
ECS 150 – Operating Systems

Lecture 3: April 5th

Recap

Announcements

I’ve finally been assigned a permanent office: 3050 Kemper.
Office hours remain the same (T/Th from 3:15-4:30 PM and
W from 9:30-10:30 AM)

The first programming project will be handed out on Monday
at discussion section (and posted on the web); Bhume will be
giving an introduction to FreeBSD kernel hacking in
discussion.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Recap

Key Points From Last Lecture. . .

kernel — the small nucleus of system software that runs in
privileged mode and serves as an interface between user
programs and physical hardware

two system states — kernel mode and user mode; when a
program is running in “user mode,” there are
hardware-enforced restrictions on what memory can be
accessed and which machine instructions can be executed

the OS kernel is further divided into a “top half” and a
“bottom half”

“top half” runs synchronously for a process; system calls are
part of the kernel “top half”
“bottom half” runs asynchronously for a process; interrupt
handlers for hardware events are part of the “bottom half”

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

What is a process?

process — a program in execution

program’s executable code (“text segment”)

program counter

program’s static and global variables (“data segment”)

stack — local variables and function parameters

OS bookkeeping information; in FreeBSD, this data is divided
into two structures:

process structure — information that must always remain
resident in memory at all times (process credentials, open files,
memory allocation assignments, . . .)
user structure — information that is only required while the
process is running (signal handlers, debugging information)

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

How are processes created?

New processes are created by calling the fork() system call:

int fork(void);

fork()’s purpose is simple — it makes an identical copy of the
currently running process, including all memory in the process’
address space, the current program counter, etc.

Execution of both processes (parent and child) continues from the
point of the fork call.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

fork() example

i n t main (void) {
i n t x = 0 ;

p r i n t f (”x = %d\n” , x) ;
f o r k () ;
x++;
p r i n t f (”x+1 = %d\n” , x) ;

}

Output:
x = 0
x+1 = 1
x+1 = 1

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

fork() example

i n t main (void) {
i n t x = 0 ;

p r i n t f (”x = %d\n” , x) ;
f o r k () ;
x++;
p r i n t f (”x+1 = %d\n” , x) ;

}

Output:
x = 0
x+1 = 1
x+1 = 1

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

fork(), continued

But what’s the point of cloning a process if they do the exact same
thing? Can we distinguish between the parent and the child
process?

Yes! From the fork() manpage:

On success, the PID of the child process is returned in
the parent’s thread of execution, and a 0 is returned in
the child’s thread of execution. On failure, a -1 will be
returned in the parent’s context, no child process will be
created, and errno will be set appropriately.

So we can test the return value to figure out whether the currently
executing process is the parent or child.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

fork() example

i n t main (void) {
i n t p id ;

p r i n t f (”x = %d\n” , x) ;
p i d = f o r k () ;
i f (p i d == 0) {

p r i n t f (” I am the c h i l d p r o c e s s !\ n”) ;
} e l s e {

p r i n t f (” I am the pa r en t p r o c e s s ; my c h i l d
i s p r o c e s s #%d\n” , p i d) ;

}
}

Output:
I am the child process!
I am the parent process; my child is process 31100

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

fork() example

i n t main (void) {
i n t p id ;

p r i n t f (”x = %d\n” , x) ;
p i d = f o r k () ;
i f (p i d == 0) {

p r i n t f (” I am the c h i l d p r o c e s s !\ n”) ;
} e l s e {

p r i n t f (” I am the pa r en t p r o c e s s ; my c h i l d
i s p r o c e s s #%d\n” , p i d) ;

}
}

Output:
I am the child process!
I am the parent process; my child is process 31100

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

execve()

Spawning identical children would obviously be useful in some
situations (e.g., a web server that has to handle multiple
simultaneous requests), but what if we want to execute a different
program?

Another system call:

int execve(char* filename,
char* argv,
char* envp);

execve() wipes the current address space clean, then starts
execution of the specified program.

(so if you don’t want the current program destroyed, you need to
fork a second copy before calling execve)

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

waitpid()

fork() and execve() can be used together to spawn a new
program. But what if we want our original program to stop and
wait for the second program to finish before continuing execution?

One more system call:

pid t waitpid(pid t pid, int* status,
int options);

pid is the Process ID of the process to wait for; use -1 to wait
for any child process
status is a pointer to an integer where the exit status of the
process will be stored (i.e., successful completion, killed by a
signal, etc)
options specifies how this system call should behave; see the
manpage (man 2 waitpid) for details

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

A simple Unix shell

You should now have all the tools you need to write a (very
simple) Unix shell. Try to fill in the following missing parts of this
simple shell program:

i n t main (void) {
char command [1 0 2 4] ;
char pa ramete r s [1 0 2 4] ;
// d e f i n e any e x t r a v a r s you need

whi le (1) {
pr in tPrompt () ;
getCommand(&command , ¶mete r s) ;

// your code goes he r e
}

}

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

System call prototypes

int fork(void);
int execve(char* filename,

char* argv,
char* envp);

pid t waitpid(pid t pid, int* status,
int options);

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Solution:

i n t main (void) {
char command [1 0 2 4] ;
char pa ramete r s [1 0 2 4] ;
i n t s t a t u s ;

whi le (1) {
pr in tPrompt () ;
getCommand(&command , ¶mete r s) ;

i f (f o r k () != 0) // pa r en t p r o c e s s
wa i t p i d (−1 , &s t a t u s , 0) ;

e l s e // c h i l d p r o c e s s
execve (command , parameter s , NULL) ;

}
}

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Context Switching

FreeBSD (and all modern operating systems) support transparent
multiprogramming — the illusion of concurrent process execution.

context switch — the act of storing the state (context)
of the CPU for the currently running process and loading
the saved state of another process.

Context switching is a relatively expensive operation due to the
amount of copying that needs to be performed.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Context Switching

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Scheduling

Clearly minimizing the number of unnecessary context switches is a
important to system performance.

The basic problem:

at any given time, several processes are ready to run

only N processes can run at a time (where N=number of
processors)

Selection of which process to run at any given time is handled by
the operating system’s scheduler; many different scheduling
algorithms exist.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Process States

running — process is currently executing on the processor

ready — process is not currently executing, but is ready to be
scheduled

waiting — (or “blocked”) process is waiting for an event
before it can continue running (I/O, child process completion,
etc.)

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Process Scheduling

Process scheduling can be implemented in one of two ways:

preemptive scheduling — the running process can be forced
to temporarily stop executing and let another process run

non-preemptive scheduling — a running process continues
to run until it blocks on an event, voluntarily yields control of
the processor, or finishes execution

We’ll focus on preemptive scheduling.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Preemptive Scheduling

The system clock is the key to preemptive scheduling.

a chip on the motherboard of the computer

sends a periodic signal to the CPU; frequency (HZ) can be set
by the OS; Unix-based operating systems usually use values of
100, 1000, or something in between.

signal triggers a timer interrupt, which causes execution to
jump into the bottom half of the kernel and make scheduling
decisions

The amount of time that a process is allowed to run before being
interrupted is called the quantum, or time slice; usually measured
in number of clock ticks.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

How do we decide which process to schedule?

One option: simple first come, first serve scheme

place all runnable processes on a single queue called the
“ready” list

when a scheduling decision needs to be made, simply take the
process on the head of the queue and execute it

whenever a running process uses up its quantum or a waiting
process is unblocked, it will be placed on the tail of the queue

Pros: very simple scheduling algorithm; easy to implement and
quick to execute (remember that process scheduling decisions may
be made thousands of times per second)

Cons:

Not fair for programs that are heavily I/O based. . . can
result in high latency and “lag”

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

How do we decide which process to schedule?

One option: simple first come, first serve scheme

place all runnable processes on a single queue called the
“ready” list

when a scheduling decision needs to be made, simply take the
process on the head of the queue and execute it

whenever a running process uses up its quantum or a waiting
process is unblocked, it will be placed on the tail of the queue

Pros: very simple scheduling algorithm; easy to implement and
quick to execute (remember that process scheduling decisions may
be made thousands of times per second)

Cons: Not fair for programs that are heavily I/O based. . . can
result in high latency and “lag”

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Process Classifications

We need some way to distinguish between different types of
processes so that we can prioritize them. Here’s one possible
categorization:

I/O bound — programs that perform lots of I/O operations
with relatively little processing inbetween (text editors, web
browsers, etc.)

CPU bound — programs with little or no I/O (e.g., scientific
software and simulations

hybrid — multimedia programs (video players, music players,
etc.)

The operating system can make guesses at which type of
application a process is based on how often it uses up its entire
quantum and is preempted vs how often it blocks on I/O.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Process Classifications

We need some way to distinguish between different types of
processes so that we can prioritize them. Here’s one possible
categorization:

I/O bound — programs that perform lots of I/O operations
with relatively little processing inbetween (text editors, web
browsers, etc.)

CPU bound — programs with little or no I/O (e.g., scientific
software and simulations

hybrid — multimedia programs (video players, music players,
etc.)

The operating system can make guesses at which type of
application a process is based on how often it uses up its entire
quantum and is preempted vs how often it blocks on I/O.

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Process Classifications

Other classifications are also possible:

interactive — a process where responsiveness should be the
priority and actual throughput is secondary

batch — processes for which throughput and overall execution
time is most important (may or may not do a lot of I/O)

realtime — processes that need to complete by a specific
deadline; most often encountered in embedded systems

Matt Roper

ECS 150 – Operating Systems

Lecture 3: April 5th

Process Management

Performance Measurement Metrics

Important metrics for performance evaluation:

throughput — # of processes completed per unit time

turnaround time (T) — real world time to complete a
process

service time (S) — total amount of time a process needs to
run on the CPU to finish

response ratio — “normalized turnaround time” = T
S

response time — time taken to respond to user input
(keystrokes, command entered into shell, etc.)

Matt Roper

	Lecture 3: April 5th
	Recap
	Process Management

