
 1

Design and Implementation of FAITH, an Experimental System
to Intercept and Manipulate Online Social Informatics
Ruaylong Lee, Roozbeh Nia, Jason Hsu, Karl N. Levitt, Jeff Rowe, S. Felix Wu Shaozhi Ye

Computer Science Department, University of California, Davis Google Inc.
{rulee, rvnia, jlhsu, knlevitt, jbrowe, sfwu}@ucdavis.edu yeshao@google.com

Abstract — Social informatics is the core of Facebook’s

business and is its most valuable asset which consists of the social
graph and the private data of over 500 million users. However,
without secure methods of managing this data, Facebook has
become vulnerable to privacy risks and devaluation. In
Facebook’s model, users are asked upon access to grant
applications the required permissions without sufficient
knowledge of the applications’ intentions. As a result, if they are
deceived, users risk the exposure of sensitive and personal data.
This paper presents a system dubbed FAITH (Facebook
Applications: Identification, Transformation & Hypervisor) to
mitigate or eliminate these issues by enhancing the management
of social data. First, FAITH allows users to adjust the visibility of
their social informatics for each individual application depending
on how much they trust the application. Users can configure
FAITH to let non-trusted applications run with the least
privileges (least amount of social informatics) to minimize
potential privacy leaks. Second, FAITH logs the activities of
applications to assist users in making more secure decisions.
Users can closely monitor each activity performed by
applications to adjust their privacy settings more securely. Third,
FAITH allows users to transform their social graph such that
different applications see different social graphs preventing the
formation of friendship inflation caused by applications. The
implementation of FAITH only needs the resources and tools
available to the public by Facebook and requires no further
cooperation from the social network. FAITH is a prototype
system: the design and concept can be extended to secure other
OSNs (Online Social Networks). Currently, FAITH contains
thirteen Facebook social applications and has been officially
released for public usage with approximately two hundred
monthly active users as of now.

Index Terms—Facebook; social network sites; privacy
protection; Facebook applications

I. INTRODUCTION & MOTIVATIONS
HILE early OSNs (Online Social Networks) can be
traced back to around 1995 or earlier, the majority of

current OSNs had sprung up during the last decade. Among
them, Facebook is the most successful and visited of them all.
In May 2007, Facebook released the Facebook platform
providing a set of APIs (Application Programming Interface)
and tools to allow third-party applications and websites to
leverage Facebook’s social informatics which is the social
graph (users and friendships) and users’ stored data (photos,
events, and wall posts). Since the inception of the platform,
the number of Facebook users has dramatically boosted. The
site reached 100 millions users in August 2008 and 500
million users by July 2010. The top three most popular
applications played by these users: Farmville, Birthday Cards,
and Café World reached more than 83 million, 47 million and
30 million users respectively [1]. In 2010, the number of

active applications and websites reached 550,000 and 250,000
users. There are more than one million application developers
from over 180 countries. Each month, more than 70 percent of
Facebook users engage with platform applications, and over
100 million users engage with Facebook Connect websites [2].
While Facebook applications provide intensive online social
interaction, communication and fascinating content; they also
contribute immensely to Facebook’s unprecedented growth.
The majority of them are in fact developed by individual
developers or organizations not sponsored by Facebook. To
ensure that social informatics are retrieved properly and
securely, Facebook adopted the OAuth 2.0 protocol to enforce
authentication [3,4]. The data fetching under this protocol
involves three steps. The first is user authentication, which
requires users to log in with their Facebook accounts to ensure
that they are exactly who they claim to be. The second step is
application authorization. This step occurs when users access
platform applications. Users need to grant permission to any
application wishing to access information but also any
extended permissions required by the application. The last step
is application authentication. This ensures that only approved
applications have access to the data of users. Facebook then
issues access tokens to these applications. These tokens allow
applications to make Web API calls on behalf of users.
Although users are allowed to determine under the protocol
which applications have access to which portion of their social
informatics, the data is still vulnerable to privacy disclosure.
Many users have been found victimized in unintended social
information sharing and exposure of sensitive personal data
[5].

First, when users are asked to grant applications the
required permissions upon access, the majority of them
possess insufficient knowledge of applications’ intentions to
make secure decisions. The platform misses the point that
users need adequate privacy-related knowledge of applications
to make these decisions. Facebook merely offers the
description written by the developers and the fan pages of the
applications which are inadequate to aide users. Users that are
concerned about privacy are forced to reluctantly grant the
required permissions. Although Facebook allows users to
remove any granted permissions, without appropriate security
and privacy reports, users once again encounter the same
challenges. For instance, assume a user grants a free game
application the permissions to access to the entire social
informatics of the user offline, which allows the application to
execute authorized operations on behalf of the user at any time
even when the user is not logged in. While the application
appears benign and provides various interesting games, its
objective is to steal sensitive and personal data of the user.
With the Facebook platform, the user has no method of

W

 2

detecting suspicious activities and would be left wondering
why producing the contents require the permissions asked.
What often occurs is that when users realize they have been
victimized by privacy leaks, they have no clue in identifying
from where and what information was leaked. This example
makes clear that revealing social informatics solely according
to granted permissions is bad management practice on
Facebook’s part. Facebook’s platform allows an application
with the required permissions to perform whatever they intend
with the social informatics on behalf of the users without
taking any other factors into account such as how many users
the application have, how long the users have been using the
application, and how many users have blocked the application.
Under this vulnerable protocol, what is likely to happen is that
when malicious applications are able to deceive users, the
entire social informatics of the victims are divulged to
unauthorized parties. In an effort to minimize potential
disasters, a trust factor should be taken into consideration
under this scenario.

Friendship inflation is another problem caused by
Facebook’s mismanagement. Friendship inflation refers to the
practice that users maintain a greater amount of friends in
OSNs than they really have in real life. It is a significant
OSN-related issue, which is believed to devalue the
significance of social informatics and eventually lead to the
decline of OSNs. Research shows that there are multiple
factors which cause such inflation such as feeling
uncomfortable to reject friendship requests, appearing popular
with more friends in profile, getting access to private profiles
of unknown users, and taking advantage of applications [6]. In
this paper, we focus on application-related factors. Since, the
number of users is proportional to the amount of profits, many
applications create incentives to encourage users to get their
friends to join the applications and some even make it a
requirement to advance to the next level in certain games.
Take Restaurant City, a prevalent Facebook restaurant
simulation application, for instance. It is an application where
users run virtual restaurants of their own, hire their friends as
chefs, and add their friends as waiters or janitors. Moreover,
users receive a free ingredient as a bonus when they visit the
virtual restaurants of their friends for the very first time. Free
coins and ingredients are also given when they help clean up
their friends’ restaurants. Ingredients are important as they
allow users to learn new dishes and level up the dishes they
have already learned. We can see from the rules that the more
friends a user has to play the game with, the more free
ingredients and coins the user is likely to get. While the
Restaurant City is merely one of the prevalent applications
with various incentives to acquire more users, the applications
together create a force to push users to eagerly befriend other
users even when they do not know each other in real life. This
phenomenon unfortunately accelerates the formation of
friendship inflation, which not only in the short term devalues
the significance of the social informatics but also in the long
term causes the decline of Facebook. Application incentives
such as those of Restaurant City become an issue mainly
because of the way Facebook manages users’ social
informatics. Facebook’s platform disallows users from
providing different social graphs to different applications. As a
result, when a user intends to befriend another user for an

application, the user has to do it at Facebook’s level instead of
at the application’s level. To solve this problem, a tool to
allow users to transform their social graph for each individual
application is essential. Not only can such tool prevent or at
least minimize the formation of friendship inflation, but can
also preserve the value of social informatics.

In this paper, we propose a system, FAITH (Facebook
Applications: Identification, Transformation & Hypervisor.)
When applications initiate requests to access social
information, these requests are sent to FAITH instead of
Facebook. FAITH retrieves the necessary resources from
Facebook first, logs and transforms the original social
information before sending it back to applications. The
logging and transforming of data ensures that social
informatics is managed more securely and transparently. The
paper is organized as follows: a brief introduction to the
Facebook platform in Section 2, a description of the
architectural design of FAITH in Section 3 followed by details
of the implementation and an evaluation of FAITH in Section
4, and finally we conclude the paper in Section 5.

II. BACKGROUND
The Facebook platform offers a set of APIs and SDKs to allow
third party applications and web sites to fetch social
informatics programmatically through official Facebook
SDKs, available in most major server and client languages like
PHP, Python, ASP, and Javascript. The platform offers three
different application types, FBML, IFrame and Facebook
Connect. The three types differ mostly in the display
mechanism. FBML Canvas applications are rendered by
Facebook servers utilizing the contents of applications on
remote servers. In contrary, IFrame Canvas applications and
Facebook Connect are directly rendered by application
servers. To clarify the differences, the following introduces
the data flow of each type.

Figure 1.1 illustrates the data flow of a page load of FBML.
When a user visits an FBML Canvas application, Facebook
sends a request to the application for the content. While the
application is processing, it may make multiple API calls to
fetch the social informatics of the user. Once the task is
complete, the content is delivered back to Facebook first and
then to the user.

Figure 1.1 Facebook Developers, Performance, February 1, 2011
 Canvas Applications Information Flow
[Online Image] http://developers.facebook.com/docs/guides/performance

Different from FBML, Facebook Connect and IFrame may

also fetch the social informatics on the client side with
JavaScript. In contrary, FBML only fetches on the server-side
since it does not support JavaScript. The data flow of IFrame
applications are demonstrated in figure 1.2. To access an
IFrame Canvas application, a user would first open a browser

 3

and navigate to the URL of the application, in a form similar
to http://apps.facebook.com/test_app. The initial request to
Facebook causes an iframe to open in the browser for the
application to display the content. The browser sends another
request to the application server. Similarly, the application
server may make multiple API calls to fetch the social
informatics from Facebook while producing the content. Once
completed, the content is delivered back to the iframe in the
browser directly instead of through Facebook. Facebook
Connect works the same as IFrame except the content is not
shown in an iframe [7].

Figure 1.2 Facebook Developers, Performance, February 1, 2011
 Websites and IFrame Canvas Application Information Flow
[Online Image] http://developers.facebook.com/docs/guides/performance

III. THE ARCHITECTURE OF FAITH
Figure 2 illustrates the architecture of FAITH. Applications

function as social informatics consumers, which leverage
social information to provide valuable online social
interactions among users. In contrary, Facebook functions as a
social informatics provider, which offers FAITH its social
graph and informatics. FAITH functions differently depending
on different points of view. To Facebook, FAITH is nothing
but an ordinary application fetching social informatics. To
applications, FAITH supplies the transformed social
informatics upon request. From the users’ perspective, FAITH
is a multi-functional application-level proxy. It transforms and
logs the social informatics upon users’ requests to manage
social information more securely and transparently. Chatroom,
Social Wiki [8], Calendar and SoEmail [9] shown in Figure 2
are applications that operate behind FAITH. While there are
only four applications in the figure, please note that there are
no restrictions on how many applications FAITH is capable of
integrating with.

FAITH is built on top of two existing web services [10],
DSL kernel [11] and Privacy Shield [12]. FAITH
communicates with these services through the SOAP protocol.
The API methods of those services are included as part of
FAITH SDK to give developers more resources in creating
robust and interactive applications. DSL kernel is a web
service built on top of the Facebook social graph. The service
publishes its API via the SOAP protocol, and helps third party
applications leverage the power of the Facebook social graph.
DSL kernel consists of two components: trust management
and social router. FAITH allows users to specify rules which
transform their social informatics used by DSL kernel such
that the social router utilizes the transformed social graph

instead of the original Facebook social graph. One use would
be giving users more options on which social paths to utilize
when delivering emails. Wall posting is frequently-used by
Facebook users for information sharing purposes. Facebook
allows users to adjust the privacy settings of each post they
make through both Facebook Wall and applications. However,
users need to determine the setting each time they post a
message. Facebook offers no suggestions to help users on that
perspective. Privacy Shield is a web service, which suggests
privacy settings for wall posts based on previous online social
interactions among users and their friends. FAITH allows
users to review and edit the recommendations they receive
from the service which then uses those settings as privacy
parameters of wall posts to control the visibility of those posts
on the Facebook wall.

During the process of producing content, applications may
send multiple requests to FAITH to access the social
informatics of Facebook or the functionalities of web services.
In the case of requesting social informatics, FAITH sends
requests to Facebook and then logs and passes back the
transformed informatics to applications. In the case of utilizing
the functionality of the web services, FAITH sends other
requests to services, and also logs and passes back the results
to applications.

Figure 2

A. The Information Flow of FAITH Applications
The data flow of Facebook applications (illustrated in figure

1.1) is different from the flow of the FAITH-integrated
applications in that FAITH is added between Facebook and
the applications. Figure 3.1 illustrates the data flow of a page
load of a FAITH-integrated FBML application. When a user
accesses FAITH to start navigation, Facebook sends a request
to FAITH, and then FAITH sends another request to the
application server. While processing the content, the
application may make multiple API calls to fetch the social
informatics. FAITH needs to authenticate and process those
calls. If valid, FAITH initiates corresponding API calls to
fetch the social informatics from Facebook, and then
transforms and logs the results before sending them back to
the application server. Once the application completes the

 4

content, it is delivered back to the user from FAITH and then
Facebook.

Figure 3.1 Facebook Developers, Performance, February 1, 2011
 Canvas Applications Information Flow
[Online Image] http://developers.facebook.com/docs/guides/performance

The data flow of FAITH-integrated IFrame applications are

demonstrated in Figure 3.2. Similar to original ones illustrated
in Figure 1.2, FAITH is added between Facebook and
applications. When a user accesses FAITH to start navigation
with a browser, Facebook opens an iframe in the browser to
display the content from the application, and then the browser
sends another request to FAITH. Upon reception, FAITH
sends a request to the application server. While processing the
content, the application may make multiple Web API calls to
fetch the social informatics. FAITH authenticates those
requests. If valid, it sends corresponding API calls to fetch the
data, and then transforms and records the results before
sending them back to the application server. After the
application completes the content, it is sent back to the
browser only through FAITH.

Figure 3.2 Facebook Developers, Performance, February 1, 2011
 Websites and IFrame Canvas Applications Information Flow
[Online Image] http://developers.facebook.com/docs/guides/performance

B. Features and Improvements
1. Social Informatics Logging & Replay

In order to make the activities of applications transparent to
users, FAITH records the social informatics coming through it
including both the data sent to applications (API calls and the
results of the calls) and the data produced by the applications
(HTML source codes). Logging occurs when users are logged
in or not (fetching the data with offline permissions granted by
the users). The logs allow users to monitor and analyze the
complete activities of the applications to know when, what,
and how often their social informatics is retrieved. For each
API log, replay allows users to simulate the API method call
on behalf of the application such that the user can compare the
results of the API call in different time periods.

2. Privacy Control at the level of API & Application
FAITH allows users to disable any individual

FAITH-supported API methods: Old REST API, Graph API
[3] and DSL API [11]. Once disabled, applications are no
longer able to utilize the methods to retrieve the social

informatics. FAITH also adds more flexibility to the control.
After blocking an API method, users may exclude any
applications such that the excluded ones can continue to utilize
the disabled API method to fetch the social informatics of the
users. Blocking applications functions the same except that it
is in the scope of the application. When blocked, the
applications are no longer able to fetch the social informatics.

3. Social Graph Transformation (SGT)
The concept of SGT is to transform Facebook’s social graph

in ways specified by users such that applications, websites and
devices see the transformed social graph instead of the original
one. The social graph is a graphical representation of social
relationships and links all of Facebook’s users together. SGT
is a technique to defend against privacy breaches as well as to
protect the value of social informatics. The following
illustrates how SGT works in FAITH. Assume Alice and Bob
are Facebook users, but not Facebook friends. If Alice
virtually befriends Bob through FAITH, and Bob has
confirmed the request, applications under FAITH see Alice
and Bob as Facebook friends after SGT. If Alice and Bob are
Facebook friends, and Alice hides from Bob through FAITH,
applications see them as not Facebook friends. Different from
adding, hiding does not need confirmation to become
effective. In addition, for each virtual friendship and hidden
real friendship, users are allowed to exclude any applications
and friends such that the virtual and hidden friendships are not
applied to the excluded ones. To better illustrate the concepts,
the following examples demonstrate various scenarios of SGT.
Assume Calendar is an application behind FAITH, and Alice,
Bob and Carol are Facebook users (only Alice and Bob are
Facebook friends). The social graph is as shown in Figure 4.1.
(1) If Alice virtually befriends Carol through FAITH, and
Carol has confirmed the request, the social graph presented to
applications becomes as illustrated in Figure 4.2, where Alice
are friends with both Bob and Carol. (2) Assume the same
situation as the previous example, but Alice excludes Bob
from the virtual friendship (Alice may exclude any of her
friends including herself). When Bob accesses any application
through FAITH, the applications see the Facebook social
graph as illustrated in Figure 4.1 while other users see the
social graph as Figure 4.2 through any application. (3) Assume
the same situation as (1), but Alice excludes Calendar from the
virtual friendship (Alice is able to exclude any application).
When any user accesses Calendar, it sees the social graph as
illustrated in Figure 4.1 while other applications see the social
graph in Figure 4.2 with any user. (4) If Alice hides from Bob
through FAITH, the social graph presented to applications
becomes as illustrated in Figure 4.3, where Alice is not friends
with both Bob and Carol. (5) Assume the same situation as the
previous example, but Alice excludes Bob from the hiding
(Alice may exclude any of her friends including herself).
When Bob accesses any applications through FAITH, the
applications see the social graph as illustrated in Figure 4.1
while other users see the social graph as Figure 4.3 through
any application. (6) Assume the same situation as (4), but
Alice excludes Calendar from the hiding (Alice may exclude
any application). When any user accesses Calendar, it sees the
social graph as illustrated in Figure 4.1 while other
applications see as Figure 4.3 with any users.

 5

 Figure 4.1 Figure 4.2 Figure 4.3

4. Social Informatics Management Improvements
FAITH is effective in defending against privacy breaches

and social informatics devaluation caused by Facebook’s
mismanagement. First, FAITH allows users to adjust the
visibility of their social informatics for each individual
application depending on how much they trust the application
such that non-trusted applications run with the least privileges
(or least amount of social informatics). With the Facebook
platform, if malicious applications are able to deceive users,
the social informatics of the victims is completely divulged to
unauthorized parties. In contrary, privacy control and the SGT
of FAITH can work together to allow users to restrict the
visibility of their social information for new and non-trusted
applications. Users can use the privacy control of FAITH to
disable certain API methods that are often utilized to fetch
more sensitive social informatics, and use SGT to restrict the
visibility of their social graph. Instead of showing the entire
social graph, users may just reveal a small portion to unknown
applications while set no limitations on trusted ones. Take the
previously mentioned free game application for instance. With
the Facebook platform, users upon accessing the application
have to either grant all the permissions or leave the
application. Both choices are neither desirable nor favorable.
With FAITH, users with special privacy concerns on their
Facebook events for example can simply disable events.get
API so that the application has no access to the events of the
users. Users who care about the privacy of their friends may
hide their real Facebook friendships so that the application
sees only a small portion of their friends. In this way, even if
the application has permissions to those resources, it will still
see the restricted data instead of all of it minimizing potential
damages.

Moreover, FAITH offers complete application log data to
assist users in making relevant privacy decisions. FAITH
closely monitors and records the activities of applications to
give users the transparency needed to be aware of when, what
and how often their social information is fetched. If the users
find suspicious activity, they may further disable those API
methods or applications to prevent potential damages, and
open more resources if applications are found to be benign.
For instance, if the free game application is running under
FAITH, users would be able to identity suspicious activities
with social informatics logging. Users may find that the social
informatics fetched is not relevant to the content shown and
the application excessively fetches those data which is
abnormal to regular game applications. Although FAITH is
unable to prevent privacy breaches that have already occurred
in the first place, the system helps to minimize potential future
damages. Moreover, replay allows users to test the current
privacy settings by simulating the API calls on behalf of the
applications. Users can compare the results of the calls and
adjust the settings to meet their privacy demands.

The capability of minimizing the formation of friendship
inflation caused by applications is another management
improvement of FAITH. While Restaurant City was an
appropriate example, FarmVille, an extremely prevalent social
Facebook application, is another example, which illustrates the
significance of the issue. FarmVille is a farm simulation
application. It allows users to manage virtual farms, and to
interact with their friends when virtually farming. FarmVille
encourages users to acquire as many farm neighbors as
possible when advancing to the next level as incentives.
However, those farm neighbors need to be Facebook friends
of the users, which push them to eagerly seek more Facebook
friends. Research reveals that a great portion of social game
users, such as FarmVille, are likely to have more than 95% of
their Facebook friendships established solely due to gaming
purposes instead of being close friends in real life [13]. The
SGT of FAITH allows users to transform their social graph
such that different applications see different social graphs, and
that each application sees the most optimal one. In FAITH,
instead of befriending others in Facebook for any
application-related purposes, users may create virtual
friendships through FAITH. For instance, if FarmVille is
under FAITH, users can establish virtual friendships with any
other user or hide any real Facebook friendships for any
gaming purposes.

IV. DESIGN & IMPLEMENTATION
A. SDKs

The architecture of FAITH requires two different types of
SDKs: (1) the FAITH Client SDK and (2) the FAITH Server
SDK. Both are derived from the official Facebook SDK.

1. FAITH Client SDK
The objective of the FAITH Client SDK is to allow

applications, which include the SDK, to fetch social
informatics from FAITH. To convert the official Facebook
SDK into the FAITH Client SDK, there are three major areas
requiring modifications.
1) Delivering API call requests to FAITH instead of Facebook:

From the application’s perspective, FAITH takes the role
of Facebook in providing social information. As such the
SDK needs to send requests from the application to
FAITH instead of Facebook.

2) Managing the data from FAITH: Since FAITH becomes the
platform interacting with applications, extra variables are
required in addition to the existing variables in the official
SDK. These variables need to be initialized by data from
FAITH. For instance, the encrypted Facebook session key
is a new variable which needs to be initialized in new
SDK. To prevent applications from contacting Facebook
directly, FAITH encrypts the session key before sending
it to applications.

3) Sending additional data to FAITH when making API calls:
When FAITH receives API calls; it needs to send more
data than an official SDK would for various purposes.
The encrypted Facebook session key is an example of
that. When FAITH receives this data, the session key can
be decrypted to allow FAITH to authenticate with
Facebook when fetching social informatics.

 6

2. FAITH Server SDK
In comparison with the FAITH Client SDK, the FAITH

Server SDK requires less modification of an official SDK. The
main purpose is to allow (1) the UI of FAITH to fetch social
informatics and (2) Facebook session key reuse. The first case
requires no modifications to an official SDK as it already does
that. On the contrary, session key reuse requires some changes
to an official SDK. When each application initiates a Web API
call, FAITH processes the request, and initiates another API
call to fetch the social informatics from Facebook. However,
without a valid Facebook session key, FAITH is unable to
complete this. To solve this problem, the FAITH SDK needs
to allow session key reuse. Whenever FAITH contacts an
application, FAITH encrypts valid session keys received from
Facebook, and attaches the encrypted keys to each request sent
to the application. When the applications initiate API calls, the
FAITH Client SDKs sends the encrypted keys back to FAITH.
Encryption is mandatory since it prevents the applications
from contacting with Facebook directly.

B. User Interface
The user interface built into FAITH is the primary method

that users interact with the system and configure its many
settings. As part of privacy control, FAITH allows users to
control the usage of supported API methods. For instance,
friends.getAppUsers is an Old REST API method to fetch the
user IDs of the user’s friends who have authorized the calling
application. Figure 5 shows a screenshot of an application,
Calendar, under FAITH. It is a social calendar application,
which allows users to create daily events and share the events
with their friends by allowing access to the calendars of their
friends. Figure 5 is the page where users access the friends’
calendars. After the user blocks friends.getAppUsers,
Calendar is no longer able to retrieve the user IDs of the user’s
friends who have authorized Calendar. The page accessing the
friends’ calendars becomes as illustrated in Figure 6.

 Figure 5

 Figure 6

Figure 7 is a screenshot of the adding virtual friendships
page. Before users can virtually befriend any other Facebook
users through FAITH, they need to find a social path to each
one of them. Figure 7 shows that Ray Lee has virtually
befriended Di Ji, and the social path of the friendship is from
Ray Lee (the user who initialized the friend request) to S.
Felix Wu then to Di Ji. The process of friendship requests is
similar to Facebook’s. Users receive a notification for
confirmation from FAITH when other users want to befriend
the user. Figure 8 shows a screenshot of Calendar after Ray
Lee and Di Ji has established a virtual friendship which has
been confirmed by Di Ji. In comparison with Figure 5, Figure
8 shows that Calendar sees Di Ji as a friend of Ray Lee.
Moreover, since Ray Lee is the one who initiated the virtual
friendship, he has the privilege to exclude any users and
applications from the virtual friendship.

 Figure 7

 Figure 8

Hiding real Facebook friendships works the opposite to
adding virtual friendships except hiding does not need
confirmation to be effective. When users choose to hide their
real Facebook friendships, the hidden friendships becomes
invisible to applications behind FAITH. Figure 9 is a
screenshot of the hiding friendships page of FAITH. The
figure shows that Ray Lee has hidden himself from Jeff Rowe
and S. Felix Wu. Upon visiting Calendar again, Figure 10
shows that the application sees both Jeff and Felix as not
friends of Ray Lee. Similar to adding, Ray Lee may exclude
any of his Facebook friends and applications from the rules,
and the excluded users and applications can continue to see
the friendships when fetching the social informatics from
FAITH.

 7

Figure 9

 Figure 10

Access logs can be viewed by URL request. FAITH stores
the HTML source codes of each page of applications they
have previously visited and the API methods initiated by the
applications during those visits. Figure 11 is a screenshot of
the URL logging page of FAITH. The HTML source code
shown in the light blue square is the code shown to the user
when visiting the page. Figure 12 shows the Old REST API
initiated by the application in the page. It shows that Calendar
made an API call, friends.getAppUsers, at 2011-01-16, and
access was allowed. If the user has blocked the API method,
FAITH would still capture and log the call but it would return
an empty list to the application and display “Access Denied”
in the log instead. With FAITH, users know exactly what
social informatics is fetched and utilized by each application
for each page they visit.

 Figure 11

 Figure 12

Access logs can be viewed by API call. API logs capture
the social informatics returned in response of the API calls.
Each API log includes the name of the API method,
application, time, access status (allowed or blocked), the IP
addresses of both application server and client as well as the
social informatics returned to the application.

C. FAITH Server
The job of the FAITH Server is to respond to API calls

initiated by applications and deliver the transformed social
informatics back to applications. It is also the place where
social informatics logging, privacy control and social graph
transformations are implemented. To provide a deeper
understanding, we detail the design and implementation of the
component as follows. When an API call request arrives at
FAITH Server, it first examines both HTTP POST variables
and HTTP GET variables from the application. If valid,
FAITH Server gets the encrypted Facebook session key from
the data, and decrypts the key to fetch the social informatics
from Facebook. Before passing the data back to the calling
application, FAITH Server logs the social informatics if API
logging is enabled. The next step of the process is to
implement privacy controls. FAITH Server checks if the user
allows the API call. If not, it returns an empty list to the
application. Otherwise, continue to the last step of the process,
SGT. FAITH Server transforms the social informatics as
specified by the user and passes the transformed data back to
the calling application. The implementation of SGT involves
modifications over the results of those API methods according
to user settings before delivering the social informatics back to
applications. For instance, assume that Alice and Bob are not
Facebook friends, but they have established a virtual
friendship through FAITH. If Alice visits an application, it
initiates a friends.get API call to request the user IDs of Bob’s
Facebook friends. In response to the call, FAITH generates
another request to fetch Bob’s friends from Facebook. When
FAITH receives the list of Bob’s real Facebook friends, Alice
certainly is not in the list since they are not real Facebook
friends. FAITH needs to transform the list. It is now that Alice
is added to the list.

D. Integration with FAITH
To integrate with the Facebook Platform, each application

first needs to register with Facebook to get a unique ID and
secret this is used in the SDK to fetch the social informatics
from Facebook. Integration with FAITH works very similarly.
Each application needs to register with FAITH as well. New
applications can utilize a FAITH Client SDK during
development of the application while existing applications
only need to replace official Facebook SDKs with FAITH
Client SDKs.

E. EVALUATION

 8

Although FAITH has reached approximately two hundred
active users, we hope to evaluate the usability of the system
when it is utilized more widely. In this section, we instead
evaluate the performance and overhead of the system. In our
experiments, we measured the processing time of two web
pages of identical source code with one in a FAITH
application and the other in a Facebook application. The same
experiment was conducted for both FBML and IFrame, and
averages are calculated based on 20 occurrences. When both
pages of FBML applications initiate a API method, which
fetches twenty friends of current active users, the average
processing times are 0.062126 seconds (Facebook app) and
0.074926 seconds (FAITH app). The overhead of FAITH
causes a 20% increase in processing time. When both pages
initiate the same methods 10 times, the average processing
times are 0.564256 seconds (Facebook app) and 0.680208
seconds (FAITH app), also a 20% increase. For IFrame
applications, when the same method is initiated once, the
average process times are 0.084166 seconds (Facebook app)
and 0.087507 seconds (FAITH app), a 4% increase. For the
case of calling the method 10 times, the average processing
times are 0.702290 seconds (Facebook app) and 0.825028
seconds (FAITH app), a 17% of increase.

F. Issues
1. Existing Applications NOT Using SDKs

An SDK is not the only way for applications to fetch the social
informatics from Facebook. The Facebook Platform also
supports OAuth 2.0 protocol [4], which utilizes access tokens
for authentication. Applications are able to utilize access
tokens to retrieve the social data through URLs without SDKs.
Since direct retrieval from Facebook is not permitted, FAITH
encrypts access tokens before passing to applications. As a
result, applications utilize access tokens need to modify the
source codes to use SDKs only to integrate with FAITH.

2. FAITH SDKs in Languages Other Than PHP
Currently, FAITH server SDKs and FAITH client SDKs are
all in PHP for it is the most prevalent server language of
Facebook applications. While we are in the process of
developing SDKs in other languages, the system can only
integrate with applications in PHP at this time.

V. CONCLUSION & FUTURE WORK
In this paper, we presented the design and implementation

of FAITH (available -- http://apps.facebook.com/dsl_faith/).
Here, applications are regarded as processes and Facebook
social informatics as resources similar to an operating system.
In that respect, FAITH functions as an application-level
social-centric operating system kernel. FAITH augments the
Facebook platform’s management mechanisms of social data
defending against privacy leaks and devaluation of social
informatics. This paper has described how FAITH can be
utilized to accomplish this. From the feedbacks we received,
many users found FAITH useful in defending the privacy of
their social data. We have also received many feedbacks about
increasing the number of applications integrated with FAITH,
which is certainly our goal. While we have received no
complaints regarding performance during development,
performance testing has demonstrated acceptable delays in

processing time. In the future, we hope to further decrease
these delays by utilizing data caching. Because making an API
call is time consuming and cumbersome, caching the results of
frequently-used API methods is an appropriate technique to
improve efficiency.

ACKNOWLEDGEMENT

This research was supported in part by NSF CNS-0832202,
BBN-GENI, Army Research Lab (Network Science CTA),
ARO MURI (Arsenal), AFOST MURI (Helix), and Intel.

REFERENCES
[1] Top 25 Facebook Games for Feburary 2010

http://www.insidefacebook.com/2010/03/02/top-25-facebook-games-f
or-february-2010/

[2] Facebook Press Room Statistics
http://www.facebook.com/press/info.php?statistics

[3] Facebook Developers http://developers.facebook.com/docs
[4] The OAuth 2.0 Protoccol Framework

http://tools.ietf.org/html/draft-ietf-oauth-v2-11
[5] Facebook and Privacy Issues

http://articles.sfgate.com/2010-10-19/opinion/24141616_1_mafia-wars
-facebook-privacy-rules

[6] Huang, Y, Supporting Meaningful Social Networks. Retrieved
Feburary, 2011, from http://eprints.ecs.soton.ac.uk/17180/2/thesis.pdf

[7] Performance http://developers.facebook.com/docs/guides/performance
[8] Haifeng Zhao, Shaozhi Ye, Prantik Bhattacharyya, Ken Gribble, Jeff

Rowe, S. Felix Wu, SocialWiki: Bring Order to Wiki Systems with
Social Context. In SocInfo '10: Proceedings of the 2nd IEEE
International Conference on Social Informatics, Laxenburg, Austria.

[9] Thomas Tran, Jeff Rowe, S. Felix Wu, Social Email: A Framework and
Application for More Socially-Aware Communications. In SocInfo
'10: Proceedings of the 2nd IEEE International Conference on Social
Informatics, Laxenburg, Austria

[10] Web Service http://en.wikipedia.org/wiki/Web_service
[11] Matt Spear, Xiaoming Lu, S. Felix Wu, Davis Social Links or: How I

Learned To Stop Worrying And Love The Net. In SCA '09:
Proceedings of the International Symposium on Social Computing
Applications, held in conjunction with IEEE SocialCom, Vancouver,
Canada, August, 2009.

[12] Lerone D. Banks and S. Felix Wu, Toward a Behavioral Approach to
Privacy for Online Social Networks. Proceedings of the Second
international conference on Social informatics. 2010.

[13] Nazir, A., Raza, S., and Chuah, C. 2008. Unveiling facebook: a
measurement study of social network based applications. In
Proceedings of the 8th ACM SIGCOMM Conference on internet
Measurement (Vouliagmeni, Greece, October 20 - 22, 2008). IMC '08.
ACM, New York, NY, 43-56

