
ECS 150 – Operating Systems

Lecture 2: April 3rd

Recap

Responsibilities of an Operating System

An operating system has two primary responsibilities:

Managing the computer’s resources (processor, memory, I/O
devices)

Providing a standard interface for users and user software

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

The Kernel

This course focuses on the operating system kernel — the small
nucleus of the system software that runs in privileged mode and
mediates access by all user programs to the physical hardware.

User processes (shells, editors, etc.) run independently of the
kernel and communicate with it through the use of system calls.

At any time after system boot, main memory holds the kernel
process and several user processes. When a machine is first
powered on, a single user process called init is executed when the
kernel finishes initializing; init is responsible for ultimately
spawning all other user processes on the system (shells, GUI’s,
daemons, etc.)

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

User Mode vs Kernel Mode

Very early computer architectures were not built with
multiprogramming in mind — all CPU instructions could be
executed at any time, and applications could access any memory
address.

Modern architectures allow different pieces of code to run at
different (hardware enforced) privilege levels.

Certain machine instructions (usually those dealing with
memory management, task switching, etc.) are restricted to
code running in “kernel mode.” Execution while the processor
is in “user mode” causes a hardware exception.

This division between kernel mode and user mode prevents
applications from accidentally clobbering each other’s memory
(or the OS’s memory) if something goes wrong.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

x86 Protected mode

Supports four privilege levels (called “rings”), which are
numbered from 0 to 3.

The kernel runs in ring 0 and user mode applications run in
ring 3.

Rings 1 and 2 are generally unused, except by some types of
virtualization software

Kernel code (ring 0) has access to both kernel memory and
user space memory. Applications in user space can only access
their own memory.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry

Execution switches from user mode to kernel mode on three types
of events:

Hardware interrupt — external events from system hardware
(I/O devices, network, keyboard, system clock, etc.); hardware
interrupts occur asynchronously, meaning their execution is
not necessarily related to the user process currently running

Hardware trap — an event (also sometimes referred to as a
hardware exception) raised by the system hardware that
occurs synchronously for a process

Software trap — used by the operating system to force an
event to happen ASAP (scheduling a new process, processing
network data, etc.)

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry

Execution switches from user mode to kernel mode on three types
of events:

Hardware interrupt — external events from system hardware
(I/O devices, network, keyboard, system clock, etc.); hardware
interrupts occur asynchronously, meaning their execution is
not necessarily related to the user process currently running

Hardware trap — an event (also sometimes referred to as a
hardware exception) raised by the system hardware that
occurs synchronously for a process

Software trap — used by the operating system to force an
event to happen ASAP (scheduling a new process, processing
network data, etc.)

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry

Execution switches from user mode to kernel mode on three types
of events:

Hardware interrupt — external events from system hardware
(I/O devices, network, keyboard, system clock, etc.); hardware
interrupts occur asynchronously, meaning their execution is
not necessarily related to the user process currently running

Hardware trap — an event (also sometimes referred to as a
hardware exception) raised by the system hardware that
occurs synchronously for a process

Software trap — used by the operating system to force an
event to happen ASAP (scheduling a new process, processing
network data, etc.)

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry

Execution switches from user mode to kernel mode on three types
of events:

Hardware interrupt — external events from system hardware
(I/O devices, network, keyboard, system clock, etc.); hardware
interrupts occur asynchronously, meaning their execution is
not necessarily related to the user process currently running

Hardware trap — an event (also sometimes referred to as a
hardware exception) raised by the system hardware that
occurs synchronously for a process

Software trap — used by the operating system to force an
event to happen ASAP (scheduling a new process, processing
network data, etc.)

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Top Half and Bottom Half

The kernel can be further divided into a top half and bottom half

top half of kernel provides services to processes in response
to system calls and traps

conceptually a library of routines shared by all processes
executes on a per-process kernel stack
executes synchronously for a process

bottom half of kernel is a set of routines for handling
hardware interrupts

runs asynchronously in relation to user processes and the top
half of the kernel

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Top Half and Bottom Half

The kernel can be further divided into a top half and bottom half

top half of kernel provides services to processes in response
to system calls and traps

conceptually a library of routines shared by all processes
executes on a per-process kernel stack
executes synchronously for a process

bottom half of kernel is a set of routines for handling
hardware interrupts

runs asynchronously in relation to user processes and the top
half of the kernel

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Top Half and Bottom Half

The kernel can be further divided into a top half and bottom half

top half of kernel provides services to processes in response
to system calls and traps

conceptually a library of routines shared by all processes
executes on a per-process kernel stack
executes synchronously for a process

bottom half of kernel is a set of routines for handling
hardware interrupts

runs asynchronously in relation to user processes and the top
half of the kernel

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Top Half and Bottom Half

FreeBSD 5.x does not allow preemption by another user
process while the kernel is running in the top-half, although it
may voluntarily give up the processor if it needs to wait for
something.

When a hardware interrupt is received, the kernel process
associated with that device is scheduled. Since interrupts have
a higher priority than user processes or processes executing in
the top-half of the kernel, they will usually preempt the
currently running process.

Most communication between the top and bottom half of the
kernel is performed through work queues.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Top Half and Bottom Half

FreeBSD 5.x does not allow preemption by another user
process while the kernel is running in the top-half, although it
may voluntarily give up the processor if it needs to wait for
something.

When a hardware interrupt is received, the kernel process
associated with that device is scheduled. Since interrupts have
a higher priority than user processes or processes executing in
the top-half of the kernel, they will usually preempt the
currently running process.

Most communication between the top and bottom half of the
kernel is performed through work queues.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Top Half and Bottom Half

FreeBSD 5.x does not allow preemption by another user
process while the kernel is running in the top-half, although it
may voluntarily give up the processor if it needs to wait for
something.

When a hardware interrupt is received, the kernel process
associated with that device is scheduled. Since interrupts have
a higher priority than user processes or processes executing in
the top-half of the kernel, they will usually preempt the
currently running process.

Most communication between the top and bottom half of the
kernel is performed through work queues.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry via System Call

When a user process makes a system call, the following steps are
performed:

The hardware switches into kernel (supervisor) mode; this
allows memory access checks to use kernel privileges,
references to the stack will use the per-process kernel stack
rather than the user-mode stack, and privileged instructions
can be executed

Program counter, processor status flags, information about
the type of system call (e.g., the system call ID#), and
various registers are pushed onto the kernel stack.

An assembly language routine in the FreeBSD kernel saves
additional state information that the hardware didn’t take care
of.

The actual system call (a C routine) is executed.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry via System Call

When a user process makes a system call, the following steps are
performed:

The hardware switches into kernel (supervisor) mode; this
allows memory access checks to use kernel privileges,
references to the stack will use the per-process kernel stack
rather than the user-mode stack, and privileged instructions
can be executed

Program counter, processor status flags, information about
the type of system call (e.g., the system call ID#), and
various registers are pushed onto the kernel stack.

An assembly language routine in the FreeBSD kernel saves
additional state information that the hardware didn’t take care
of.

The actual system call (a C routine) is executed.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry via System Call

When a user process makes a system call, the following steps are
performed:

The hardware switches into kernel (supervisor) mode; this
allows memory access checks to use kernel privileges,
references to the stack will use the per-process kernel stack
rather than the user-mode stack, and privileged instructions
can be executed

Program counter, processor status flags, information about
the type of system call (e.g., the system call ID#), and
various registers are pushed onto the kernel stack.

An assembly language routine in the FreeBSD kernel saves
additional state information that the hardware didn’t take care
of.

The actual system call (a C routine) is executed.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry via System Call

When a user process makes a system call, the following steps are
performed:

The hardware switches into kernel (supervisor) mode; this
allows memory access checks to use kernel privileges,
references to the stack will use the per-process kernel stack
rather than the user-mode stack, and privileged instructions
can be executed

Program counter, processor status flags, information about
the type of system call (e.g., the system call ID#), and
various registers are pushed onto the kernel stack.

An assembly language routine in the FreeBSD kernel saves
additional state information that the hardware didn’t take care
of.

The actual system call (a C routine) is executed.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

Kernel Entry via System Call

When a user process makes a system call, the following steps are
performed:

The hardware switches into kernel (supervisor) mode; this
allows memory access checks to use kernel privileges,
references to the stack will use the per-process kernel stack
rather than the user-mode stack, and privileged instructions
can be executed

Program counter, processor status flags, information about
the type of system call (e.g., the system call ID#), and
various registers are pushed onto the kernel stack.

An assembly language routine in the FreeBSD kernel saves
additional state information that the hardware didn’t take care
of.

The actual system call (a C routine) is executed.

Matt Roper



ECS 150 – Operating Systems

Lecture 2: April 3rd

The Kernel

For Next Time

Try to install FreeBSD on your system if you haven’t already
done so. If you have problems, it’s best to discover that early.
The first programming project will probably be given out at
Monday’s discussion.

Skim chapter 3 of the textbook. You don’t need to
understand every tiny detail, but you should understand the
general concepts.

Office location for office hours is still TBA. . . I’ll hijack one of
the upstairs TA offices in Kemper until I actually get my own
office assigned. Please monitor the newsgroup and website for
an updated location.

Matt Roper


	Lecture 2: April 3rd
	Recap
	The Kernel


