
Optimal Cost, Collaborative and Distributed

Response to Zero-Day Worms - A Control

Theoretic Approach

Senthilkumar G. Cheetancheri1, John-Mark Agosta2, Karl N. Levitt1, Jeff
Rowe1, and Felix Wu1

1 Security Lab, Dept. of Computer Science, Univ. of California, One Shields Ave.,
Davis, CA - 95616, USA

2 Intel Research. 2200, Mission College Blvd., Santa Clara, CA - 95052, USA

Abstract. Collaborative environments present an happy hunting ground
for worms due to inherent trust present amongst the peers. We present a
novel control-theoretic approach to respond to zero-day worms in a sig-
nature independent fashion in a collaborative environment. A federation
of collaborating peers share information about anomalies to estimate the
presence of a worm and each one of them independently chooses the most
cost-optimal response from a given set of responses. This technique is de-
signed to work when the presence of a worm is uncertain. It is unique in
that the response is dynamic and self-regulating based on the current en-
vironment conditions. Distributed Sequential Hypothesis Testing is used
to estimate the extent of worm infection in the environment. Response
is formulated as a Dynamic Programming problem with imperfect state
information. We present a solution and evaluate it in the presence of an
Internet worm attack for various costs of infections and response.

Keywords: Security, Collaboration, Dynamic Programming, Control Theory.

1 Introduction

Computer worms are a serious problem. Particularly in a collaborative environ-
ment, where the perimeter is quite secure but there is some amount of trust and
implicit security within the environment. Once, a worm breaks the perimeter
defense, it essentially has a free run within the collaborative environment. An
enterprise environment is a typical example of a network with this ‘crunchy on
the outside – chewy on the inside’ characteristic. In this paper, we try to leverage
the collaboration to collectively defend against such worm attacks. Dealing with
known worms is a solved problem – signatures to be used by Intrusion Preven-
tion Systems(IPSs) are developed to prevent further infections, and patches are
developed to fix vulnerabilities exploited by these worms. Dealing with unknown
worms – worms that exploit zero-day vulnerabilities or vulnerabilities for which
patches have either not been generated or not applied yet – is still a research
question. Several ingenious proposals to detect them automatically exist. Many

sophisticated counter measures such as automatic signature generation and dis-
tribution [10,13,14,16] and automatic patch generation to fix vulnerabilities [15]
have also been developed.

Often times, even if automated, there is not much time to either generate or
distribute signatures or patches. Other times, system administrators are skepti-
cal about applying patches. During instances when response based on the above
mentioned techniques are not feasible, the only option left is to either completely
shut-down the vulnerable service or run it risking infection. It is usually preferred
to shut-down the service briefly until a mitigating response is engineered manu-
ally.

However, making a decision becomes hard when one is not certain if there
is really a worm, and if the service being offered is vulnerable to it. It is not
desirable to shut-down a service only to realize later that such an action was
unwarranted because there is no worm. However, suspending the service in an
attempt to prevent infection is not considered bad. Intuitively, it is desired to
suspend the service briefly until it is clear whether there is an attack or not.
Balancing the consequences of providing the service risking infection against
that of not providing the service is of the essence.

This paper captures this intuition and devises an algorithm using Dynamic
Programming(DP) techniques to minimize the overall cost of response to worms.
Cost is defined as some mathematical expression of an undesirable outcome.

These algorithms use information about anomalous events that are poten-
tially due to a worm from other co-operating peers to choose optimal response
actions for local application. Such response can be later rolled-back in response
to changes to the environment such as a curtailed worm. Since peers decide to
implement response independently, the response is completely decentralized.

We surprisingly found that in certain scenarios, leaving oneself open to in-
fection by the worm might be the least expensive option. We also show that
these algorithms do not need large amounts of information to make decisions.
One of the key achievements here is that we use weak Intrusion Detection Sys-
tems(IDSs) as sensors which have high false positive rates. By corroborating
alerts raised by them with other collaborating sensors, we are able to minimize
the false positives and achieve better fidelity in detecting worms.

2 Dynamic Programming

This section provides a brief introduction to the theory behind Dynamic Pro-
gramming [4]. DP as applied to the current problem balances the low costs
presently associated with operating a system against the undesirability of high
future costs. The basic model of such a system is dynamic and discrete with an
associated cost that is additive over time. The evolution of such a system can
be described as:

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 , (1)

where k indexes discrete time, xk is the state of the system and summarizes
past information that is relevant for future optimization, uk is the control or

decision variable to be selected at time k, wk is a random parameter, also called
disturbance or noise depending on the context, N is the horizon or the number of
times control is applied and fk is the mechanism by which the state is updated.
The cost incurred at time k is denoted by gk(xk, uk, wk) which is a random
function because it depends on wk. The goal is to minimize the total expected

cost

Jπ(x0) = E
wk

{

gN (xN) +

N−1
∑

k=0

gk(xk, uk, wk)

}

.

This is achieved by finding a sequence of functions called the policy or control

law, π = {µ0, . . . , µN−1}, where each µk(xk) → uk when applied to the system
takes it from state xk to xk+1 and minimizes the total expected cost. In general,
for a given π, we use Jk(xk) to denote the cost-to-go from state xk at time k to
the final state at time N .

Dynamic Programming Algorithm: The optimal total cost is given by J0(x0) in
the last step of the following algorithm which proceeds backwards in time from
period N − 1 to period 0:

JN (xN) = gN (xN), (2)

Jk(xk) = min
uk

E
wk

{

gk(xk, uk, wk) + Jk+1(xk+1)
}

, k = 0, 1, . . . , N − 1 .(3)

2.1 Imperfect Information Problems

DP problems as described above have perfect information about the state of the
system, xk. Often, xk cannot be determined accurately; only an estimate,

zk = hk(xk, vk) , (4)

can be made, where hk is a sensor that maps xk and a random disturbance vk,
into an observation, zk. Such problems are solved by reformulating them into a
perfect state information problem by introducing an augmented state variable,
Ik which is a vector of the past observations and controls applied.

Ik+1 = (Ik, zk+1, uk), k = 0, 1, . . . , N − 2 ,

I0 = z0 . (5)

3 Response Formulation with imperfect State information

In this section will formulate the computer worm response problem as a DP
problem with imperfect state information. We assume that there could be only
one worm and that the worm is a random scanning worm. We also assume that
there is a sensor, such as an IDS albeit not very accurate. This DP formulation
tells us which control should be applied to minimize the costs incurred until the
worm detection process is complete.

3.1 Problem Statement

System Evolution: Consider a machine that provides some service. This machine
needs to be operated for N steps or N time units. This machine can be in one
of two states, P or P , corresponding to the machine being in proper(desired
state) or improper(infected by a worm) state respectively. During the course of
operating the machine, it goes from state P to P with a certain probability λ
and remains in state P with a probability λ = (1−λ). If the machine enters state
P , it remains there with probability 1. The infectious force λ, is an unknown
and depends on how much of the Internet is infected with the worm, if at all a
worm is present.

Sensor: The machine also has a sensor which inspects the machine for worm
infections. However, it cannot determine the exact state of the machine. Rather,
it can only determine the state of a machine with a certain probability. There
are two possible observations; denoted by G (good, probably not infected) and
B(bad, probably worm infected). Alternatively, instead of infections, we can
imagine that the sensor looks for infection attempts and anomalies. The outcome
would then indicate that there is probably a worm on the Internet(B) or not(G)
as opposed to whether the host machine is infected or not. For the time being, let
us assume that the inspections happen proactively at random intervals and also
when alerts are received from peers. We also assume that the sensor’s integrity
is not affected by the worm.

Controller: The machine also includes a controller that can continue(C) or
stop(S) operating the machine. The machine cannot change states by itself if it
is stopped. Thus the controller can stop the machine to prevent a worm infec-
tion and start it when it deems it safe to operate the machine. There are certain
costs involved with each of these actions under different conditions as described
in the next paragraph. The controller takes each action so that the overall cost
of operating the machine for N steps is minimized.

Costs: Continuing(C) to operate the machine when it is in state P costs noth-
ing. It is the nominal. We incur a cost of τ1 for each time step the machine is
stopped(S) irrespective of whether it is infected or not, and a cost τ2 for each
step an infected machine is operated. One might argue that τ1 and τ2 should be
the same because an infected machine is as bad as a stopped machine. If that
argument is true, the problem becomes trivial and it can be stated right away
that the most cost effective strategy is to operate the machine uninterrupted un-
til it is infected. On the contrary, we argue that operating an infected machine
costs more as it can infect other machines also. Hence, τ2 > τ1.

Alert Sharing Protocol: Since a computer worm is a distributed phenomenon,
inspection outcomes at one machine is a valid forecast of the outcome from a
later inspection at another identical machine. (This is an assumption we make to
develop the formulation and will be relaxed later on when we discuss a practical

z0

z1

u0, u1

Fig. 1. Alert Sharing Protocol. The laptop is our machine of interest. It uses informa-
tion, z0 and z1, from different chains to choose, actions, u0 and u1. It may or may not
have seen an anomaly while the machines shown with a blast have seen an anomaly.

application.) Hence, a collection of such machines with identical properties seek
to co-operate and share the inspection outcomes. Under this scheme, an inspec-
tion outcome at one machine is transmitted to another co-operating peer chosen
randomly. The controller on the randomly chosen machine uses such received
messages to select the optimal control to apply locally. This has the effect of a
machine randomly polling several neighbors to know the state of the environ-
ment. This gives the uninfected machines an opportunity to take actions that
prevent infection. Refer to Fig. 1.

Goal: Now, the problem is to determine the policy that minimizes the total
expected cost of operating the machine for N time periods in an environment
which could possibly be infected with a worm. DP problems are generally plagued
with state space explosion with increasing number of stages to the horizon.
However, since we solve the formulation offline, the value of N is not a big
constraint unless it is too big. Moreover, once we have the formulation we can
also solve it approximately or analytically for larger Ns. The rest of this section
develops the formulation for the current problem and provides a solution for
N = 3. Computer generated results for larger Ns are presented and discussed in
later sections.

3.2 Problem Formulation

The above description of the problem fits the general framework of Sect. 2.1,
“Problems with imperfect state information.” The state, control and observation
variables take values as follows:

xk ∈ {P, P }, uk ∈ {C, S }, zk ∈ {G, B} .

The machine by itself does not transit from one state to another. Left to itself,
it remains put. It is transferred from P to P only by a worm infection, a ran-
dom process – an already infected victim chooses this machine randomly. The
evolution of this system follows (1), and is shown in Fig. 2. The function fk of

PP

PP

C/λ

C/λ, S/1

C, S/1

fp

fp

fn

fn

State Transition Inspection

G

B

Fig. 2. State Transition probabilities for each action and observation probabilities for
each state.

(1) can be derived from Fig. 2 as follows:

P (xk+1 = P | xk = P, uk = C) = λ ,

P (xk+1 = P | xk = P, uk = C) = λ ,
...

P (xk+1 = P | xk = P , uk = S) = 1 .

(6)

The random disturbance, wk is provided by λ and is rolled in xk. λ is the infec-
tious force, a function of the number of the machines infected on the Internet.
Assuming the machine initially starts in state P , the probability distribution of
x0 is

P (x0 = P) = λ , P (x0 = P) = λ . (7)

(This assumption is for exposition only. In practice, we do not have to know the
initial state the machine starts in.) Recollect that the outcome of each inspection
of the machine is an imperfect observation of the state of the system. Thus,

P (zk = G | xk = P) = fn ,
P (zk = B | xk = P) = (1 − fn) ,
P (zk = G | xk = P) = (1 − fp) ,
P (zk = B | xk = P) = fp ,

(8)

where fp and fn are properties of the sensors denoting the false positive and false
negative (miss) rates.

Assuming the cost function remains the same regardless of time, the sub-
script k can be dropped from gk. We define the cost function as follows:

g(P, C) = 0, g(P , C) = τ2,
g(P, S) = g(P , S) = τ1,
g(xN) = 0.

(9)

g(xN) = 0 because uN is chosen with accurate knowledge of the environment,
(i.e) whether there is a worm or not. If there is a worm, uN = S, else uN = C.

Our problem now is to find functions µk(Ik) that minimize the total expected
cost

E
xk,zk

{

g(xN) +
N−1
∑

k=0

g
(

xk, µk(Ik)
)

}

.

We now apply the DP algorithm to the augmented system (refer Sect. 2.1). It
involves finding the minimum cost over the two possible actions, C and S, and
has the form:

Jk(Ik) = min
{C,S}

[

(

P (xk = P | Ik, C) · g(P, C) + P (xk = P | Ik, C) · g(P , C)
)

+ E
zk+1

{

Jk+1(Ik, C, zk+1) | Ik, C
}

,

(

P (xk = P | Ik, S) · g(P, S) + P (xk = P | Ik, S) · g(P , S)
)

+ E
zk+1

{

Jk+1(Ik, S, zk+1) | Ik, S
}

]

(10)

where k = 0, 1, . . .N − 1 and the terminal condition is JN (IN) = 0. Applying
the costs (9), and noticing that P (xk = P | Ik, S) + P (xk = P | Ik, S) is the sum
of probabilities of all elements in a set of exhaustive events, which is 1, we get

Jk(Ik) = min
{C,S}

[

τ2 · P (xk = P | Ik, C) + E
zk+1

{

Jk+1(Ik, C, zk+1) | Ik, C
}

,

τ1 + E
zk+1

{

Jk+1(Ik, S, zk+1) | Ik, S
}

]

. (11)

This is the required DP formulation of response to worms. Next, we demonstrate
a solution derivation to this formulation for N = 3.

3.3 Solution

Here we show a solution assuming that we expect to know with certainty about
the presence of a worm at the receipt of the third message, that is, N = 3. The
same procedure can be followed for larger Ns.

With that assumption, control u2 can be determined without ambiguity. If
the third message says there is a worm, we set u2 = S, else we set it to C. This
also means that the cost to go at that stage is

J2(I2) = 0 . (Terminal Condition)

Penultimate Stage: In this stage we determine the cost J1(I1). Applying the
terminal condition to the DP formulation (11), we get

J1(I1) = min
[

τ2 · P (x1 = P | I1, C) , τ1

]

. (12)

The probabilities P (x1 = P | I1, C) can be computed using Bayes’ rule and
eqs.(6–8), assuming the machine starts in state P . The cost for each of the eight
possible values of I1 = (z0, z1, u0) under each possible control, u1 ∈ {C, S} is
computed using (11). Then, the control with the smallest cost is chosen as the
optimal one to apply for each z1 observed. The cost-to-go, J1(I1), thus calculated
are used for the zeroth stage.

Stage 0: In this stage we determine the cost J0(I0). We use (11) and values of
J1(I1) calculated during the previous stage to compute this cost. As before this
cost is computed for each of the two possible values of I0 = (z0) = {G, B}, under
each possible control, u1 = {C, S}. Then, the control with the smallest cost is
chosen as the optimal one to apply for the observed state of the machine. Thus
we have,

J0(I0) = min

[

τ2 · P (x0 = P | I0, C) + E
z1

{

J1(I1) | I0, C
}

,

τ1 + E
z1

{

J1(I1) | I0, S
}

]

. (13)

The optimal cost for the entire operation is finally given by

J∗ = P (G)J0(G) + P (B)J0(B) .

We implemented a program that can solve the above formulation for various
values of λ, fp, and fn. A sample rule-set generated by that program is given in
table 1. Armed with this solution, we now show a practical application.

4 A Practical Application

4.1 Optimal Policy

Table 1 shows the optimal policies for a given set of operational parameters.
The table is read bottom up. At start, assuming the machine is in state P , the
optimal action is to continue, C. At next time step, stage 0, if the observation is
B, the optimal action is to stop, S. If z0 = B is followed by z1 = G, the optimal
action is to operate the machine, C. This is denoted by the second line in stage
1. This shows that an undesirable response is backed-off when the environment
is deemed not dangerous. In a practical application, such a table will be looked
up for a given λ and observation to choose the optimal action. Note that the
first, third, sixth and eighth states are unreachable because, for the given z0,
the control u0 mentioned in the vector is never applied if the system operates in
good faith.

4.2 Choosing λ

The value of λ varies with the extent of infection in the Internet. Given that
we are uncertain that there is a worm in the Internet, λ cannot be determined

Table 1. An optimal policy table

λ = 0.50, fp = 0.20, fn = 0.10
τ1 = 1, τ2 = 2

Ik Jk uk

Stage 1 (G, G, S) 0.031 C
(B, G, S) 0.720 C
(G, B, S) 0.720 C
(B, B, S) 1.000 S
(G, G, C) 0.270 C
(B,G, C) 1.000 S
(G, B, C) 1.000 S
(B, B,C) 1.000 S

Stage 0 (G) 0.922 C
(B) 1.936 S

Start 1.480 C

with any accuracy. Rather, only estimates can be made. Hence the distributed
Sequential Hypothesis Testing developed earlier is used to estimate λ [6].

Given a sequence of observations y = {y0, y1, . . . , yn}, made by a sequence of
other participating nodes, and two contradicting hypotheses that there is a worm
on the Internet(H1) and not(H0), the former is chosen when the likelihood ratio
L(y) of these hypotheses is greater than a certain threshold η [6]. This threshold η
is determined by the performance conditions required of the algorithm. Assuming
the observations are independent, L(y) and η are defined as follows:

L(y) =

n
∏

i=1

P (yi|H1)

P (yi|H0)
, η =

DD

DF
, (14)

where DD is the minimum desired detection rate and DF is the maximum toler-
able false positive rate of the distributed Sequential Hypothesis Testing(dSHT)
algorithm. We define each of the above probabilities as follows:

P (yk = B | H1) = [λ (1 − fn) + (1 − λ) fp] ,

P (yk = G | H1) = [(λ fn) + (1 − λ)(1 − fp)] ,

P (yk = B | H0) = fp , (15)

P (yk = G | H0) = (1 − fp) .

The first one in the above set is the probability of observing a B given hypothesis
H1 is true is the sum of probability of getting infected (λ) times the probability of
detection, and the probability of not getting infected(1−λ) times the probability
of false positives. The others in (15) are defined similarly.

For any given sequence of observations, we calculate L(y) for several values
of λ – say for ten different values in steps of 0.1 starting at 0.1. The lowest λ for
which the L(y) exceeds η will be taken as the current levels of infection and used
in determining the optimal response. The reason for choosing discrete values of
λ will be apparent shortly.

Actuator

System Measurement

Delay

Estimator

wk vk

uk xk
xk+1 = fk(xk, uk, wk) zk = hk(xk, uk−1, vk)

uk−1

µ
k

Pxk|Ik zk

Φk−1

Fig. 3. The controller split into an Estimator and an Actuator

Given (14) and (15), all observations over a sequence of nodes can be ex-
pressed as one number, the L(y). A node receiving this number from a neighbor,
can update it using its own observations and (14), to estimate λ.

In practice however, a table of rule-sets is calculated offline for several can-
didate values of λ. Then, the table corresponding to the λ as chosen above is
consulted to choose uk given Ik . Thus, each node only receives a likelihood ratio
of the worm’s presence from its peers. Each node also has to only remember its
own past observations and corresponding actions(Ik).

4.3 Larger Ns

As N increases, the dimensions of Ik increases which in turn increases the num-
ber of the calcuations involved exponentially. This problem can be overcome
by reformulating the problem to represent the state of the system probabisti-
cally based only on the last observation and control applied. In other words,
we reduce Ik to smaller dimensions containing only the Sufficient Statistics yet
summarizing all essential contents of Ik as far as control is concerned. Figure 3
explains this concept. The estimator Φk−1 estimates the probalistic state of the
system Pxk|Ik

based on Pxk−1|Ik−1
, zk and uk−1 . The actuator, µk, then selects

the optimal response based on Pxk|Ik
.

This re-formulation makes it easy to apply the response model for larger Ns.
We implement this model and evaluate it in a simulation. The evaluation and
the results are discussed in the next section.

5 Evaluation

The sufficient statistics formulation discussed in the previous section was imple-
mented and evaluated with a discrete event simulation. The simulation consisted
of 1000 participants with 10% of the machines being vulnerable. We set the num-
ber of stages to operate the machine, N = 4 to calculate the rule-sets. Note that
N = 4 is used only to calculate the rule-sets but the machines can be oper-
ated for any number of steps. N is essentially the number of past observations
and actions that each machine remembers. The local IDSes were set to have a

false positive and false negative rates of 0.1. These characteristics of the local
IDS is used to calculate the probability of infection, λ with a desired worm de-
tection rate of 0.9 and failure rate of 0.1. In all the following experiments, we
used a random scanning worm which scans for vulnerable machines once every
unit-time.

5.1 Experiments

Parameters of Evaluation: A set of experiments was designed to understand the
effect of various parameters on the effectiveness of the model in controlling the
spread of the worm. The only free variable we have here is the ratio τ2/τ1. There
is no one particular parameter that can measure or describe the effectiveness of
the response model. Rather, the effectiveness is described by a pair of parameters
– numbers of machines that are not infected and that provide service, i. e. in
state C.

Algorithm: The algorithm for the discrete-event simulation is as follows. At each
time cycle,

– all infected machines attempt one infection,
– all machines that had a alert to share, share the likelihood ratio that there is

a worm on the Internet with one another randomly chosen vulnerable node,
– and all vulnerable machines that received an alert earlier take a response

action based on the information received and the current local observations.

Results: In the first experiment, we want to make sure that we have a worm that
behaves as normal random scanning worm and validate the response model for
the degenerate cases. We verify this by providing no response. This response can
be achieved by setting the cost ratio to 1 – the cost of stopping the service is the
same as getting infected. In this scenario, we expect the response model not to
take any defensive measures against suspected infection attempts. As expected,
we see in Fig. 4, that none of the machines are stopped (S state). The worm
spreads as it would spread when there is no response in place. This validates our
worm and also our response model.

As another sanity check we set the machines to remember infection attempts
forever. Under this policy, once a machine enters the S state, it remains in that
state forever. We see that in this case (Fig. 5) the number of machines infected
are very low except when τ2/τ1 = 1.

In the next experiment, we try to understand the behavior of our response
model in various situations. Since the only free variable is the ratio τ2/τ1, we
repeat the previous experiment with various values for that ratio. The results
for this set of experiments is shown in Fig. 6. This graph shows behavior of our
response model in five different tests. There are two different curves for each test
indicating the number of vulnerable machines being infected and the number in
S state against time. We can see that when the ratio is 1, the number machines
that are in S state is 0. As the ratio τ2/τ1 rises, the response becomes stricter.

0

20

40

60

80

100

0 50 100 150 200

of

 h
os

ts

Time(no units)

Spread of a worm with no response - tau2 / tau1 = 1

Infected
Stopped

Fig. 4. No machines are stopped when the cost of being infected is the same as cost of
shutting down the machine.

We see that the number of machines in the stopped(S) state is higher when the
cost of being infected is higher. Also the worms spreads significantly slower than
without any response in place or with a lower τ2/τ1 ratio.

5.2 Effects of increasing N

The experiments shown earlier in this section were all conducted with N = 4. An
interesting question to ask here, “What happens if we increase the value of N?”.
Fig. 7 shows the performance of the system for various values of N while holding
the ratio of τ2/τ1 constant at 30. The set of sigmoidal curves trace the growth
of the worm, while the other set of curves trace the number of nodes that are
shut-down at any given instance of time. We notice that there is no appreciable
slowing of the worm with increased values of N – all the worm growth curves are
bunched up together. This is due to the small number of dimensions to the state,
xk ∈ {P, P}. A larger observation space does not contribute much to improve
the performance of the system.

6 Strengths, Limitations and Future Work

There are several topics in this paper yet to be addressed. There are issues to
be addressed from three different perspectives – one, problems that would arise
during the practical adoption of this model, two, in the evaluation, and three,
in the model itself.

This is a collaborative response model. As with any collaborative effort, there
is a host of issues such as privacy, confidentiality, non-repudiation, etc, that will
need to be addressed during practical adoption. Thankfully, these are issues for
which there are solutions available already through cryptography and Ipsec. In

0

20

40

60

80

100

0 50 100 150 200 250 300

of

 h
os

ts

Time(no units)

System behaviour for various ratios of tau2 / tau1

tau2 / tau1
(Infected) 1

3
5

30

50
(Stopped) 1

3
5

30
50

Fig. 5. Once entered the S state, a machine stays there.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

of

 h
os

ts

Time(no units)

System behaviour for various ratios of tau2 / tau1 costs

tau2 / tau1
(Infected) 1

3
5

30

50
(Stopped) 1

3
5

30
50

Fig. 6. Higher costs of being infection invoke stricter responses.

a co-operative or collaborative environment, we expect these issues to be either
already addressed. Still, co-operation amongst various entities on the Internet
such as amongst different corporate networks pose more legal and economic
problems than technical. In such cases where sharing anomaly information with
networks outside of the corporation is not feasible, applying this response model
within the corporate network itself can provide valuable protection.

Another major adoption problem is the assignment of realistic values to the
costs τ1 and τ2. However, there is prior work that attempts to assign costs to
various responses that can used [3, 11].

Evaluating worm defenses is a difficult problem [7]. At one extreme we have
realistic evaluation possible only on the Internet but is infeasible. At the other
extreme, we have mathematical models only. In between these two extremes, we

0

20

40

60

80

100

1 10 100 1000

of

 h
os

ts

Time(no units, Log scale)

System behaviour for various N

Various N’s
(Infected) 3

4
5
6
7
8
9

10
(Stopped) 3

4
5
6
7
8
9

10

Fig. 7. Larger Ns do not contribute much to improve performance.

have simulations such as the one used in this paper and emulation as used in a
study for worm detection [6].

With the availability of data about Internet traffic during worm outbreaks,
it may be possible to evaluate the defense model on a network testbed such as
Emulab [19] by replaying the traffic for a scaled down version of the Internet.
Such an experiment would need the available data to be carefully replayed with
tools such as TCP Replay,TCP Opera, etc. This is a task that can explored
in the future to evaluate worm defenses. Scaling down the Internet is another
problem in itself [18].

An issue to be studied is the behaviour of this model in face of false alarms and
isolated intrusions. For eg., consider one and only participant raising an alarm
for an isolated event and several other participants choosing the S control. We
would like to know when these participants would apply the C control. Trivially,
we can set a time-out for the defense to be turned-off. However, the time-out
should be chosen carefully and probably be dynamic to guard against exposing
oneself to slow worm attacks.

When there is a cost to sampling packets, this model can be extended to
optimally stop the sampling process and declare either that there is a worm
or that there is no worm. Interestingly, this extension would lead us to the
distributed Sequential Hypothesis Testing that we discussed in our previous
paper [6]. Actions such as C and S if applied frequently could lead to a very
unstable system. We need to evaluate this factor in light of ambient anomaly
levels in different environments. This is a problem with the model itself. However,
this can be alleviated during adoption in various ways. For example, the set of
response options can be made larger with options to have several levels of reduced
functionality instead completely shutting down the service.

When all participants behave identically each participant knows exactly how
the others will behave. In such a scenario, each one can make a better decision

about the optimal control to be applied taking into account the others’ behavior.
For example, if participant A determines that the optimal policy to be applied
is S, it now knows that all other participants will also apply the same control.
Then, there is no need for A to apply S. Instead A could apply C as there is no
opportunity for a worm to spread when all others participants are stopped. The
problem now enters the realm of game theory.

6.1 Strength of this technique

One question that needs to be answered for any defensive technique is this: “If
the attacker knows about the approach being used for defense, will (s)he be able
to write a new generation of worms that can overcome the defense?”

There are two different goals that an attacker with knowledge about our
system can try to achieve. One, try to circumvent the defense and spread the
worm. Two, trick the defense into over-reacting.

The second goal cannot be achieved because of the dynamic and self-regulating
nature of our approach which is based on the current environmental conditions
as depicted in Fig. 3. The attacker may force our system to react to an initial
stimulus which is not a true worm but once the stimulus has reduced, the defence
pulls back too.

To achieve the first goal, the worm needs to either spread very slowly such
that information about anomalous incidents are forgotten by the participants, or
attack pre-selected victims that may not be alerted by its peers. However, since
the alerts are shared with randomly chosen peers while the worm is spreading,
there can be no effective pre-selection that can overcome the defense. Whereas
a slow spreading worm might be successful to a certain extent.

Nevertheless, we believe that a slow spreading worm can be identified by
other means such as manual trouble-shooting prompted by the ill-effects of the
worm; unless the worm installs a time-bomb that is set to trigger after the worm
has spread to most vulnerable nodes. We also believe that such slow worms will
be circumvented by routine maintenance patches – most worms we know so far
have exploited only known, but unpatched, vunlerabilities.

Moreover, there is a heightened awarness of security issues amongst the in-
formation technology community than ever before. Laws related to data security
are being tightened and enforced more vigorosly than in the past. Patch gener-
ation and deployment techniques have advanced tremendously recently. In such
an environment, we expect that steps to patch or workaround known vulnera-
bilities will be taken with more urgency than ever before effectively thwarting
extremely slow worms discussed in the preceeding paragraphs.

Thus, the worm has a very narrow window between spreading too slow and
spreading too fast – the window where our response mechanism works to thwart
the worm. In conclusion, knowledge of our approach does not provide much value
to the attacker or new generation of worms.

References

1. Kostas G. Anagnostakis et al. A cooperative immunization system for an untrust-
ing internet. In Proc. of the 11th IEEE ICON, pages 403–408, October 2003.

2. Kostas G. Anagnostakis, Michael B. Greenwald, Sotiris Ioannidis, and Angelos D.
Keromytis. Robust reactions to potential day-zero worms through cooperation and
validation. In Proc. of the 9th Information Security Conference (ISC)., 2006.

3. Ivan Balepin, Sergei Maltsev, Jeff Rowe, and Karl Levitt. Using specification-based
intrusion detection for automated response. In Proc. of RAID, Pittsburg, 2003.

4. Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 1.
Athena Scientific, third edition, 2005.

5. Min Cai, Kai Hwang, Yu-Kwong Kwok, Shanshan Song, and Yu Chen. Collabo-
rative internet worm containment. IEEE Security and Privacy, 4(3):34–43, May
2005.

6. S. G. Cheetancheri et al. A distributed host-based worm detection system. In
Proc. of SIGCOMM LSAD, pages 107–113. ACM Press, 2006.

7. S. G. Cheetancheri et al. Towards a framework for worm defense evaluation. In
Proc. of the IPCCC Malware Workshop on Swarm Intelligence, Phoenix, Az, April
2006.

8. Manuel Costa et al. Vigilante: end-to-end containment of internet worms. In Proc.
of the SOSP, pages 133–147. ACM Press, 2005.

9. Denver Dash et al. When gossip is good: Distributed probabilistic inference for
detection of slow network intrusions. In Proc. of the AAAI, 2006.

10. Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm
signature detection. In Proc. of the USENIX Security Symposium, 2004.

11. Wenke Lee, Wei Fan, Matthew Miller, Salvatore J. Stolfo, and Erez Zadok. Towards
cost-sensitive modeling for intrusion detection and response. In J. of Computer
Security, volume 10, 2002. Numbers 1,2.

12. David J. Malan and Michael D. Smith. Host-based detection of worms through
peer-to-peer cooperation. In Proc. of the WORM, pages 72–80. ACM Press, 2005.

13. James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically gener-
ating signatures for polymorphic worms. In Proc. of the IEEE Symposium on
Security and Privacy, pages 226–241. IEEE, 2005.

14. Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
worm fingerprinting. In Proc. of the Sixth OSDI, San Francisco, CA, December
2004.

15. S.Sidiroglou and A D Keromytis. Countering network worms through automatic
patch generation. IEEE Security and Privacy, 3(6):41 – 49, November 2005.

16. Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous payload-based worm
detection and signature generation. In Proc. of the RAID. ACM Press, 2005.

17. Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network intrusion
detection. In Proc. of the RAID. ACM Press, Sept 2004.

18. Nicholas Weaver, Ihab Hamadeh, George Kesidis, and Vern Paxson. Preliminary
results using scale-down to explore worm dynamics. In Proc. of the WORM, pages
65–72. ACM Press, 2004.

19. Brian White et al. An integrated experimental environment for distributed systems
and networks. In OSDI, pages 255–270, Boston, MA, December 2002. USENIX.

20. Cliff Changchun Zou, Lixin Gao, Weibo Gong, and Don Towsley. Monitoring and
early warning for internet worms. In Proc. of the CCS, pages 190–199. ACM Press,
2003.

