
1

Cyber Reasoning with Argumentation: Abstracting
From Incomplete and Contradictory Evidence

Andy Applebaum1, Karl Levitt1, Zimi Li2, Simon Parsons3, Jeff Rowe1 and Elizabeth Sklar3
1Dept. of Computer Science, University of California Davis, CA 95616
2Dept. of Computer Science, City University of New York, NY 10016
3Dept. of Computer Science, University of Liverpool, Liverpool, UK

applebau@ucdavis.edu

Abstract—Information given to system administrators is often
incomplete and contradictory. Even worse, administrators are
required to adhere to organizational policies, which frequently
contain conflicting goals. While prior work in security has
sought to alleviate these concerns, much of it strives to identify
attacks and intrusions with approaches that require complete
knowledge for analysis. In this paper, we present a framework to
addresses the challenges facing administrators by using formal
argumentation to generate big-picture conclusions regarding the
system. Unlike other schemes, argumentation excels in situations
where information is incomplete and knowledge is contradictory.
To motivate our approach, we detail a scenario inspired by real-
world data taken from the U.C. Davis environment.

I. INTRODUCTION

System administrators are overworked, inundated with
alerts, logs and reports from network components. While
thorough in some places, the information they are given can
still be incomplete and is at times contradictory. Even when the
reports they have are clear, administrators can still be at a loss
for what to do — organizational policies are rarely consistent
themselves and the consequences of a wrong choice can be
serious. Responding to information when it is unreliable makes
the task of administration challenging.

Automated solutions can ease some administrative tasks,
bolstering the stability of a system by automatically responding
to component statuses. From a security standpoint, the most
common solutions are forms of intrusion detection systems
(IDS) — interfacing directly with reports from system com-
ponents, IDSs are able to identify and in some cases prevent
intrusions. Outside of these tasks, however, the function of
IDSs is limited, and the possibility of false positives and
false negatives further requires the administrator to maintain a
watchful eye. Fundamentally, IDSs lack contextual awareness,
reasoning only about whether an action is an attack or not,
never moving towards gaining an understanding of the “big
picture” of the network. This disconnect is a significant gap,
symptomatic of a hole that a well-trained attacker can exploit.
In light of this, this paper describes a novel method that helps a
system administrator build an understanding of the big picture.

As an example, consider the situation at U.C. Davis. The
campus network features a single ingress/egress point managed
by the campus information technology department — this

gateway runs the TippingPoint intrusion prevention system
(IPS), blocking attacks based on predefined signatures. All
attacks found by the IPS are written into a log file, a sample
of which can be found in Figure 1. While information rich,
this log file is often left unobserved: as told by the U.C.
Davis information technology staff, the logs are overly verbose,
containing too many alerts to extract any significant meaning.
Moreover, because the signatures used by the IPS are limited in
scope and false positives are possible, the logs obtained paint
an incomplete picture. The work we report here addresses these
problems by creating a system that parses the logs and fills in
the gaps using general information about the kinds of attacks
represented in the logs.

Unlike other work on parsing logs, ours focuses on “big
picture” ideas that can be useful to system administrators,
guiding future actions as well as identifying fresh perspec-
tives into otherwise sparse conclusions. We achieve this by
incorporating argumentation, a logical framework designed to
handle inconsistent, incomplete and contradictory evidence.
Additionally, argumentation is well-suited to this problem
due to the variable priorities inherent in the task of securely
managing a system — in some situations an administrator may
wish to create an air gap when faced with evidence of an attack,
while in others the administrator may ignore the evidence due
to a need for the system to remain online. Using argumentation,
our end product is not only a new set of conclusions about the
system, but also an understanding of the underlying reasoning
behind these conclusions.

The rest of this paper is organized as follows: in Section II
we provide a brief background on argumentation, in Section III
we outline a high level of our proposed framework, in Sec-
tion IV we examine a case study using our framework, in
Section V we discuss our work towards an implementation of
our architecture, in Section VI we discuss related work, and
in Section VII we draw conclusions and outline future work.

II. BACKGROUND: ARGUMENTATION

Historically, argumentation is rooted in the fields of phi-
losophy, logic, debate and rhetoric: simply put, the goal of
argumentation is to understand and explain the way that
humans reason about everyday problems. This specific kind
of reasoning is often done in the face of incomplete and



2

ID Time Source Target Type Count Severity
328785516 2013-06-01 00:00:37 128.120.179.0 126.205.148.138 0290: Invalid TCP Traffic: Possible Recon Scan (SYN FIN) 1 2
328785520 2013-06-01 00:00:40 90.215.207.246 169.237.149.0 12607: Backdoor: Zero Access Trojan Communication Attempt 1 3
328795922 2013-06-01 00:49:43 67.166.158.11 169.237.6.0 0521: HTTP: webdist.cgi Command Execution 1 4
329975724 2013-06-04 12:14:55 128.120.60.0 67.17.157.22 0290: Invalid TCP Traffic: Possible Recon Scan (SYN FIN) 1 2
330627682 2013-06-06 17:15:33 128.120.106.0 78.88.62.234 12607: Backdoor: Zero Access Trojan Communication Attempt 1 3

Fig. 1: Sample Tipping Point alert entries. Internal IP addresses are anonymized at the last octet.

contradictory evidence, with the human actor making a de-
cision based off of (potentially conflicting) internal priorities.
Unlike traditional logics, where conclusions are proven true,
argumentation concerns itself with the task of accepting a
conclusion tentatively, with the possibility of rejecting it later
depending on new knowledge.

More recently, argumentation has shifted from a rhetorical
tool to a computational model for reasoning with uncertainty
and conflicts. This shift is due in no small part to Phan
Minh Dung’s seminal work [1]: in it, Dung presented the
concept of “argumentation frameworks,” a simple model ca-
pable of representing other systems as well. The essence
of Dung’s system was to treat arguments as atomic, where
an argumentation framework is defined based on a set of
atomic arguments combined with a set of relations over those
arguments signifying “attacks;” notationally, frameworks are
written as F = 〈A,R〉 where A is the set of arguments and
R the attack relation, with i, j ∈ A and (i, j) ∈ R signifying
that argument i attacks the validity of argument j.

Argumentation frameworks inherit complexity through the
notion of acceptability semantics, which are used to define
what it means for an argument to be “reasonable.” While many
different types of semantics have been proposed, in this work
we focus primarily on two:
• Grounded semantics, wherein an argument is considered

acceptable if it is not attacked by any argument or if
each attacker of it is in turn attacked by an acceptable
argument.

• Preferred semantics, wherein an argument is considered
acceptable if there exists a maximal subset of A contain-
ing that argument where none of the arguments in that
set attack each other and for every argument in that set,
if that argument is attacked, its attacker is attacked by at
least one argument in the set.

Grounded semantics identify arguments that are always
reasonable while preferred semantics identify arguments for
which there exists some consistent line of reasoning that
concludes the argument is acceptable. Figure 2 provides an
example framework. Here, we have A = {a, b, c, d} with
R = {(a, b), (c, b), (c, d), (d, c)}. Under grounded semantics,
the only acceptable argument is a (as it is unattacked), while
under preferred there are two acceptable lines of reasoning,
each corresponding to a preferred extension: accepting argu-
ments a and c or accepting arguments a and d.

Many extensions of Dung’s argumentation frameworks have
been proposed; for this project, we chose to work with the AS-
PIC+ framework [7]. Unlike an abstract framework, ASPIC+
provides structure to arguments. Starting with some logical
language L, arguments are built from facts — predicates in
L — by chaining rules towards a single conclusion. These

a b

c d

Fig. 2: An example argumentation framework: argument a is
green, present in all preferred extensions, argument b is red,
absent from all preferred extensions, and arguments c and d
are white, each present in exactly one preferred extension.

rules can either be strict, as in traditional modus ponens, or
defeasible, meaning that the consequent reasonably follows
from the antecedent. Notationally:

p1, p2, ..., pn → c1 strict rules
p1, p2, ..., pn ⇒ c1 defeasible rules

In each case, c1 denotes the conclusion of a rule and p1, ..., pn
is the conjunction of premises p1 through pn, jointly referred
to as the body of the rule. Arguments are constructed through
rule chaining, starting with a set of facts (rules that lack
premises) and building on those facts with a set of rules to
ultimately reach a conclusion. Informally, arguments attack
each other when one negates the conclusion of another or
when one negates the premise of a rule used by another,
with the caveat that strict rules cannot be attacked on their
conclusions. An argumentation framework is then instantiated
via this construction.

III. FRAMEWORK

A. Overview
The general workflow of our system is as follows:

1) Obtain reports and status updates from network sensors.
2) Abstract sensor reports into big-picture ideas.
3) Using argumentation, reason about big picture ideas.
Of these steps, our research focus is on the second and

third: we assume that network sensors (e.g., system logs,
intrusion detection/prevention systems, firewall reports, etc.)
are present and trustworthy. Once obtained, reports are fed
into a processor, which creates predicates to denote important
high-level observations about the data. Examples can include:
• A spike in intrusion attempts was seen in the morning.
• Traffic slowly declined over the weekend.
• IP 75.75.75.75 was a frequent target for outgoing alerts.
Logically, we treat the predicates produced by the processor

as indisputable facts. From there, the facts are fed into a



3

Name Body Conclusion Rule Attacks
A1 → Ω1

A2 Ω1 ⇒ WEBSERVER(X) r4 A6, A4

A3 WEBSERVER(X) ⇒ ALLOWTRAFFIC(any, X) r5
A4 Ω1 ⇒ COMMANDSERVER(X) r1 A2, A3

A5 Ω1 ∧
COMMANDSERVER(X) → BOTNET(I) r2

A6 COMMANDSERVER(X) ∧
BOTNET(I) → BLOCKTRAFFIC(I, X) r3 A3

Fig. 3: Example arguments built from Ω1 and rules r1, ..., r5. Arguments constructed using TOAST [15].

knowledge base consisting of a set of rules encoding security-
domain knowledge (what a botnet is, the consequences of a
denial of service attack, what a port scan entails, etc.) as well
as a set of rules premised on specific observational predicates.
After combining the facts into the knowledge base, we con-
struct arguments using the methodology of ASPIC+, ultimately
producing an argumentation framework. An example argument
is produced below.
• (Observation:) External IP x has triggered 30 different

alert categories.
• (Rule:) Any IP that triggers numerous alerts categories is

malicious.
• (Rule:) All malicious IPs should be blocked.
• (Conclusion:) x should be blocked.
After construction, the argumentation framework is pre-

sented to the administrator for review. In this stage, the
administrator can view the recommended responses, preferred
extensions, pivotal arguments, sources of further information,
etc.

B. Reasoning Structure

1) Predicate Construction: Our goal is to provide a gen-
eral framework that can work with any initial source of
information. Nonetheless, as our project is motivated by the
TippingPoint alert logs, we focus first on creating an interface
between the IPS alerts and the initial fact set. We thus seek to
create predicates as summaries of the logs, using the following
format:

Obs(T0, Tn, C, S,D,R,A)

where T0 and Tn are the start and stop time of the summary, C
is a representation of the alert count, S and D representations
of source and destination hosts respectively, R the direction
(in or out) and A a representation of the alert class. Put into
words, the above predicate — when introduced as a fact —
says that between times T0 and Tn there were roughly C alerts
of type(s) A from S to D. C, S,D and A can each take on a
specific value (an exact count, a specific IP address, a specific
alert, etc.) or a special keyword: single, signifying a fixed
non-specific value, few, signifying a small generic set, many,
signifying a large generic set, or any, signifying any.

As an example, we present the following fact:

→ Obs(α, β,many,many, X,out,BACKDOOR) (Ω1)

This states that between times α and β, many outgoing alerts of
type BACKDOOR were triggered from multiple internal hosts
to one specific external host X .

2) Rules: Extending to a Knowledge Base: The composition
of the premises of a rule places it into one of three categories.
In the first category, we have builder rules, where each premise
is of the form Obs(any). As an example:

Obs(α, β,many,many, X,out,BACKDOOR) ⇒
COMMANDSERVER(X)

(r1)

This rule has only one premise — Ω1 — which defeasibly
implies the conclusion that host X is a command server.

For the second category, we have joiner rules, where at least
one premise is a literal from L and at least one premise is of
the form Obs(any). As an example:

COMMANDSERVER(X) ∧
Obs(α, β,many,many, X,out,BACKDOOR) →

BOTNET(local)
(r2)

This states that if X is a command server and some large set
of internal hosts has been triggering BACKDOOR alerts to X ,
then we can strictly conclude that there is a local botnet.

The last category of rules is extrapolatory. Unlike builder
or joiner rules, the premises of extrapolatory rules only consist
of literals from L; these rules are meant to extrapolate without
using any direct observations. As an example:

COMMANDSERVER(X) ∧
BOTNET(local) →

BLOCKTRAFFIC(X)
(r3)

stating that if X is a command server and the local network
has a botnet, then traffic from X should be blocked.

Moving towards a concrete argumentation framework, we
now consider an alternative explanation to the observation Ω1:

Obs(α, β,many,many, X,out,any) ⇒
WEBSERVER(X)

(r4)

where we have that Ω1 satisfies the premise of r4 (since the
latter does not specify an alert type). In words, this rule says
that if we see many internal hosts triggering alert warnings
when contacting X , then we can conclude that X is some sort
of web server, with the assumption being that multiple alerts
are a normal part of functioning as a web server. Naturally,
this produces a contrariness relation with WEBSERVER(X)
and COMMANDSERVER(X) mutually exclusive. Building on



4

A1

A2

A4

A5

A6

A3

Fig. 4: Arguments from Figure 3 visualized.

this, we can also introduce ALLOWTRAFFIC(X) — mutually
exclusive with BLOCKTRAFFIC(X) — signifying that traffic
from X should be allowed:

WEBSERVER(X) ⇒ ALLOWTRAFFIC(X) (r5)

These rules produce the set of arguments in Figure 3 with
the framework itself visualized in Figure 4. Under grounded
semantics, the only acceptable argument is A1 — that Ω1

is true — whereas under preferred semantics each argu-
ment would be acceptable (with extensions {A1, A2, A3} and
{A1, A4, A5, A6}).

Reviewing the scenario, the administrator has a few different
options: select a single preferred extension and act on it, pri-
oritize the different rules to reach a single complete grounded
extension, or look for more evidence regarding the status of the
external host X . As a simple example of the second category,
a preference can be encoded to prefer r1 over r4: since r1
builds on a more specific observation than the one used in r4,
it can be viewed as a stronger rule than the latter. Using this
preference, the single grounded extension {A1, A4, A5, A6}
would emerge, with the conclusion to block traffic from X .

IV. CASE STUDY: AN AUTHORIZED PENETRATION TEST

A. Scenario
In this section we illustrate a scenario, taken from real world

data, that we can apply our framework to. We begin with the
following predicate:

→ Obs(α, β,any, X, Y,in,many) (ω1)

Put into words, ω1 states that between times α and β, external
host X sent many alerts types to internal host Y . This leads
to a natural conclusion: X is sending all these alerts to Y
in order to break into Y , and therefore X is some sort of
malicious attacker. Incorporating this into the knowledge base
yields the following rules:

Obs(α, β,any, X, Y,in,many) ⇒
MALICIOUS(X)

(τ1)

MALICIOUS(X) → BLOCKTRAFFIC(X) (τ2)

signifying that all traffic from X should be blocked, just in
case X triggers a vulnerability unknown to the IPS.

Applying this signature to the TippingPoint logs generated
a list of potentially malicious attackers (found in Figure 5).

Source Count Alerts Targets
24.7.158.10 309 68 1
54.235.163.229 995 53 1
54.215.13.26 986 53 1
98.255.224.214 621 44 1
67.166.158.11 301 44 1
198.96.129.164 576 44 1
67.207.202.9 5882 41 1
64.37.231.131 205 14 3
123.151.39.34 1675 12 21

Fig. 5: External attackers triggering at least 12 different alerts,
with at least 100 alerts total.

Looking at each IP individually, we made a surprising dis-
covery: Googling the address 54.235.163.229 returns a page
(https://scanmyserver.com/faq.html) associating the IP address
with the ScanMyServer service, intended to perform an au-
thorized penetration test on a given target. In fact, the afore-
mentioned page even goes so far as to request users of the
service to white-list their IP so that all vulnerability tests can
be performed. However, since these scans were blocked by the
UCD IPS, the result of the test is inaccurate (as the test failed
at the gateway as opposed to the server) and it is possible that
a local server contains vulnerabilities unknown to the operator.

With this in mind, we create an alternative explanation and
action for ω1:

Obs(α, β,any, X, Y,in,many) ⇒
PENTESTER(X)

(τ3)

PENTESTER(X) → ALLOWTRAFFIC(X) (τ4)

with the predicates MALICIOUS and PENTESTER mutually
exclusive. Using this new knowledge base, any IP that sat-
isfies ω1 will always create an argumentation framework with
two preferred extensions — one with MALICIOUS(X) and
BLOCKTRAFFIC(X) and the other with PENTESTER(X) and
ALLOWTRAFFIC(X) – but no responsive recommendation. In
the remainder of this section, we present two techniques that
can be used to extend this scenario towards a clear resolution.

B. Intermediate Conclusions

Both predicates MALICIOUS(X) and PENTESTER(X) de-
scribe the same type of classification, differing only in the
intention of X — in either case, since X is sending many
alerts, it is likely that X will continue to send alerts, and
thus we would want to conclude that X should be monitored
in order to identify new potential signatures. Additionally,
because we know there will not be a clear resolution for
blocking or allowing X , we would want to also conclude that
X should be looked up to determine if it is an authorized
attacker or not. This leads us to add a middle-point between
ω1 and the conclusions MALICIOUS(X) and PENTESTER(X),
updating the rule set as follows:

Obs(α, β,any, X, Y,in,many) ⇒
ATTACKER(X)

(τ0)



5

Attacker(X) LookUp(X)

Malicious(X)

Monitor(X)

PenTester(X)

AllowTraffic(X)

BlockTraffic(X)

Fig. 6: Arguments from Section IV-B visualized, with each
argument labeled by its conclusion.

with

ATTACKER(X) ⇒ MALICIOUS(X) (τ1)
ATTACKER(X) ⇒ PENTESTER(X) (τ3)

and added conclusions:

ATTACKER(X) ⇒ MONITOR(X) (τ4)
ATTACKER(X) ⇒ LOOKUP(X) (τ5)

Adding these new rules and seeding with ω1 yields
a framework (visualized in Figure 6) with a grounded
extension containing ATTACKER(X), LOOKUP(X) and
MONITOR(X). As in the initial situation, there will be two
preferred extensions (one containing MALICIOUS(X)
and BLOCKTRAFFIC(X) and the other containing
PENTESTER(X) and ALLOWTRAFFIC(X)) with no clear
resolution on allowing or blocking X . However, because
this new framework introduces intermediate steps, the
administrator will always be able to respond to the initial
observation, either by monitoring and learning from X or
looking up X and determining if the traffic is part of an
authorized penetration test.

C. Adding New Observations

Consider the IP address 123.151.39.34 in Figure 5. Although
it satisfies the initial predicate ω1, its patterns are markedly
different than those of the ScanMyServer service — whereas
the latter sent alerts to one specific target, the former sent
alerts to 21 different targets. Due to the large number of
targets contacted by this IP, it seems quite unlikely that it is
an authorized penetration tester. To encode this reasoning, we
create a new observation:

→ Obs(α, β,any, X,many,in,any) (ω2)

along with a new rule and predicate:

Obs(α, β,any, X,many,in,any) ⇒
SCANNER(X)

(τ6)

This new rule states that any external host that is sending
alerts to numerous internal hosts should be labeled a SCAN-
NER; hosts exhibiting this behavior are likely opportunistic and
are attempting to find vulnerabilities in any part of the net-
work. By themselves, scanners are often benign — malicious,
perhaps, but unlikely to cause significant damage. However,
a scanner that is also a known attacker poses a significant

Processor Knowledge−Base

ArgTrust

Reasoning Engine

Logs

Argumentation

Framework
Administrator

Fig. 7: Implementation workflow.

risk, and, no longer benign, should be strictly categorized as
malicious:

SCANNER(X) ∧ ATTACKER(X)
→ MALICIOUS(X)

(τ7)

Introducing this rule yields a new argument for
MALICIOUS(X): provided that X is a scanner and attacker,
then we can strictly conclude that X is malicious. Accordingly,
the argument for PENTESTER(X) – which we constructed
defeasibly – no longer attacks the conclusion MALICIOUS(X),
yielding a single preferred extension for 123.151.39.34
containing SCANNER, ATTACKER, MALICIOUS, MONITOR,
LOOKUP and BLOCKTRAFFIC.

V. ARCHITECTURE AND IMPLEMENTATION

The scenarios and examples contained in this paper, while
initialized from real data, were created manually. An im-
plementation is currently under development. Figure 7 pro-
vides a rough overview of operation: logs obtained from the
TippingPoint IPS are first parsed into Obs predicates and
then combined with a user-defined knowledge base. From
there, the predicates and rules are fed to the argumentation
engine ArgTrust [14], which outputs a graph containing the
acceptability semantics for the framework.

Once complete, the final version of our implementation
will be extensible, taking input from multiple log files, cus-
tomizable, allowing users to define cutoffs for keywords few
and many as well as allowing users to add and remove
rules from the knowledge base, and interactive, providing an
interface for the administrator to use to view key parts of
the argumentation framework (e.g., customizable acceptability
semantics, potential responses, consequences, etc.). Addition-
ally, the final version will provide an automated format where
the administrator can specify rules preferences and evidence
metrics to resolve conflicts and arrive at a single grounded
extension.

VI. RELATED WORK

Alert correlation for intrusion detection, similarly motivated
to reduce the number of alerts facing administrators, is a
well established research area where reports from multiple
network sensors/IDSs are combined to identify larger and more
complex attacks. A survey of techniques for alert correlation
in [2] categorize techniques into five main types, two of
which are of particular interest to us: those that correlate
alerts based on predefined scenarios and those that correlate



6

alerts by analyzing prerequisites and consequences of alerts.
Approaches that fall under these categories are built upon
logical models; an example logic can be found in [8], which
gives a comprehensive first-order logical model to represent
the security of a system.

Attack graphs [13] are similarly themed to alert correlation,
with the focus primarily on chaining vulnerabilities as opposed
to alerts. The attack graph approach has been featured heavily
within the area of cyber situational awareness [4]; two notewor-
thy use cases are Cauldron [5], which automatically exposes
vulnerability paths, uses advanced visualization techniques and
provides recommended responses, and [6], which considers
ways that uncertainty can be modeled within an attack graph.
While similar in motivation, our work lies outside the typical
focus of cyber situational awareness as our work is centered
around awareness from status-based alerts as opposed to vul-
nerability analysis. Nonetheless, we do consider our work to
fall under the general heading of cyber situational awareness,
and hope to reposition our work within this field.

Perhaps most similar to our work are [16] and [9], where the
authors’ goal is to combat uncertainty in intrusion detection.
Both works use logical frameworks that start with observations
and chain inference rules towards a conclusion, although they
differ in the way they handle uncertainty: in the former, uncer-
tainty is quantified by assigning a numerical value (obtained
by using Dempster-Shafer theory) to inference rules, while in
the latter uncertainty is qualitative, with each rule is assigned
one of three labels (possible, likely or certain). This second
approach is similar to the strict/defeasible rule dichotomy used
in this paper, although our system’s use of argumentation
allows for the presence of conflicts in the knowledge base.

Cyber security as a whole is a fairly new venue for argu-
mentation. One early focus is using argumentation to prove and
diagram security properties [3], which was reimagined by the
authors of [10] by using ASPIC+ and considering the logical
formalisms of argumentation as a game. Argumentation for
identification and analysis of attacks was considered in our
prior work [11]. A similar problem was examined in [12],
which uses argumentation to tackle the problem of attribution
in cyber warfare. To the best of our knowledge, our work
is the first attempt to use rule-based argumentation for alert
correlation and intrusion analysis.

VII. DISCUSSION AND FUTURE WORK

In this paper we presented a framework for cyber reasoning
in the face of incomplete and conflicting evidence, detailed
further by a scenario grounded in real data. Our approach
falls outside the traditional security domain, applying formal
argumentation to generate a general view of a network as
opposed to focusing only on network attacks and intrusions.
Initial reception to our approach has been positive — the U.C.
Davis staff who deal with network security were intrigued by
scenarios that we identified and we hope to work with them
further to introduce new features to our framework.

As mentioned in Section V, an implementation is currently
in progress. Future work includes incorporation of alternative
sources of information, new patterns and signatures (e.g.,

spikes in traffic, network events, external circumstances, etc.)
and an expanded taxonomy of alerts. Additionally, we hope to
create a heavily expanded knowledge base which can reason
about complex attacks, ideally using some form of learning to
determine new attack patterns and signatures. As a last step,
to validate our approach, we plan to perform user studies to
identify ways in which our framework can interface with an
administrator.

Acknowledgements: Research was partially funded by the
National Science Foundation, under grants CNS #1117761
and #1118077, and Army Research Laboratory CTA Number
W911NF-09-2-0053.

REFERENCES

[1] P. M. Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77:321 – 357, 1995.

[2] H. T. Elshoush and I. M. Osman. Alert correlation in collaborative
intelligent intrusion detection systems — A survey. Applied Soft
Computing, 11(7):4349–4365, 2011.

[3] V.N.L. Franqueira, T. T. Tun, Y. Yu, R. Wieringa, and B. Nuseibeh.
Risk and argument: A risk-based argumentation method for practical
security. In Proceedings of the 19th IEEE International Requirements
Engineering Conference, 2011.

[4] S. Jajodia, P. Liu, V. Swarup, and C. Wang. Cyber situational
awareness, volume 14. Springer, 2010.

[5] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams. Cauldron
mission-centric cyber situational awareness with defense in depth. In
MILCOM, Nov 2011.

[6] J. Li, X. Ou, and R. Rajagopalan. Uncertainty and risk management
in cyber situational awareness. In Cyber Situational Awareness, pages
51–68. Springer US, 2010.

[7] S. Modgil and H. Prakken. The ASPIC+ framework for structured
argumentation: a tutorial. Argument & Computation, 5(1):31–62, 2014.

[8] B. Morin, L. Mé, H. Debar, and M. Ducassé. A logic-based model
to support alert correlation in intrusion detection. Information Fusion,
10(4):285–299, 2009.

[9] X. Ou, S.R. Rajagopalan, and S. Sakthivelmurugan. An empirical
approach to modeling uncertainty in intrusion analysis. In Proceedings
of the Annual Computer Security Applications Conference, 2009.

[10] H. Prakken, D. Ionita, and R. Wieringa. Risk assessment as an
argumentation game. In Computational Logic in Multi-Agent Systems,
pages 357–373. Springer, 2013.

[11] J. Rowe, K. Levitt, S. Parsons, E. I. Sklar, A. Applebaum, and S. Jalal.
Argumentation logic to assist in security administration. In Proceedings
of the 2012 Workshop on New Security Paradigms, 2012.

[12] P. Shakarian, G. I. Simari, G. Moores, S. Parsons, and M. A. Falappa.
An argumentation-based framework to address the attribution problem
in cyber-warfare. CoRR, abs/1404.6699, 2014.

[13] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated
generation and analysis of attack graphs. In Proceedings of the IEEE
Symposium on Security and Privacy, 2002.

[14] E. I. Sklar, S. Parsons, Z. Li, J. Salvit, S. Perumal, H. Wall, and
J. Mangels. Evaluation of a trust-modulated argumentation-based
interactive decision-making tool. Autonomous Agents and Multi-Agent
Systems, pages 1–38, 2015.

[15] M. Snaith and C. Reed. TOAST: online ASPIC+ implementation. In
Proceedings of the Fourth International Conference on Computational
Models of Argument, 2012.

[16] L. Zomlot, S. C. Sundaramurthy, K. Luo, X. Ou, and S. R. Ra-
jagopalan. Prioritizing intrusion analysis using Dempster-Shafer theory.
In Proceedings of the 4th ACM Workshop on Security and Artificial
Intelligence, 2011.


