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Abstract

We introduce models for cooperative mitigating response
strategies to suppress large scale Internet worm attack. In
our models, cooperating members communicate with oth-
ers using a “friend protocol” that spreads attack reports to
potentially vulnerable uninfected sites. We use mathemati-
cal models for the simplest strategies and a simulation for
more complex models of mitigation. We investigate the per-
formance of different strategies both in the presence of large
scale worms and of false alarms.

1 Introduction

Responding to Internet-scale attacks poses many new
problems. First, and most obvious, is the collective na-
ture of the victims. Single organizations attempting to man-
age attacks using only local knowledge will have very little
effect on Internet-scale worm incidents. Response mecha-
nisms will necessarily extend beyond the borders of any sin-
gle organization’s network. The second problem is closely
related to the first; how do different inter-organization con-
trol structures perform when responding to Internet-scale
attacks? That is, what type of control works best against
specific models of distributed coordinated attack. Hierar-
chical control, for example, may produce a faster mitigat-
ing response to a detected spreading attack but only in a lo-
calized region of control. Peer-to-peer control mechanisms
give more widespread coverage, but propagation of the nec-
essary information is slower. There are several issues that
complicate automated mitigation control strategy:

• Trust between organizations is never complete. Most
organizationswould refuse to implement an automated
response strategy on the advice of a competitor alone,
for example. Close cooperative arrangements might be
acceptable, however, between strategic business part-
ners. Models of mitigating automated response will
have to take this into account.

• Responses will typically be costly. Control mech-

anisms, then, need to be able to distribute the ex-
pense of response equitably among cooperating part-
ners. A mitigating response may completely thwart
the attacker, but in the process hinder critical business
transactions of a single partner. Such a strategy would
never be acceptable to that partner and is therefore in-
feasible when using a peer-to-peer type control struc-
ture. An authoritative node in a control hierarchy, how-
ever, might direct the single partner to act for the good
of all sub-nodes collectively.

• There will be an ambient level of false alarms. These
false reports will lead to a continuous triggering of un-
necessary responses. The models for automated mit-
igation must not lead to massive propagation of false
alarm messages and the accompanying potential for
mass automated denial-of-service. We continue to
model different methods of cooperative mitigation and
study how variants of our model perform in the face of
Internet-wide coordinated attack.

1.1 Cooperative Peer-to-peer Strategies

In this paper we focus on peer-to-peer control structures
and investigate their efficacy in stopping large scale Inter-
net worms. Under this type of control, all policies are de-
cided upon locally within a single organization; no direc-
tives from external central authorities are considered. In
our model, direct cooperation occurs only between a lim-
ited number of friend organizations. When a site detects
suspicious worm-like behavior, its initial cooperation strat-
egy is to share the information with its friend organizations.
Those organizations, upon receiving the report, act accord-
ing to their local policy as to their preferred course of action.
In our model, these actions are limited to blocking the sus-
pect behavior and/or sharing the information with its own
set of friend sites. This combination of blocking and shar-
ing produces a propagating mitigating response whose rate
of spread is similar to that of the worm itself. In this pa-
per we present two separate approaches to modeling worm
mitigation strategies. First are purely mathematical mod-
els of worm propagation when simple defense strategies are
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in place. Secondly, to address more complex strategies, we
present simulated cooperativemodels. We discuss the desir-
able features of a peer-to-peer cooperative response strategy
when faced with an Internet-wide malicious worm attack.

2 Mathematical Models

For simple worm mitigation strategies, mathematical
models with closed form solutions are possible. Consider-
able work has been done describing models for worm prop-
agation in the absence of any coherent mitigation measures;
some of these will be described below. These are similar to
mathematical models of population dynamics and disease
propagation seen in the biological sciences. Based upon
these, we develop models showing how worm propagation
is modified in the presence of simple mitigation mecha-
nisms.

2.1 Mathematical Models of Virus/Worm Propa-
gation

Staniford’sVirus PropagationModel S. Staniford, et al.
in their paper[5] analyze last year’s Code Red worm by
developing a quantitative model of its propagation. Their
model is as follows:

N : Initial total # of vulnerable hosts

a : proportion of infected hosts

K : # of hosts each infected host can find

and compromise

Since the infection ability of a worm is proportional to the
density of the target hosts, the successful infection in dt is
K(1 − a)dt. There are Na worms in total, thus, the rate at
which infected hosts increase during the time period of dt
is

Nda = (Na)K(1 − a)dt.

Dividing by N ,
da

dt
= aK(1 − a) (1)

with solution:

a =
eK(t−T )

1 + eK(t−T )
(2)

where T is a constant that fixes the time position of the inci-
dent. This equation produces the S-curve growth behavior
typically seen in population growth models with limited en-
vironmental carrying capacity.

Kephart’s virus infection model[3] J. Kephart and S.
White created another mathematical model by representing
an individual system as a node in a graph. Directed edges
from a given node j to other nodes represent the set of in-
dividuals that can be infected by j. We introduce it briefly
here, and refer to the original paper [3] for details.

i : the proportion of the infected hosts

b̄ : The expected number of nodes around a node

β : The infection rate of virus

δ : The cure rate of each node

They showed a deterministic differential equation describ-
ing the time evolution of i(t):

di

dt
= βb̄i(1 − i) − δi (3)

Note that if the second term, which describes the cure rate
of a host, is taken out this becomes the same as Staniford’s
model.

2.2 Dynamic response strategy

Based on Kephart’s model, we develop a mathematical
model of a simple worm mitigation strategy. We consider
a graph where each node represents a mitigation-enabled
member, and is connected by directed edges to its cooperat-
ing friends. In this model the variables are defined as,

M : the total # of response members

a : the number of infected members

c : the proportion of alerted members

F : the # of friends of each response member

α : the # of alerts a response member needs before

it changes its state

For a given member, the expected number of cooperating
friends who remain in the normal, unalerted state is

F · (1 − c).

In our simple strategy, a cooperating member will increase
the severity value of the alert messages that it shares as more
infection attempts are seen. Thus the number of alerts a
particular responding member sends in a certain period of
time dt is

F (1 − c) · σa · dt

where σ is the severity value assigned to the alert. The
system-wide total number of alerts in dt, then, is

F (1 − c)σa · Mc · dt.
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From this we obtain the following differential equation de-
scribing the time evolution of the proportion of response
members that have been alerted to the presence of a mali-
cious worm.

dcM

dt
=

F (1 − c)σaMc

α

Dividing by M ,

dc

dt
=

F (1 − c)σac

α
(4)

To obtain the proportion of members who have already
been compromised by the malicious worm, we change (1)
to include the fact that cooperatively alerted members will
be able to block worm activity. We consider two types of in-
fection attempts: local infection and global infection. When
a particular infected host tries to propagate the worm to a
site controlled by a different response member, it must pass
two response devices: the local response device blocking
outgoing infection attempts and the remote response device
that protects the potential target by blocking incoming in-
fections. The probability that both of the response devices
are not alerted is (1 − c)2. Thus, the rate for the global
infection is

aK(1 − a)(1 − c)2.

The local infection rate is the same as (1) because there is no
response device between the infection source and the target.
Since the average # of hosts connected to a response device
is N/M , the probability that a worm chooses a remote host
as a target is 1−1/M . The probability that a worm chooses
a local host as a target is 1/M . Combining the global and
local infection rates along with these probabilities, we have

da

dt
= aK(1−a)(1−c)2 ·

(
1 − 1

M

)
+aK(1−a)· 1

M
. (5)

We have a pair of simultaneous differential equations:
(4) and (5). To solve them numerically, we use the following
equations:




tk+1 = tk + h

a(tk+1) = a(tk) + h · da
dt

∣∣∣
a(tk),c(tk)

c(tk+1) = c(tk) + h · dc
dt

∣∣∣
a(tk),c(tk)

a(t0) = a0

c(t0) = c0

(6)

where h is a step interval, and a0 and c0 are an initial pro-
portion of infected hosts and alerted response devices (de-
tectors), respectively. The result of the numerical solution
is shown in Figure 1, where the solid line indicates the pro-
portion of members infected by the worm over time, and the

dashed line shows the proportion of members that have been
alerted to the presence of the worm and are responding. The
horizontal time axis is arbitrary.

Note that both curves follow the typical S-curve growth
pattern. This is due to the similarity of the cooperation
strategy to the spread of the worm itself. Single infected
members propagate alerts to cooperating partners, effec-
tively producing a “white worm” message propagation be-
havior. To effectively counter a malicious worm incident,
the number of cooperating partners must be large enough
to overtake the spread of the worm itself and protect unin-
fected sites. It is worth noting that in spite of limiting the
worm spread, this model also exacts the maximum cost of
response; not only does each site protect against worm in-
fection, each site blocks potentially misclassified good be-
havior as well.

Dynamic response strategy with back-off mechanism
We introduce a new model that reduces the penalty paid
when good behavior is inadvertently blocked due to cooper-
ative mitigation measures. Alerted members will now back
off and remove any blocking filters after a particular time
interval has elapsed. The back-off rate depends on the pro-
portion of infected hosts. Themore worms a responsemem-
ber sees, the more slowly it will back off. Thus, the rate can
be

ε · (1 − a) · c,
where ε is a constant which indicates how fast a response
member does back off 1. The differential equation (4) be-
comes

dc

dt
=

F (1 − c)σac

α
− ε(1 − a)c. (4’)

3 Simulated Models of Mitigation Strategies

Effective mitigation strategies that suppress large scale
worm propagation in a cost-effective manner might involve
more complex decision making by cooperating members.
The effect of these strategies taken by an individual mem-
ber upon the global dynamics of the worm, and the global
cost of the aggregate response can no longer be modeled
by simple mathematical formulae. We have developed a
simulation to investigate the global properties of these more
complex strategies. Given that the mathematical models
are very close to population dynamics in the biological
sciences, we base our simulations on the Swarm simula-
tion package[7]. Swarm simulates interactive agents, and
is widely used to model population dynamics and simple

1Note this is very simple case. More precisely, a member will back off
only when it has no infected host in its domain, thus the back-off rate can
be written as ε(1 − a)N/M · c.
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Figure 1. Numerical solution

social behaviors in organisms. In this section, we describe
settings and parameters involved in the simulation and show
results in some different cases.

Topology We simplify the Internet topology by consider-
ing it as a flat network. In our simulation we set up 5832
vulnerable hosts and 729 cooperating members connected
to a shared network by idealized response devices. Mem-
bers cooperate by sharing worm reports. When the num-
ber of worm reports received exceeds a certain threshold, a
member’s response device protects its collection of vulner-
able hosts from infection, potentiallly at the cost of inadver-
tantly blocking misidentified desirable activity as well. As
seen in figure 2, the network is separated inside and outside
by the response devices. Each host is connected to the out-
side network through a response device, and each response
device has a direct connection to all other response devices.

Response devices Each response device has eight hosts in
its local network, and can watch both traffic coming in from
the outside network and traffic going out from the local net-
work. A response device has two states: normal and alerted.
It sends alerts to its cooperating friends to inform them of
the ongoing worm attack. When in the normal state, it re-
ceives alerts and raises its alert severity level, but does not
send alerts to other response devices. Once its alert sever-
ity threshold is exceeded, it begins blocking worm infection
attempts in both incoming and outgoing traffic, and it co-
operatively shares alert messages with its friends. When a
response device sees no worm activities for a certain period

of time, it backs off (changes its state to “normal” and stops
blocking worm activity). In this mitigation strategy model,
response devices are controlled by the following parame-
ters:

• The average number of vulnerable hosts protected by
each member

• The number of cooperating friends

• Threshold for state change

• Back-off speed

• Alert severity

When a cooperating member receives an alert from its
friend, it increments its alert level by the value of the alert
severity. The state of a member’s response device changes
to “alerted” when its alert level exceeds the threshold for
state change as set by the model parameter. It transitions
back to “normal” when the alert level falls below the thresh-
old.

Hosts We assume that all the vulnerable hosts in our
model have a certain security hole which allows a worm
to gain control of the system. Hosts have two states: nor-
mal and infected. A host recovers after a certain period of
time, and it becomes immune to the worm. This models the
effect of efforts to patch the vulnerability, clean up the dam-
age and continue normal operation. Parameters controlling
host behavior in our model are:
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• Total host population

• Initial infected host density

• Infection probability - the probability that an infection
attempt succeeds

• Scanning method - random, permutation, or hitlist
scanning

• Infection frequency - The # of time steps between in-
fection attempts

Figure 3 shows the result of the simulation where a worm
infects a single new host each propagation time interval, the
average number of cooperating friends is 16, the alert sever-
ity sent by a member detecting the worm is three, and the
severity threshold is seven (i.e., three message from friends
are needed to trigger a response). The solid line shows the
fraction of vulnerable hosts that have been infected by the
wormwhile the dashed line shows the proportion of a mem-
ber’s response devices that are in the alerted state, actively
blocking suspect behavior. At the beginning of the simula-
tion, worms spread quickly because there are only a small
number of response devices in the alerted state. As an im-
portant calibration point, notice that the early portion of the
time evolution graph is the same as the mathematical model
of worm spread without back-off and patch mechanisms.
As the worms spreads, some of the members detect worm
activity, and subsequently send alerts to their friends. The
proportion of alerted response devices grows very quickly
to catch up with and overtake the proportion of worms.
As the percentage of alerted response devices approaches
100%, the response devices protecting uninfected hosts in
their local domain back off, while those which have infected
hosts stay alerted. At this point the worm has been captured
by the alerted members and confined within their local net-
works. With these parameters, the infected host percent-
age is suppressed to less than 20%. As time progresses the
model assumes that infected hosts are patched and, when all
of its locally protected hosts have been patched, the alerted
members back off independently. The worm reaches its
maximum infection extent in 15 time steps. Alerted mem-
bers, however, remain in their blocking state for nearly 90

time steps, paying the cost of response nearly 6 times longer
than the period that the worm actively infects new hosts.
By manipulating the parameters, one can test the effective-
ness of different mitigating defense strategies in the face of
a large-scale worm attack.

3.1 The number of friends

Here, we show how the average number of friends in our
mitigating strategy model affects the global features of a
large scale worm attack. As in figure 3, figure 4 shows the
proportion of alerted response devices and the proportion
of infected hosts. The solid lines, dashed lines, and dotted
lines correspond to the case where the number of cooper-
ating friends are 8, 12 and 16 respectively. Also as before,
infected hosts propagate the worm to one additional vulner-
able host every propagation time interval. As expected, the
greater the number of cooperating friends in the strategy,
the greater the suppression of the worm, and the shorter the
time to recovery. When only 8 friends cooperate, nearly
50% of all vulnerable hosts are compromised before the
alert is go]received by all sites. As we shall see later, how-
ever, a greater number of friends performs worse in the face
of false alarms.

3.2 Slow worms

Generally, worms spread very quickly, and the faster
they move, the more dangerous they are. Cooperative peer-
to-peer mitigating response strategies will not be as effec-
tive against these very fast “flash” worms. Our prelimi-
nary studies show that hierarchically controlled models will
likely be more effective in this case. There are, however,
stealthy worms which spread very slowly to hide their ac-
tivities. Figure 5 shows the way this type of worm spreads,
and how our defense strategy reacts.

Even after a majority of the response devices become
alerted and infected hosts are encapsulated by them, the
worm continues to spread. This is for the following rea-
son: when response devices do not see worm activities of-
ten, they back off, assuming hosts are patched. But in re-
ality hosts are not patched, they simply have yet to be in-
fected by the slow moving worm. Slow worms, then, keep
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Figure 3. Typical case of the simulation

spreading after the local response devices back off. To keep
response devices alerted one can simply make the back-
off speed slower, but this is not desirable in terms of cost
when faced with faster spreading worms. What is needed
is more complex analysis that classifies worms according to
the features of their spread so that the best strategy can be
selected by members and shared with cooperating friends.
These analysis techniques are beyond the scope of our cur-
rent work.

3.3 False alarms

The ability of a particular mitigation strategy in supress-
ing a large scale worm attack is only part of the measure
of its effectiveness. Internet scale worm attacks are rela-
tively rare but a cooperative mitigation system will need to
operate at all times. It is safe to assume that under normal
conditions there will be a constant ambient level of false
worm reports issued by members. Friends receiving the
reports and accepting them as true worm activity will pay
the needless cost of reacting to a non-attack. The greater
number of cooperating friends, the greater the cost asso-
ciated with false alarms. Raising the threshold of reports
needed in order to respond will reduce the cost associated
with false alarms, but will also decrease the proportion of
sites protected from attack. Figure 6 shows the reactions of
response devices with different values of the threshold for
state change when there is a false alarm instead of worms.
Here we assume that, at a certain time, 5% of all members
falsely report a worm attack to their cooperating friends.

The dotted, dashed and solid lines show the case where the
alert threshold is 5, 7 and 10 respectively. With an alert
threshold of 5, nearly 75% of all members block when only
5% originally reported the false alarm. At threshold of 10,
a negligible number of members has responded. The more
sensitive response devices are, the more of them react to a
false alarm, and consequently, the cost rises. One can sim-
ply reduce the sensitivity (threshold) of response devices,
but doing so increases the risk in the case of real worm at-
tacks.

3.4 Optimal friend lists

Finally, we show the difference of the response abilities
between randomly constructed friend lists and optimized
friend lists. To have optimized friend lists, we use the fol-
lowing algorithm developed by Imase and Itoh [8], which
constructs a nearly optimal directed graph for given nodes
n and degree d with diameter �logd n�.
1. Let vertices of a directed graph G be labeled as

0, 1, 2, . . . , n − 1.

2. For every i, j ∈ 0, 1, . . . , n − 1, let there be an arc
from vertex i to vertex j if j = id + α (mod n), α =
0, 1, 2, . . . , d − 1.

We map the vertices of G to the response devices, and if
response device i has an arc to response device j, i has j
in its friend list. 2 Figure 7 show the differences between

2The diameter, �logd n�, obtained by this algorithm, is at most one
larger than the lower bound of the minimum possible diameter of a directed
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Figure 4. Number of friends: 8, 12, 16

randomly constructed friend lists and nearly optimal friend
list. As seen in the graph, using optimal friend lists, one
can have quicker reaction of response devices, thus fewer
hosts are infected. One can also have better back-off execu-
tion, which results in reduction of the cost for the response
devices.

4 Conclusions and Future Work

We have described models for peer-to-peer mitigation
strategies to suppress large scale worm attacks on the In-
ternet. Our mathematical models show that an effective
counter to large scale worms is a controlled “white worm”
propagating faster to potentially vulnerable sites. These
simple models fail to take the costs of mitigating response
into account. For this we have used a simulation to model
more complex state-dependent mitigation strategies. Our
simulations show that, in general, a larger number of co-
operating friends does better in suppressing worms, but
is much worse when faced with ambient false alarms that
will inevitably be a part of a normal operating environ-
ment. Strategies that are effective against fast worms will be
largely ineffective against slow, stealthy worms. Automated
analysis to classify the propagation behavior is needed for
efficient strategy selection. Improvement in the perfor-
mance of peer-to-peer cooperative strategy is seen when one
uses an optimized friend list rather than one constructed ran-
domly.

graph of order n and degree d. So, we have quite efficient connections
among response devices.

We will continue to develop mathematical models that
can be used to calibrate our simulation results. In our simu-
lation we plan to extend our mitigation models to include
more complex strategies to include friends with varying
trust levels, member populations containing more than one
strategy, more complex worm scenarios and the effect of
aggregate worm classification analysis. We continue to pur-
sue in parallel studies of hierarchically controlledmitigation
strategies and hybrids.
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