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Abstract

With the onset of large numbers of energy-flexible appliances, in particular plug-in electric and hybrid-electric
vehicles, a significant portion of electricity demand will be somewhat flexible and accordingly may be responsive to
changes in electricity prices. In the future, this increased degree of demand flexibility (and the onset of only short-term
predictable intermittent renewable supply) will considerably exceed present level of uncertainty in day-ahead
prediction of assumed inelastic demand. For such a responsive demand idealized, we consider a deregulated
wholesale day-ahead electricity marketplace wherein bids by generators (or energy traders) are determined through a
Nash equilibrium via a common clearing price (i.e., no location marginality). This model assumes the independent
system operator (ISO) helps the generators to understand how to change their bids to improve their net revenue
based on a model of demand-response. The model of demand-response (equivalently, demand-side bidding day
ahead) is based on information from load-serving entities regarding their price-flexible demand. We numerically
explore how collusion between generators and loads can manipulate this market. The objective is to learn how to
deter such collusion, e.g., how to set penalties for significant differences between stated and actual demand, resulting
in higher energy prices that benefit certain generators.

Keywords: Smart grids; Demand response; False demand attestation

Introduction
Game-theoretic approaches to the study of electric-
ity markets, particularly under deregulation, have been
explored for decades [1-3]. Recently, problems associated
with variations of the optimum power-flow (OPF) prob-
lem [4,5] have been considered by several authors for
price-elastic demand, e.g., [6,7]. Indeed, demand elastic-
ity for electricity is motivated by the onset of potentially
enormous load from flexible appliances, particularly plug-
in electric and hybrid-electric vehicles, see, e.g., [8,9] and
the references therein, where an electric vehicle repre-
sents electricity demand comparable to the rest of the
household combined.
In typical models of ‘two-settlement’ (wholesale day-

ahead and real-time) electricity markets commonly used
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in practice, day-ahead settlements largely account for the
real-time supply. In real time, relatively minor adjust-
ments are expected to be made to meet actual current
demand. However, significant power supply may need to
be quickly secured if there are failures in supply or if real-
time (actual) demand is unexpectedly different than that
predicted day-ahead, e.g., due to weather conditions. On
the other hand, excess supply may have been secured if
elastic demand is deferred in real time, or (often intermit-
tent and confidently predictable only in the short-term)
renewable supply is employed. So, in the future, actual
real-time demand may be additionally difficult to predict
day-ahead.
To account for significant flexible demand in the day-

ahead market [10,11], we assume that the load-serving
entities (or demand aggregators or just consumers) will
inform the independent system operator (ISO) regarding
their flexible demand - a kind of demand-side bidding.
The ISO is assumed to provide sufficient information so
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that the generators (suppliers) can modify their prices to
improve upon their net utility, i.e., the ISO determines
generation allocation sensitivities to bid prices of the OPF
with demand response. In our setting, the ISO solves
an OPF which minimizes the common clearing price of
supply to the loads. The game is a ‘discriminatory’ sealed-
bid auction in that the generators earn at the price they
bid but in quantity determined by the ISO [1,2]. So to
simplify matters herein, we do not consider strategic bid-
ding by the generators wherein they may infer demand
and/or the bidding strategies of their competitors via a
probabilistic model, nor multipart bidding to account for
start-up/ramp-up costs, secure contracts involving mini-
mum and maximum supply per generator, and the likea,
nor peak-power consumption penalties [12,13]. Also, we
assume each generator has a continuously differentiable
and convex cost of supply [3], quadratic in particular
[14]. Our model is related to noncooperative Cournot
games of electricity markets reversing the direction of
day-ahead markets to understand how demand responds
to market clearing prices in the long term [15] - here we
attempt to understand demand-response on the wholesale
(generation-level) market.
How an energy trader (or load-serving entity colluding

with one or more generators) can manipulate day-ahead
electricity prices by placing uneconomic demand-side
bids is studied in [16,17], not considering flexible demand.
In this paper, we are interested in how the wholesale day-
ahead market can be manipulated by colluding generators
and load-serving entities, through misrepresentation of
flexible demand by the latter.
This paper is organized as follows. We first specify

our model of wholesale electricity market under demand
response as a noncooperative game - an argument for
the existence of its symmetric Nash equilibrium is given
in the Appendix. We then use this model to numerically
consider the effects of demand misrepresentation for the
example of the benchmark IEEE 14-bus power system.
The paper concludes with a summary and discussion of
how such computations can inform penalties of signifi-
cant discrepancies between attested and actual demands,
causing the benefit of certain generators or energy traders.

Problem setup
Consider an ISO (single commodity retailer) with genera-
tors (suppliers) and loads (consumer demands). As in [6],
supposing that each generator g ∈ G sets its own price pg$
per kWh (or other energy commodity units). We model
aggregate load to be linear in response to clearing price, Pb

D(P) = (Dmax − Dmin)

(
1 − P

Pmax

)
+ Dmin, (1)

where Dmin represents inflexible demand. Note that this
is the simplest model of aggregate-demand flexibility and
is commonly used in the literature. Although other more
sophisticated model may be developed to fit cases in real-
ity, such as plug-in electric and hybrid-electric vehicles,
capturing flexibility of real-world aggregate loads is not a
contribution of this paper.
Suppose that generators suffer quadratic cost of supply

[14]c, so that the net utility/revenued of the gth generator
is

ug
(
p
)

= pgSg
(
p
)
−cg

(
Sg

(
p
))

= pgSg
(
p
)
−agS2g

(
p
)
,

(2)

i.e., different generators having different ag parameters.
For noncooperative generator duopoly (two-players),

discriminatory, single-part game with no distribution
losses or constraints, and assuming that p1 �= p2
near the interior Nash equilibria, we can find surpris-
ingly complex plurality of Nash equilibria in closed
form [18].
We assume that supply allocations are the result of the

optimization of a supply network by a linear program. In
electricity markets, the retailer (ISO) is sometimes also
the distribution system.
Consider power flow in a power system with the gener-

ator set G, load set L, bus set B and branch set R.

• Let Gb ⊂ G be the set of generators on bus b, each
having generated power Sg , price per unit supply pg ,
and minimum and maximum supply S(min)

g and
S(max)
g , respectively.

• Let Lb ⊂ B be the set of loads on bus b, each having a
demand Dl that depends on the clearing price P.

• For each bus b ∈ B, θb is its voltage angle.
• Finally, let ri,j be the branch connecting bus bi and

bus bj, with xi,j, the reactance of the branch, Pi,j, the
power ‘flowing’ from bj to bi (if we neglect power loss
on the transmission line, we get Pi,j = −Pj,i), and ci,j,
the maximum tolerable power on the branch.

Optimal power flow problem formulation
Assuming fixed generation prices p, and associated clear-
ing price P, the total load (consumer demand) is given by
D(P). The individual loads are assumed to be some fixed
proportion of the total demand, i.e.,Dl(P) = αl D(P), ∀l ∈
L, where αl > 0 and

∑
l∈L αl = 1. The ISO solves a con-

strained optimization problem (linear programming in
this case) in order to find S =[ S1, . . . , S|G|], the optimum
power generating assignment for the generators, and θ =
[ θ1, . . . , θ|B|], the voltage angles on the buses, which mini-
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mize the cost charged by the generators. The constrained
optimization problem is thus given by:

min
S,θ

∑
g∈G

pgSg

such that:

Pi,j = 1
xi,j

(θj − θi) (DC approximation[4])
∑
g∈Gb

Sg−
∑
l∈Lb

Dl=
∑
k∈B

Pk,b, ∀b ∈ B (power balance)

S(min)
g ≤ Sg ≤ S(max)

g , ∀g ∈ G (generator limits)

− ci,j ≤ Pi,j ≤ ci,j, ∀i, j ∈ B (branch limits)
(3)

Here, neglecting the power loss in generation and trans-
mission, we have∑

g∈G
Sg =

∑
l∈L

Dl.

Note that when all the generators have the same prices,
there exist infinitely many optimal solutions in the above
mathematical program. In this case, without violating
other constraints, we equally divide allocation to each
generator.Wewill pay particular attention to this situation
in the following.
In the above formulation, we used fixed upper and

lower bounds on the supply allocations Sg . In addition, the
quadratic penalty term in the utility function (2) serves to
model cost of supply allocation [3,14]. For a positive ag
and fixed generator prices p, suppose generator g wants to
ensure that its utility function is never smaller than some
positive value u(min)

g , then this imposes lower and upper
bounds on its supply allocation, given by

1
2ag

(
pg −

√
p2g − 4agu(min)

g

)
≤ Sg

≤ 1
2ag

(
pg +

√
p2g − 4agu(min)

g

)
,

provided the generator price satisfies the condition pg ≥
2
√
agu(min)

g . If umin
g = 0, then we observe that as ag is

made larger, i.e., as the cost of supply allocation increases,
the maximum supply allocation (or capacity) decreases,
and vice versa.
In practice for power-transmission circuits, thermal

losses may determine edge (transmission line) capacities
and costs, the latter typically in a power-flow dependent
fashion, e.g., ‘I2R’ losses (Section 3.1 of [4]). In order to
focus on the bidding behavior among the generators, we
neglect the power loss on the transmission lines; hence,
the cost in power transmission is also neglected, as in the
DC approximation.

Setup of generators’ iterative game on a platform of
demand response
We neither assume that each generator’s cost of pro-
duction is known to the ISO (i.e., the ag terms), nor,
equivalently, that the ISO chooses its allocations to the
generators based on this (as in [6]). Besides, the cost func-
tion (hence the payoff function) of any generator is opaque
to all its competitors, concerning this, our game can be
regarded as an incomplete information game. In the fol-
lowing, denote as S(D(P), p) the solution of the above
optimal power flow allocation problem to determine sup-
ply allocations for fixed demands (which are based on
the clearing price P) D(P) = {Dl(P) | l ∈ L} and fixed
generator prices p = {pg | g ∈ G}. We propose the follow-
ing iterative generator game wherein, for fixed generator
prices, the clearing price and the consumer demands are
adjusted iteratively until they converge to a fixed point.
Then each generator g ∈ G adjusts its price pg , given
the current price for all other generators p−g , such that

its utility function ug
(
pg , p−g

)
is increased. Given initial

prices set by the generators p, the iterative generator game
proceeds as follows:

1. The ISO sets an initial mean price of supply (clearing
price charged to all consumers), P, say just as the
mean of the initial generator prices, pg , ∀g ∈ G.

2. Determine the price-dependent loads D(P), where
Dl(P) = αl D(P), ∀l ∈ L.

3. ISO solves the optimal power flow allocation
problem S(D(P)), p) given fixed demands D and
generation/supply costs p.

4. ISO computes a new mean (clearing) price of supply,
P =

∑
g∈G Sg pg∑
g∈G Sg .

5. If the change in clearing price P is significant (larger
than some threshold), then go back to Step 2; else
continue to Step 6.

6. For the current set of generator prices, consistent
supply allocations, loads, and clearing price have
been found. Now each generator sets a new price of
supply such that there is an increase in its utility
function using one of the following two approaches:
(i) Best-response play action: Each generator g sets a
new price of supply based on (an estimate of)e

argmax
pg

pg Sg
(
pg ; p−g

)
− cg

(
Sg

(
pg ; p−g

))
, (4)

where cg(x) is the cost of supply (assumed = agx2
above).
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(ii) Better-response play action: Each generator g
obtains approximate left and right partial derivatives
of its utility function with respect to its price pg , i.e.,

�u+
g =

ug
(
pg + ε, p−g

)
− ug

(
pg , p−g

)
ε

�u−
g =

ug
(
pg , p−g

)
− ug

(
pg − ε, p−g

)
ε

,

where ε ↘ 0f. If the left and right derivatives have
different signs (a non-differentiable point), then there
are two possibilities. If �u−

g > 0 and �u+
g < 0, the

current price pg is a local maximum and there is no
need to change pg . If �u−

g < 0 and �u+
g > 0, the

current price is a local minimum. In this case, we
increase pg by a small value ζ if |�u+

g | > |�u−
g |;

otherwise, we decrease pg by ζ . In case the
derivatives have the same sign (may still be a
non-differentiable point), we increase pg by ζ if both
derivatives are positive and decrease pg by ζ if both
derivatives are negative. The step ζ should increase
the price by a small value such that there is an
increase in the value of the utility function. It should
not make large changes to the price like the
best-response play actiong.

7. Exit if there is no change in the generator prices (i.e.,
if an equilibrium set of prices is obtained); Else go
back to Step 1.

We implicitly assume in Step 6 that the ISO helps to
compute estimates of supply sensitivities to bid for each
generator, ∂Sg/∂pg . This can be done numerically through
difference quotients. The result is a Jacobi iteration repre-
senting a ‘better response’ game [19,20]. Alternatively, the
ISO could iteratively compute the ‘best response’ price for
each generator, but this would require knowledge of each
generator’s net utility.

Numerical study - benchmark IEEE 14-bus power
system
We study the iterative generator game described above
with the benchmark IEEE 14-bus power system that has 3
generators and 11 loads as shown in Figure 1 [21].We con-
sider the scenario where there is no cost/loss in delivering
power, and the branch capacities are set to fixed values.
Here we only focus on three-player best-response game;
discussion of a better-response, two-player game for the
benchmark IEEE 9-bus system, with numerical results, is
given in [22].
For this 14-bus power system, each of the three gen-

erators can produce maximum power S(max)
g = 150MW,

and minimum power of 0 MW (again, we do not consider
ramp-up/down issues herein). The constants in D(P), our
model for the total load, were chosen as the possible max-
imum/minimum power provided by the generators, that
is, Dmax = 450 MW, Dmin = 0 MW. The total load D(P)

is assumed to be proportionally divided among the indi-
vidual loads, e.g., αl = 1

|L| , ∀l ∈ L. The maximum clearing

Figure 1 IEEE 14-bus power system having an asymmetric topology with 3 generators and 11 loads.
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price is set to Pmax = 5; for clearing prices P > Pmax,
the flexible demand is 0. Other data for this power sys-
tem can be found in [23]. The constants (ag) in the utility
function (2) of generators are set to 0.02, 0.025, and 0.03,
respectively.
We had all three generators participating in the com-

petition, using randomly chosen starting price-points
(play-action bids). Most starting points resulted in con-
vergence to the symmetric Nash equilibrium point p∗ =
[ 3.53, 3.53, 3.53] as shown in Figure 2. Additionally, we
numerically found other symmetric Nash equilibrium
points forming a line segment, as shown in Figure 3. In the
Appendix, we prove the existence of a plurality of symmet-
ric Nash equilibrium points and the lack of asymmetric
ones, under certain conditions for our test systems. In
[22], we describe a numerical study with similar results
for the benchmark IEEE 9-bus power system (having a
symmetric topology unlike the 14-bus system).

Effects of false demand attestations
We also numerically explored how false demand attesta-
tions may impact the revenues of generators. It is possible

that demand aggregators and generators may collude, or
noneconomic demand-side bids may be placed by energy
brokers, to cause some generator(s) to receive more rev-
enue while possibly reducing the revenue of others.
We first explain that by considering the convex

quadratic cost model of (2) how modifying power alloca-
tions to generators may improve their revenues. In par-
ticular, we can demonstrate in some situations, decreasing
power consumption could be beneficial for some gen-
erators, especially for those with relatively higher cost
parameter ag . Assume all the generators bid the same
Nash equilibrium price, p, and equally share the aggregate
demandD(p). Clearly, the clearing price is also p and each
generator has allocation

Sg = 1
|G|

[
(Dmax − Dmin)

(
1 − p

Pmax

)
+ Dmin

]
.

According to (2), the revenue of generator g will be maxi-
mized when its allocation is

S′
g = p

2ag
.

Figure 2 Sample generator-price trajectories which converge to [3.53, 3.53, 3.53]. Trajectories converge to this maximal Nash equilibrium
point from most initial price points.
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Figure 3 Sample trajectories which converge to non-maximal, symmetric Nash equilibrium points.

Thus, when the current allocation of generator g, Sg , is
larger than its optimal allocation, S′

g , less allocation brings
more revenue. For the same reason, if Sg < S′

g then
less allocation Sg leads to financial loss. That is, the fol-
lowing inequality at symmetric Nash equilibrium p will
determine whether increased or reduced allocation will be
beneficial to a given generator g:

Sg > S′
g ⇐⇒ 1

|G|[
(Dmax − Dmin)

(
1 − p

Pmax

)
+ Dmin

]
>

p
2ag

Example with numerical study
In the benchmark IEEE 14-bus power system described
above, we thereby predicted that decreasing allocation will
bring generators 1, 2, and 3 more profit when the current
equilibrium price is lower than 2.72, 3, and 3.21, respec-
tively. We verified these thresholds numerically as follows.
Denote the factor by which load j has modified its demand
as

�j = Dj,false

Dj,true
.

Assume load 1 reports a false demand which is greater
than its actual demand, �1 > 1, while the other
loads are true, i.e., �i = 1,∀i �= 1. False demands
were used to determine prices while true demands were
used when computing the generator net utilities via the
power circuit.
The generation net utilities at Nash equilibrium are

depicted in Figure 4 as a function of �1 ≥ 1. The upper-
left plot depicts the case with (maximal) Nash equilibrium
prices [3.53, 3.53, 3.53], in which no generator benefits
when �1 > 1. The upper-right plot depicts the case with
equilibrium prices [3.1, 3.1, 3.1], in which only generator 1
will benefit. Lower-left plot depicts the case with equilib-
rium price [2.8, 2.8, 2.8], in which only generators 2 and 3
will benefit. Finally, the lower-right depicts the case with
equilibrium prices [2.6, 2.6, 2.6], in which all the genera-
tors will benefit. The effects of false demand attestation
in IEEE 9-bus power system is also studied, similar results
are observed.

Discussion: when to penalize
Recall the previous discussion of complications in esti-
mating demand day-ahead due to the presence of flexible
demand, renewables, and storage devices. This addi-
tionally complicates detection of false attestations of
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Figure 4 Nash-equilibrium net utilities vs �1 plots under different equilibrium prices p, clockwise from upper left: p = [3.53, 3.53, 3.53] ,
[3.1, 3.1, 3.1] , [2.6, 2.6, 2.6] , [2.8, 2.8, 2.8].

demand. So, an ISO may need to detect persistent
demand-attestation ‘biases’ over time and let that trig-
ger associated demand-side penalties or reservation costs.
General incomplete-information game-theoretic frame-
works include Bayesian games and hypergames, e.g.,
[24]. In both VCG and PSP auctions (e.g., [25,26]),
issues of truthfulness in the disclosed bids are con-
sidered, i.e., reflecting actual demand response (by
marginal valuation). More prosaic approaches simply
interpolate and extrapolate from presumed honest bids
(by (amount, price)) to obtain a complete estimate of

other players’ demand response. These frameworks are
applicable to iterated (sequential) adversarial (nonco-
operative) games with or without leaders. Generally,
estimates are greatly simplified under the assumption
that player strategies are time (play-action iteration)
invariant.
The magnitude of such penalties would be informed by

calculations such as those described above, i.e., by deter-
mining which generators benefit and by how much. By
penalizing in this way, the motivation for deliberately false
demand-attestations are disincentivized.
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Conclusions
In this paper, we studied a day-ahead wholesale elec-
tricity market under demand response as a noncoop-
erative game under certain assumptions, in particular
no location marginality. We argued for the existence of
symmetric Nash equilibria and numerically studied the
benchmark IEEE 14-bus power system. We then consid-
ered the effects of false demand attestation and again
used the 14-bus system to show how generators may (or
may not) benefit by false attestation of demands. Such
calculations may be used to penalize demand attesta-
tions that show persistent bias to the benefit of certain
generators.

Endnotes
aFor example, in [5], an affine single-part bid and

associated make-whole “uplift” payments that are part of
a joint integer-programming unit commitment and
continuous-linear OPF (economic dispatch) problem was
considered. In practice, the generation unit-commitment
decisions are typically made first, e.g. simply based on
mean cost of supply over the capacity range of the
generator including its ramp-up costs.

bHerein, just the mean price of supply - again, we
assume no location marginality.

cWe assume quadratic cost for tractability in the
duopoly studied in [18]. An alternative cost structure
could be asymptotic to a maximum, e.g., c(0)/(s − smax)
where c(0) is the cost of keeping the generator online even
if zero supply is being delivered. In this paper, we do not
consider ramp up/ramp-down constraints for generators.

dIf the net consumer utility is collectively V (D) − PD,
then for the linear demand-response to price of (1), the
utility is quadratic, concave and increasing,
V (D) = (Pmax/2)(D2

max − (Dmax − D)2)/(Dmax − Dmin)
for Dmin ≤ D ≤ Dmax.

eSince an explicit closed-form solution is difficult to
obtain, here we simply search for objective-optimizing
prices by first defining an evenly partitioned price-set
from 0 to 5.

fWe chose a value of ε = 10−6.
gWe chose ζ as follows. Starting with a small trial value

of ζ = 0.005 pg , if ug
(
pg + ζ , p−g

)
> ug

(
pg , p−g

)
we

accept the value of ζ ; Else ζ is decreased by a factor of 2
iteratively until ug

(
pg + ζ , p−g

)
> ug

(
pg , p−g

)
.

Appendix: symmetry of Nash equilibrium points
In this Appendix, we simply and directly derive conditions
on the parameters of our power-system model (in DC
approximation) for existence and symmetric Nash equi-
libria and nonexistence of asymmetric ones. The claims
can be directly extended to non-quadratic cost functions

for generation at the expense of closed-form expressions
for the conditions of the claims in terms of the model
parameters.

Proof of existence of symmetric Nash equilibrium points
For existence of a symmetric Nash equilibrium, we need
show that A ∩ B �= ∅, where A is the set of prices, p,
in symmetric price vectors p = [ p, p, . . . , p] from which
decreasing any one price component (of a given genera-
tor) is not profitable (for that generator), and similarly B is
the set of prices in price vectors from which increasing a
price component is not profitable.

Decreasing a price component is not profitable, A
Given a potential symmetric equilibrium price-vector p
with equal components p, for generator i if p ≥ p̂i :=
D−1 (

Smax
i

)
, i.e., the total demand D(p) ≤ S(max)

i , then if
generator i decreases its price pi < p, it will be assigned
all of D until D > S(max)

i . Since the net revenue of genera-
tor i is assumed ui(p) = D(p)p−aiD(p)2, i.e., quadratic in
p, then without loss of generality we can take Dmin = 0 so
that generator i will receive its maximum revenue u(max)

i ,
when it bids price

p̃i = P2max − 2aiDmaxPmax
2(Pmax + aiDmax)

. (5)

However, p̃i is feasible only if p̂i ≤ p̃i ≤ p. Therefore,
for generators i with p̂i ≤ p, the best response p∗

i by
decreasing (case A) price from p is

u∗
A,i( p)=

⎧⎪⎨
⎪⎩
p̂iS(max)

i − ai
(
S(max)
i

)2
if p̃i < p̂i

(
p∗
i = p̂i

)
pD( p) − aiD( p)2 if p̃i > p

(
p∗
i = p

)
u(max)
i Otherwise

(
p∗
i = p̃i

)
(6)

Considering equally divided demand at p among the |G|
generators, define Ai,1 as follows,

Ai,1 =
{
p : p

D( p)
|G| − ai

(
D( p)
|G|

)2
≥ u∗

A,i( p), p̂i ≤ p
}
.

On the other hand, if p < p̂i, if generator i decreases its
price from p, its allocation will always be its maximum
power, S(max)

i . Therefore, in this case, the optimal revenue
in best response for generator i is

u′
A,i(p) = pS(max)

i − ai
(
S(max)
i

)2
. (7)

Define

Ai,2 =
{
p : p

D(p)
|G| − ai

(
D(p)
|G|

)2
≥ u′

A,i(p), p̂i ≥ p
}
,

Ai = Ai,1 ∪Ai,2, and A = A1 ∩A2 ∩ . . . ∩A|G|. So, no gen-
erators will decrease their prices in the next round when
they all bid p ∈ A in the current round.
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Increasing price is not profitable, B
Let S(max)

−i denote the sum of maximum capacities of all
the generators except for generator i. Given a potential
equilibrium price p, if p ≤ p̄i := D−1

(
S(max)
−i

)
, then

when generator i increase its price, its allocation will not
immediately drop to zero. Assume generator i increases
its price to p∗ from p, and thereby its allocation drops
to Si. Again, w.l.o.g., we assume Dmin = 0 and have
p′ =

(
pS(max)

−i + piSi
)
/
(
S(max)
−i + Si

)
and S(max)

−i + Si =
Dmax

(
1 − p′

Pmax

)
. By simplifying we get

piSi =
(
S(max)
−i + Si

) (
1 − S(max)

−i + Si
Dmax

)
Pmax − pS(max)

−i .

(8)

Combining (8) and (2), the revenue of generator i is
quadratic in Si and maximum at a point S̄i that is indepen-
dent of p:

S̄i = Dmax − 2S(max)
−i

2 (Pmax + aiDmax)
Pmax,

with maximum value u(max)′
i that’s linear in p.

Let S◦
i be the allocation of generator i, when it bids max-

imum price, Pmax. At potential symmetric equilibrium
point p, if generator i satisfies p ≤ p̄i, its optimal revenue
in best response can be expressed as

u′
B,i(p) =

⎧⎪⎪⎨
⎪⎪⎩
(
D(p)−S(max)

−i

)
p−(D(p)−

(
S(max)
−i

)2
if S̄i ≥D(p)−S(max)

−i

u(max)′
i if Sři < S̄i < D(p) − S(max)

−i
Sři Pmax−ai

(
Sři

)2 if S̄i ≤Sři

Note that the three conditions can be expressed in terms
of best-response price p∗

i (recall S◦
i is also known function

of p).
Considering equal allocations at symmetric price point

p as above, define

Bi,1 =
{
p : p

D(p)
|G| − ai

(
D(p)
|G|

)2
≥ u′

B,i(p), p̂i ≥ p
}
.

When p > p̄i := D−1
(
S(max)
−i

)
, once generator i increases

its price, its allocation will immediately drop to zero, and
so will its net revenue. So, define

Bi,2 =
{
p : p

D(p)
|G| − ai

(
D(p)
|G|

)2
≥ 0, p̄i < p

}
.

As above, also define Bi = Bi,1 ∪ Bi,2 and B = B1 ∩ B2 ∩
. . . ∩ B|G|. We have therefore proven the following claim.

Claim: If generator parameters
{
ai, S(max)

i

}
i∈G and

aggregate demand parameter Dmax,Pmax are such that
A ∩ B �= ∅, then there exists price-symmetric Nash

equilibria p = [ p, p, . . . , p] (p ∈ A ∩ B) with allocation
symmetry Sg = D(p)/|G| for all g ∈ G.
As an example of a set of parameters where such Nash

equilibria exist, we refer to the benchmark IEEE 14-bus
power system in DC approximation described above.

Proof of nonexistence of asymmetric Nash equilibrium
points
We set Dmin = 0 and the minimum power allocation of
each generator to zero both w.l.o.g. Instead of simply prov-
ing nonexistence of asymmetric Nash equilibrium points
for the IEEE 14-bus power system under DC approxima-
tion, we herein give the conditions for the nonexistence
of asymmetric Nash equilibrium points in more general
form, which is useful in analyzing the systems with more
than three generators.

Case of a unique generator having the lowest price
Recall the clearing price is P = ∑

i piSi/
∑

g Sg .

Claim: If there is an asymmetric equilibrium point with
the unique lowest price, say pi, then the total demand
D(P) ≤ S(max)

i .

Proof. For a proof by contradiction, assume a Nash
equilibrium pricing point where D(P) > S(max)

i and pi is
the lowest price. Generator i can increase its price by a
small amount while maintaining lowest-price status and
the condition D(P) > S(max)

i . Doing so, the allocation Si
of generator i will not be affected after the increase of
price but the revenue of generator i will increase. Thus,
this hypothetical equilibrium pricing point is not Nash, a
contradiction.

According to the claim above, in such equilibrium, only
the generator (i) who bids the only lowest price (pi)
receives nonzero allocation. As a result, the price it bids is
the clearing price, P = pi. Thus, Si = D(pi) and so we can
write the revenue of generator i having the lowest price as
follows,

ui(pi) = −
(
Dmax
Pmax

+ aiD2
max

P2max

)
p2i

+
(
Dmax + 2aiD2

max
Pmax

)
pi − aiD2

max.
(9)

Based on (9), generator i can unilaterally change its price
pi to increase its revenue until

pi = p̂i = Pmax + 2aiDmax
2Pmax + 2aiDmax

Pmax

= argmax
pi

Ui(pi) < Pmax

or approaches (is ‘infinitely close’ to) the second lowest
price among generators (see the next case).
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On the other hand, given pi = p̂i, the other genera-
tors currently receive no allocation and have no revenue
and will consider lowering their prices pj for j �= i in
the next round to pj ≤ p̂i in the next round. Doing so,
the result will be generators i and j will fairly share the
allocation, i.e.,

Si = Sj = 1
2
Dmax

(
1 − p̂i

Pmax

)
> 0.

By (2), at price p̂i, generator j will have positive revenue if
and only if

0 < Sj <
p̂i
aj
. (10)

So, generator j has nomotive to reduce its price pj to p̂i if

1
2
Dmax

(
1 − p̂i

Pmax

)
≥ p̂i

aj
⇐⇒

(aj
2

− 2ai
)

≥ Pmax
Dmax

(11)

Since condition (11) does not hold for all i �= j (because
the right-hand side is always negative) for our IEEE 14-
bus power system under DC approximation, when a =
[ .02, .025, .03]), asymmetric Nash equilibria with unique
lowest prices do not exist.

Proof of the nonexistence of asymmetric Nash equilibrium
point with> 1 generators at the lowest price
Let generators i ∈ M ⊂ G have the lowest price p̂.

Claim: If there is an asymmetric equilibrium point
with |G| > |M| ≥ 2, the total demand D(P) ≤
|M|mini∈M

{
S(max)
i

}
where the clearing price P = pi for

all i ∈ M.

Proof. Similar to the proof for the first claim, if D(P) >

|M|mini∈M
{
S(max)
i

}
and S(max)

i = minj∈M
{
S(max)
j

}
, then

i will increase its utility by increasing its price a small
amount without reducing its allocation, which makes this
price point not Nash.

Again, this claim means that Sk = 0 and generator k
has zero revenue for all k ∈ M. As with (10), assuming
equal allocations among all generators i ∈M, all gener-
ators i ∈ M are ‘satisfied’ with nonnegative allocations
if

1
|M|Dmax

(
1 − p̂

Pmax

)
≤ min

i∈M
p̂
ai
. (12)

To give any generator k �∈ M no motive to reduce their
price to p̂, we require

1
|M| + 1

Dmax

(
1 − p̂

Pmax

)
≥ p̂

ak
. (13)

Combining (12) and (13), an asymmetric Nash equilib-
rium, with more than one generator with minimal price,
exists if

min
k �∈M

ak ≥ |M| + 1
|M| max

i∈M ai. (14)

Note that (14) is necessary but not sufficient for exis-
tence of asymmetric Nash equilibrium.
Again, for our IEEE 14-bus power system under DC

approximation, if utility cost parameters [a1, a2, a3]=
[ .02, .025, .03] and |M| = 2, then (14) is not satisfied;
hence, no such asymmetric Nash equilibrium exists.
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