
ECS 150 Programming Project #1
Due date: 11:59 PM, April 23rd, 2007

In this programming project you will learn how to modify and compile a new FreeBSD
kernel. You will also gain experience with the “kld” (Kernel Loadable Module) in-
terface and use it to dynamically add a new system call to the FreeBSD operating
system. Instruction on these topics will be given during discussion section and links
to additional reference material will be posted on the course website shortly.

You must use the version 5.4 kernel to do this programming assignment. Please
submit all kernel source code files that you modify, the Makefile for your kernel
module, and a README file indicating what does or does not work. If you are
working in a group, make sure both partners are listed in the README file. Please
do NOT hand in the whole source tree or generated binaries.

To package your submission, please run the following command:

tar vcfz proj1-name.tar.gz <list of files to submit>

name should be the last name of the person submitting the project. This will generate
a compressed tarball called proj1-name.tar.gz. You can double check the contents
of your tarball by typing

tar vtfz proj1-name.tar.gz

(note the ‘c’ in the original command has now been replaced with a ‘t’). This will give
you a listing of the files in the archive. Once you are satisfied that all files have been
included, mail your tarball to roper@cs.ucdavis.edu with a subject line of “ECS
150 Project 1.” Indicate your name and (if applicable) the name of your partner in
the email body. Only one submission is required per group.

Part 1: Process Structure Modification

For the first part of your project, you must modify the FreeBSD process structure
so that the operating system will track two additional pieces of information for each
process, a string and an integer. The process structure is defined as struct proc

in /usr/src/sys/sys/proc.h. Add two new fields: p category (an integer) and
p message (a string buffer of size 30).

Part 2: KLD Syscall Implementation

The second part of your project is to create new system calls to get and set the new
p category and p message fields of the process structure. Specifically:

• int setcat(pid t pid, int cat);

This system call will set the p category field to cat for the process with ID pid.
Returns 0 on success, -1 on errors (e.g., invalid PID).



• int getcat(pid t pid);

This system call returns the p category field for the process with ID pid. If
pid is -1, returns the value for the current process.

• int setmsg(pid t pid, char* msg);

This system call will set the p message string to the value pointed to by msg.
Returns 0 on success, -1 on error (if the length of message exceeds the buffer
size of 30, return -1 and take no other action). If msg is NULL, set the process’
message to the empty string (“”).

• int printmsg();

If the current process has a non-null message, print it using the kernel’s uprintf()
function. (Note that the kernel’s printf works a bit differently from a regular
program’s — the message will probably display on the console or in the system
log, depending on how you have your system setup; uprintf() will print in the
manner you expect.). If the p message field for the current process holds the
empty string, return -1 and don’t print anything.

2


