writing data,
moving the disk head, etc.)

each one of those commands requires loading several bytes
into a register

each command requires 13 parameters each

Aren’t you glad the OS takes care of these details for you?

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Standard Interface: Examples

The operating system hides many low level details from application
programmers.

Suppose you’re writing a program that simply opens a file and
reads some text. Simple. . . now suppose that file happens to reside
on a floppy disk.

the hardware interface for a floppy disk drive controller
supports 16 different commands (reading/writing data,
moving the disk head, etc.)

each one of those commands requires loading several bytes
into a register

each command requires 13 parameters each

Aren’t you glad the OS takes care of these details for you?

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Standard Interface: Examples

The operating system hides many low level details from application
programmers.

Suppose you’re writing a program that simply opens a file and
reads some text. Simple. . . now suppose that file happens to reside
on a floppy disk.

the hardware interface for a floppy disk drive controller
supports 16 different commands (reading/writing data,
moving the disk head, etc.)

each one of those commands requires loading several bytes
into a register

each command requires 13 parameters each

Aren’t you glad the OS takes care of these details for you?

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Consider the following simple C program:

#inc lude <s t d i o . h>
#inc lude <t ime . h>

i n t main (void) {
t im e t t = t ime (NULL) ;

p r i n t f (” He l l o wor ld ! I t i s %s \n” , c t ime (&t)) ;

return 0 ;
}

and its output:

Hello world! It is Thu Mar 26 09:16:37 2007

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

What operations does the operating system perform from the time
we hit ENTER in our shell until the program is complete?

find the executable on the hard drive’s file system

check permission bits (are you allowed to run this program?)

load the executable from disk into memory

allocate physical memory for the program’s variables and
setup a virtual address space

temporarily stop the shell program and allow the “hello world”
program to run

retrieve the value of the hardware clock

print characters to the screen

when the program finishes, free its memory for other programs
to use

allow the shell process to run again

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Goals for this Term

Become familiar with what happens internally in an Operating
System

Understand the basic design principles of various OS
subsystems (process scheduling, memory management, file
system I/O, etc.)

Gain the skills to modify a real-world OS (FreeBSD 5.4)

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Prerequisites

Prerequisites will not be strictly enforced, but I expect you to be
familiar with the following concepts:

C programming (pointers, arrays, structures, malloc(), etc.) –
ECS 30

Data structures, especially linked lists – ECS 40 & 110

How parameters are pushed onto the stack when application
function calls are made – ECS 50

General computer architecture (registers, ALU, etc.) – ECS
154A

Matt Roper

ECS 150 – Operating Systems

Lecture 1: March 29th

Introduction

Brief Course Outline

System calls and system programming

Process scheduling and management

Memory management

IO & Filesystems

Matt Roper

	Lecture 1: March 29th
	Introduction

