A Socially-Aware Operating System for
Trustworthy Computing

Daniela Oliveira, Dhiraj Murthy
Bowdoin College

{doliveir, dmurthy}@bowdoin.edu

Abstract—Traditional security models based on distinguishing
trusted from untrusted pieces of data and program behavior
continue to face difficulties keeping up with attackers levels of
sophistication and ingenuity. In this position paper, we present
a novel computing paradigm for trustworthy computing whose
application, operating system (OS) and architecture can leverage
social trust to enhance the robustness and diversity of security
mechanisms of any Internet-based computing environment. Qur
model would allow online social network (OSN) users to assign
trust values to her friends in a privacy-preserving fashion and
maintain a trust repository with trust values for objects like
URLSs, email addresses, IP addresses and other pieces of data
that can be consumed by a socially-aware OS, allowing for fine-
grained trust decisions that take into account user context and
add diversity to host behavior. Our model also automatically
infer trust values for people a user is not directly connected. In
this paper we sketch the design of a socially-aware operating
system kernel and identify several research challenges for this
new paradigm.

I. INTRODUCTION

In the last few years we have observed two key trends. First
is the rise in popularity of OSNs [1], which allow human social
relationships to be captured digitally and utilized by many
different online applications. In the virtual world users interact
with people and entities using almost the same protocols from
real life, which are based on trust and reputation. On-line users
establish virtual networks of friends, communicate with them
and share media, photos, status and messages. OSNs are based
on a capital that has not yet been fully leveraged in computer
security: social trust.

The second trend is the increase in complexity of malware.
The current generation of attackers is extremely creative,
financially and politically motivated, and structured much like
any well-operated criminal organization. Traditional security
models and solutions have difficulty keeping up with these
attackers’ level of innovation and ingenuity.

Given these two trends (Figure 1), we have been developing
a novel trustworthy computing paradigm that adds the role
of the human user and is based on social trust. We believe
that incorporating the characteristics of human users can make
a significant improvement in cyber security. One particular
challenge is that the widespread lack of user knowledge about
the technical issues causes them to make poor decisions, for
which software solutions are not very helpful. We believe that
social informatics of this sort can bridge this gap by providing
good collaborative models that include social trust that allow

Henric Johnson
Blekinge Institute of Technology

henric.johnson@bth.se

S. Felix Wu, Roozbeh Nia, Jeff Rowe
University of California Davis

{wu, rowe, nia}@cs.ucdavis.edu

Fig. 1. Two trends: popularity of OSNs and complexity of malware landscape.

users to defend themselves more effectively against malware
attacks. To this end, we believe that the OS should not merely
manage processes, memory, and I/O devices syntactically.
Applications and the OS should become socially-aware and
leverage social trust to enhance the robustness and diversity
of their security mechanisms. Our model would allow OSN
users to assign trust values to other users and pieces of data
(software programs, URLs, files, e-mail addresses) that can be
consumed by a socially-aware OS and architecture. This would
allow fine-grained trust decisions about data that take into
account user context, thus adding sophistication and diversity
to a host’s behavior.

Nearly all current security models work by distinguishing
trusted from untrusted pieces of data and program behaviors.
These models (which include signature-based, behavior-based
and information flow tracing-based solutions) are automated,
rigid, and threat-specific. Thereby, they are not keeping up
with the new generation of malware and attackers. Moreover,
with the shift to a Web-based computing paradigm [2], the
task of distinguishing trusted from untrusted information au-
tomatically (usually by assuming network data is untrusted)
becomes more complex.

Our model leverages social trust to distinguish a continuum
of trusted/untrusted values, thus adding flexibility to security
solutions. This addition is key to thwarting attacker strategies
by making it harder to predict a host behavior in the face of a
particular threat. Our model can also be used to (i) implement
stronger security policies that take into account user context
and a continuum of trust values for heterogeneous objects, (ii)

better detect and filter spam e-mails, scams and phishing by
employing both the social path between sender and receiver
and the implicit reputation of a sender to determine trustwor-
thiness for a message, and (iii) streamline the decision-making
process of installing a new software.

II. LIMITATIONS OF TRADITIONAL PREVENTION AND
DETECTION MODELS

Current malware detection and prevention solutions usu-
ally work by distinguishing malicious and benign pieces of
data, program behaviors, and information-flow traces. These
approaches are much automated, target a particular type of
threat, and lack diversity. In this section we identify the three
main categories of such solutions and describe why they are
not keeping up with the current generation of malware and
attackers.

A. Signature-based solutions

This type of approach identifies malware and attacks by
using patterns that are characteristic of a particular exploit
or family of malware [3]. Although still the predominant
approach to identify malware, it can be defeated by code
obfuscation, polymorphism (ciphers malware code to avoid
detection) and metamorphism (changes malware body without
changing its functionality). Further it cannot prevent zero-day
attacks, which do not have a signature previously generated.

B. Behavior-based solutions

These solutions try to address the shortcomings of signature-
based approaches by focusing on the dynamic behavior of a
program [4]—[7]. They monitor system activity and classify it
as either normal (benign) or anomalous (malicious) by using
either precise specifications of malware behavior or heuristics.
The idea is that program behavior will remain the same in
spite of its polymorphic variants [4]. In order to determine
what is anomalous or benign, the system must be trained
to recognize normal system activity. This is usually accom-
plished with artificial intelligence techniques. Although this
approach can deal better with malware variants compared to
signature-based approaches, it is susceptible to false positives.
Moreover, recent research [8] highlights other challenges for
these approaches, such as lack of training data and enormous
variability in input data, and suggests that such machine
learning techniques are not appropriate for intrusion detection
systems (IDSs).

Research efforts have also focused on describing malware
in terms of violations to an information-flow policy, which
defines how information moves in a system [9]-[12]. The main
idea of dynamic information flow tracking (DIFT) systems is
to tag data from a particular source (e.g, network) with some
extra information and track how this data flows throughout the
system. This extra information can be just a bit or a pointer
to a memory area containing more complex data [13]. Such
information flow tracing has been widely used in security
solutions, especially to detect control-flow hijacking attacks
based on memory corruption. In this type of application when

tainted bytes (coming from network) are used in control-flow
instructions (such as jump) or overwrite control data (such as
PC register), the system interprets it as a violation. Information
flow tracing carries considerable performance overhead, which
is a problem addressed by recent work [14]-[16]. Another
challenge which has started to be addressed is stability [13],
which prevents these systems from tracking all necessary de-
pendencies [9]. Moreover, current DIFT-based IDSes usually
support only two levels of trustiness (trusted or untrusted).
Having only two levels of trustiness fails to encompass other
nuances in the concept of trust, given the current paradigm
shift in which computer users meet most of their computing
needs through a web browser.

C. What is missing?

Although the categories of solutions described above are
indispensible and proved very successful for particular types
of threats, their computing paradigm is not strong enough to
defeat the generation of malware and attackers we are currently
facing. The software diversity tactics employed by malware
writers require new detection techniques employing a novel
factor that could introduce unpredictability on how a piece
of malicious code will behave on a certain host. Diversity
is key as it increases the cost for attackers and decreases
their chances of success. We need a novel way to distinguish
trusted/untrusted data, program behavior, URLs, files and also
recognize that we are dealing with a continuum of values
between totally trusted and totally untrusted. We believe that
human collaboration and their intrinsically unique definition of
trust is key to move towards a new socially-aware paradigm
for trustworthy computing.

ITIT. THE CHALLENGES OF COMPUTING WITH SOCIAL
TRUST

Trust is a cognitive process that discriminates people, ob-
jects and entities that are trustworthy, distrusted or unknown
[17]. According to Georg Simmel, people choose whom they
will trust in which respects and under which circumstances
based on good reasons. He also states that the degree of
cognitive familiarity with the object of trust is a continuum
with the extremes being total knowledge and total ignorance.
In Sociology, trust is viewed as an essential commodity, a
functional prerequisite for society, whose alternatives are chaos
and fear [18]. It is so indispensable that allows us to accept its
unavoidable element of risk and uncertainty. Social relations
are based on trusted relationships and you trust a person (or an
entity) because “knowing what you know of hers disposition,
available options and their consequences, you expect that she
will choose to take an honest course of action” [19]. Trust
is based on reputation, which is a capital asset in which
people may invest greatly and which is acquired slowly but
can be destroyed very quickly [19]. As described by Marsh
and Biggs [20] the acceptance of using social trust as a
tool for making decisions about trustworthiness implies risk
as trust can sometimes get misplaced. In our case we see
the employment of trust as a bonus as our socially-aware
system will not be less secure than it would be if we have

not employed trust. Without our socially-aware paradigm the
system behaves in its standard fashion: the OS does not enforce
any restrictions on activities originated from networked data.
On the other hand, DIFT-based systems enforce, in general,
restrictive policies: all networked data is suspicious and their
activities should be restricted. We propose a model to represent
a continuum between totally trusted and totally unstrusted by
leveraging social trust.

Computing with social trust is a relatively new research area
but it has been receiving an increasingly amount of attention
from the research community, which seeks to develop models
and systems capable of defining, modeling and employing
social trust in applications [21]-[26].

Golbeck [24] studied the problem of utilizing the structure
of an OSN and the trust relationships within to infer how much
two people that are not directly connected trust one another
and to integrate it in applications. She considers only networks
such as LinkedIn where individuals that are directly connected
explicitly assign trust to one another in a binary scale and
infers trust relationships from individuals that are not directed
connected. Her model does not consider a trust repository and
the inference of trust among its objects.

Richardson et al. [27], introduce a mathematical and a
probabilistic model to infer trust and belief in statements made
by users in the Web. Their model is general in the sense
that they do not specifically consider a social network, but
a system where users explicitly assign trust values to other
users and statements these users make in this system. They
run their experiments in Epinions, a user-oriented product
review website where users specifically specify which users
and statements they trust and use this model to order the
product reviews seen by each person. Guha et al. [28] also
used Epinion to study whether distrust can be propagated
and inferred like trust by converting ratings to binary values
representing trust and distrust.

IV. THE SOCIALLY-AWARE FRAMEWORK
A. The OS Kernel

We envision an architecture with the following components
(Figure 2): (i) an extended Facebook-like OSN infrastructure
that maintains not only user profiles and their social networks,
but also an optional trust repository per user, (ii) users that
can assign trust values to their friends (or have these values
inferred through machine learning techniques [29], [30]) in a
privacy-preserving fashion and feed their trust repository with
trust values for objects such as URLs, IP addresses, files, e-
mail addresses, and (iii) a socially-aware OS capable of re-
trieving and managing trust repositories locally and exporting
a trust interface to user applications.

These applications retrieve information (through the OS
trust interface) from a user trust repository to make better
decisions about the security or trust level of the objects
they access. The socially-aware OS also leverages the trust
repository data to employ strong and fine-grained security
policies about processes, files, modules in the systems and
to propagate trust values in collaboration with the architecture
layer through a virtual machine (VM).

B. Usage Model

The main purpose of a traditional OS kernel is to man-
age/allocate various resources (such as memory, files and I/O
devices) and to provide abstractions to heterogeneous lower-
level resources (e.g., a v-node) for all the active processes. The
key difference between our socially-aware OS and a traditional
one is that, in order to fully support this novel computing
paradigm, we treat social informatics as a type of first-class
resource. Furthermore, each of the traditional resources, such
as file system, processes and memory will be augmented with
a trust value. As an example, when a user process is accessing
a particular file, the social context may be a trust value taken
from [0,1].

In this model, a user first logs into the OSN that maintains
her trust repository and through its extended interface synchro-
nizes her trust repository with the OS. This synchronization is
part of the OS trust interface and is implemented as a system
call. We also enhance the OS with socially-aware versions of
selected syscalls. The trust repository contains trust values for
objects of several types and the OS will use this information to
make the best possible decisions regarding execution of code
or access to system resources. Moreover, user applications can
leverage the OS trust interface to get information from a user
repository to enforce their own security policies. For example,
when a user attempts to save a file into the file system coming
from a URL, the browser can use the OS trust interface to
propagate trust values for this file. The trust-aware version of
the system call sys_write can take a URL as a parameter and
if there a trust value assigned for that particular URL root
domain in the OS cached trust repository, the file inode is
updated with this trust value. If the file being saved cannot
be associated with any object in the user trust repository, it is
tagged as untrusted (trust value 0) in the system.

A user can also update her trust repository with trust values
for IP addresses. For example, user Alice can trust network
packets arriving from machines whose IP addresses belong to
her university. Thus, when a network packet arrives into the
system, the OS checks if there is a trust value assigned for
the source IP address. If there is, the packet bytes can inherit
at the architecture level (VM) the trust level of the source IP
address. An email application and browser can use the OS
trust interface in a similar way to better filter spam e-mail and
URL content, respectively. For example, an e-mail message
will inherit the trust level of the sender. The e-mail application
retrieves the trust level of the sender and can decide how to
treat the message.

C. Assumptions

We have the concept of establishment time: immediately
after the boot sequence all files, OS code, processes, memory
areas in the host are considered trustworthy. In this case
there are no trust information tagged to the objects in the
system and the absence of tagging information means that
the object is local and trusted. After the establishment time,
every byte arriving in the system from the Ethernet device and
USB devices is considered as untrusted unless there is a trust
value specified for the source IP address. We have adopted

OSN Server

TRUser 1 TRUser N
TR User 2 TR Alice

facebook

Trust-aware syscall interface
- ‘ Processes ‘ ‘ TA Alice ‘
& TR: Trust Repository | ot ‘ ‘ e ‘ S
{ ' & Coliaboration Architecture
‘ Network H Memory | , ‘ CPU ‘
[\ [

Fig. 2. The Socially-Aware Architecture.

this definition of trust because the network and flash drives
are the main attack vectors for several types of malware and
exploits. We recognize that this assumption does not come
without limitations. For instance, a host could be victim of an
internal attack, some piece of hardware could be malicious or
the OS could be already compromised at boot time. However
we still believe that such assumption could provide coverage
for a great number of attacks. We plan to adopt the same DIFT
system we introduced in [31].

D. Modeling and Inferring Trust for Users and Objects

As we have discussed before, our extension to a Facebook-
like OSN infrastructure allows a user to maintain a trust
repository associated with her account, where the user can
associate trust values to all her friends and objects like URLs,
IP addresses, software, patches, and games. Friends of a user
are represented by e-mail addresses and these addresses are
inserted automatically in the trust repository if configured as
a sharable piece of information in the friend profile. If the
user does not specify a trust value for a friend, we consider
the friend trusted (trust value 1). Other objects like URLs and
IP addresses must be manually included by the user in the
trust repository. If no trust value is included for these values,
we consider them as trusted. A software, patch, game or any
other object can be represented by a URL where they can be
downloaded and an attribute (software, patch, or file).

Suppose a user logged into an OS wants to leverage the
socially-aware paradigm for trustworthy computing. She will
open a browser, log into her Facebook-like OSN and invoke
the synchronization operation. This operation will invoke a
new system call into the OS (social_synch) which initiates a
secure SSL/TCP connection with the OSN to retrieve a user
merged trust repository. In this model, trust relationships will
be shared in a privacy-preserving fashion. For example, a user
can only leverage a friend’s e-mail address in a trust repository
if the friend has explicitly specified that such information is
sharable in his/her OSN profile. If a piece of information is
not visible, it will not be exported.

The user merged trust repository contains the trust values
assigned by this user (or inferred through machine learning
[29], [30])and also the inferred trust values for friends of
friends up to a distance k from the original user and also
inferred trust values for objects in these users trust repositories.
For example if £ = 2, we will be working on the graph
composed by the user, her friends and friends of her friends.
It is important to point out that any user can define the level
of sharing of her trust repository (no one, friends, friends of
friends, everybody). As a result there is no privacy violation as
the user defines what can be shared and how it will be shared.
By default, all objects in a user trust repository are private and
cannot be shared.

To model and infer trust, we adapt the trust model by
Richardson et al. [27] due to the simplicity of its assumptions
and its generality. It is a mathematical and probabilistic model
to infer trust in users and belief in statements made by them
in the Web. Their model is general in the sense that they
do not specifically consider a social network, but a system
where users explicitly assign trust values to other users and
statements these users make in this system. We start with initial
assigned trust values ¢;;, where user 4 is friends with user j.
Then we infer how much a user trusts another user in the
network even if she is not directly connected to them (friend
relationship).

Our adaptation of the model is as follows. If user ¢ is friends
with user 7, this means that 7 trusts j by an amount specified
by t;;. Also, if user j is friends with user k, then j has
some trust ¢;, in user k and, then user ¢ should have some
trust t;; in user k, which is a function of ¢;; and ¢;,. We
assume a network of N users. The extended Facebook-like
OSN infrastructure starts with a Nx/N matrix T, called the
personal trust values matrix, where ¢;; contains the trust user
1 has on user j he/she befriends. These values are explicitly
assigned by the users. In this matrix ¢;; is not necessarily equal
to t;;, and ¢; represents the row vector of user 7 trust in other
users. Thus, in this matrix, t;; represents how much user
trusts user k£ and t;; represents how much user £ trusts user
j,and (t;.t;) represents the amount user ¢ trusts user j via

k. The amount that user ¢ trusts user j via any single other
node is thus given by >, (tix.tx;). Then we compute for any
user ¢ her trust on any user j in the network.

The trust between any two users is given by a trust matrix
T (merged trusts matrix) that represents the merged trusts
on the same graph where there is a path between user 7 and
7 if ¢ is friends with j. We infer trust values between any
user ¢ and j, independently if 7 is friends with j using an
aggregation function which concatenates trusts along every
path between them by applying the following algorithm [27]:

MHTO =1
Q7M™ =1, TCD
Repeat (2) until (T(") _ T(nfl)).

Here, T is the value of 7 in iteration . Also, we borrow
the matrix multiplication definition from [27] that states that
C = AB is such that:

Cij = >, (Air.Bij)

As a result we can perform a per-user inference of trust
values for e-mail addresses (associated with users in the OSN)
to be added to the user trust repository. In other words, for
each user 7, the row vector t; contains trust values for all
other users in a maximum distance k& from user 7. So for every
user 7 we add email addresses associated with ¢;; in the user
trust repository if (i) this information can be shared per user
J privacy settings and (ii) ¢;; > 0.

For the other objects (URL, files, IP addresses etc) we
adapt the concept of belief from Richardson et al. [27]: any
user may assert her personal belief in an object inserted to
her trust repository. This personal belief is represented by a
value taken from [0,1] (if the user does not assign a value the
object is considered trusted, with trust value 1). The higher
the value the more trusted is the object. Let b; represent user
s personal trust value for an object in her trust repository.
We refer to the collection of personal beliefs in a particular
object as the column vector b. User 7 can also specify which
trusted objects in her trust repository are allowed to be
shared. Our next step is to infer how much a user believes
in any sharable object in the network. The user trust values
(T) will allow us to compute for any user ¢, her belief in any
sharable object using a structure called merged beliefs (b).
The merged beliefs structure can be calculated as follows:

)b =0p
@) 6™ =T . 6" or (b)" = 3, (tig-(by)" ")
Repeat (2) until b™ = p("=1)

Here, p® represents the value of b in iteration ¢. The result
of these computations is a merged trust repository with objects

and their infered trust values that is sent to the OS via a secure
SSL channel.

E. Benefits

Our socially-aware computing paradigm can greatly stream-
line the design of security policies. Incorporating the role of
human users can add diversity to host behavior, decrease the
success rate of attacks and thus make a significant impact from
the cyber security perspective. Processes, module functions,
instructions at the architecture level below a certain threshold
of trust level can be prevented from accessing (reading or/and
writing or/and executing) a certain range of memory locations,
I/O devices or any type of system resource. Raw bytes that
fall below a certain threshold of trust value can be prevented
from being written into certain memory areas or files.

Anti-SPAM/scam techniques can be improved by associat-
ing an e-mail message with a sender trust value. This model
also streamlines the decision-making process of installing a
new software, downloading a file, or visiting a particular URL
if those objects are associated with trust values in a trust
repository. Moreover, this model can be extended by allowing
the owner of a trust repository to assign certain objects with
privacy levels. For example, a browser could use the OS trust
interface to allow a user to mark certain information to be
filled in a web page as sensitive (e.g. a password or credit
card number). This allows the OS to restrict read access to
memory locations storing that information, thereby preventing
malware from leaking it.

F. Threats to Our Model

What if the OSN infrastructure or the OS kernel is compro-
mised by an attacker that can tamper with the integrity of a
trust repository? In this situation an attacker could add mali-
cious objects into a trust repository with a high level of trust.
For example, an attacker could assign spamguy @gmail.com or
www.maliciousurl.com a high trust value and decrease the trust
value of www.amazon.com or any trusted file, IP address or e-
mail contact. We argue that for the case of increasing the trust
value of malicious objects the system would operate as if a
sociallly-aware interface had never existed. Current OSes offer
no or little distinction (in terms of trust levels) among objects
they access such as files, URLs, email contacts or online
friends. For example, if spamguy @gmail.com has a high trust
value, all the e-mails from this user would not be flagged as
suspicious and all the files downloaded from this e-mail and
embedded URLs would have the default trust values in the
system. This is exactly what would happen for a system that
does not employ our socially-aware model, i.e., that does not
make distinctions between trusted and untrusted values. In our
model objects and subjects do not have increased privileges in
the system because of high trust values. It is actually the other
way around: the higher trust values, the closer they are to the
default privileges a local file/subject has in the system. These
values are never more than the default access control policies
provided by the OS, based on the privileges of a user (root
or regular user). Our goal here is, instead of considering all
objects as trusted or untrusted, provide a continuum of trust

values that allows for stronger but flexible security policies
based on user context.

The case where an attacker decreases the values of trusted
objects in the system can be described as a form of denial of
service attack. For this case, we assume that the OSN provider
is fully trusted and the OS kernel has its integrity preserved.

V. RESEARCH CHALLENGES
A. Management and Reliability of Social Data and Trust

Our framework emphasizes the importance of adding social
information to systems components but social data is heteroge-
nous and highly variable [32] in terms of reliability, for several
reasons. First, applications on the Internet from which social
data can be derived from have no standardized API. Second,
user profiles are not convergent: different sites have unique
login credentials. Third, the forms and levels of trust on OSNs
vary highly. For example, on Facebook, user trust relationships
are mutual. On Twitter, relationships are often unidirectional
as follower users choose to follow other users (followed) but
the followed user does not have to follow the follower. Given
these realities, several research challenges are apparent: (i)
extracting reliable information from OSN users, (ii) constraints
posed by the ethical issues of mining OSN data, (iii) different
challenges for different OSNs, (iv) unpredictability of users
in their assignment of trust values, (v) OSNs vary in their
conduciveness to assigning trust value to particular objects,
and (vi) data in some OSNs are private and in others it is
public.

B. The Socially-Aware OS Kernel

Can or should the OS kernel manage more than one
trust repository concurrently? The trust repositories may be
associated with a particular user in the system and all the
processes, files, and objects she owns. However, an important
research challenge is how to mirror different trust repositories
in a DIFT system at the architecture layer. Other issues are
performance, usability, Sybil attacks, and identity management
and naming [33].

C. Confidentiality and Security

The trend of online social networking has raised some
concerns about new unknown vulnerabilities. For instance,
personal information being leaked out implies a violation
of user privacy. A research challenge is deriving a proba-
ble/specified intention of privacy settings and then determining
that appropriate amount/type of social informatics that should
be supported on behalf of the user. Social informatics and
trust enables a community to share their experience/knowledge
to solve large-scale distribution problems collaboratively. For
example, user Alice can decide about visiting a URL or in-
stalling a new software based on the experience her community
(the system administrator at her company or a knowledgeable
friend) had with those objects. What should be the right pro-
cess for the social community to form a converging decision?
How should we address potential attacks to this collaborative
model? Regarding privacy and anonymity, how can users
safely export trust information to their social contacts?

VI. CONCLUSION

This position paper proposes a novel trustworthy computing
paradigm that employs social informatics as a first class re-
source to manage and leverage social trust to improve security
in computing systems. To enhance security and increase cost
for attackers this paradigm uniquely includes the role of human
users. We leverage social trust because it distinguishes a
continuum between totally untrusted and totally trusted values.
This continuum can be defined within a socially-aware OS
kernel, virtual machine and user applications so that stronger
security policies can be deployed.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers for their
comments and Allen Tucker for his suggestions on early drafts
of this paper.

REFERENCES

[1] E. Oswald, “Facebook more popular than google http://technologizer.
com/2010/09/10/facebook-more- popular-than-google/.”

[2] H.J. Wang, A. Moshchuk, and A. Bush, “Convergence of desktop and
web applications on a multi-service os,” USENIX Workshop on Hot
Topics in Security, August 2009.

[3] P. Szor, The Art of Computer Virus Research and Defense. 2005.

[4] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christoderescu, and E. Kirda,
“Accessminer: Using system-centric models for malware protection,”
ACM CCS, 2010.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff., “A sense
of self for unix processes,” I[EEE Symposium on S&P, pp. 120-128,
1996.

[6] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” in Proceedings of the 2005 IEEE
Symposium on Security and Privacy (Oakland 2005), (Oakland, CA,
USA), 2005.

[71 M. Fredrikson, M. Christodorescu, S. Jha, R. Sailer, and X. Yan,
“Synthesizing near-optimal malware specifications from suspicious be-
haviors,” IEEE Symposium on S&P, 2010.

[8] R.Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” IEEE S&P, May 2010.

[91 G. E. Suh, J. Lee, and S. Devadas, “Secure Program Execution via

Dynamic Information Flow Tracking,” in Proceedings of ASPLOS-XI,

Oct. 2004.

J. R. Crandall and F. T. Chong, “Minos: Control Data Attack Prevention

Orthogonal to Memory Model,” MICRO, pp. 221-232, December 2004.

J. Newsome and D. Song, “Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity

software,” in NDSS, Feb. 2005.

G. PortoKalidis, A. Slowinska, and H. Bos, “Argos: an Emulator for

Fingerprinting Zero-Day Attacks,” EuroSys, April 2006.

M. 1. Al-Saleh and J. R. Crandall, “On information flow for intrusion de-

tection: What if accurate full-system dynamic information flow tracking

was possible?,” New Security Paradigms Workshop, 2010.

A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand, “Practical

taint-based protection using demand emulation,” EuroSys, 2006.

F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu, “LIFT:

A Low-Overhead Practical Information Flow Tracking System for

Detecting Security Attacks,” MICRO-39, pp. 135-148, December 2006.

H. Chen, X. Wu, L. Yuan, B. Zang, P. chung Yew, and F. T. Chong,

“From Speculation to Security: Practical and Efficient Information Flow

Tracking Using Speculative Hardware,” ISCA, June 2008.

D. Lewis and A. Weigert, “Trust as a social reality,” Social Forces,

vol. 63, no. 4, pp. 967-985, 1985.

N. Luhmann, Trust and Power. Wiley, 1979.

D. Gambetta, Trust: Making and Breaking Cooperative Relations. Black-

well, 1990.

S. Marsh and P. Briggs, “Examing trust, forgiveness and regret and

computational concepts,” in Computing with Social Trust, pp. 942,

Springer, 2010.

S. P. Marsh, Formalising Trust as a Computational Concept. PhD thesis,

University of Stirling, Apr 1994.

[10]

(1]

[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]

[33]

L. Mui, Computational Models of Trust and Reputation: Agents, Evo-
lutionary Games, and Social Networks. PhD thesis, Department of
Electrical Engineering and Computer Science. Massachusetts Institute
of Technology, 2003.

J.-M. Seigner, Trust, Security and Privacy in Global Computing. PhD
thesis, Trinity College, Dublin, 2005.

J. Golbeck, Computing and Applying Trust in Web-based Social Net-
works. PhD thesis, Department of Computer Science. University of
Maryland, College Park, 2005.

A. Abdul-Rahman, A Framework for Descentralized Trust Reasoning.
PhD thesis, Department of Computer Science. University College Lon-
don, 2004.

K. Krukow, Towards a Theory of Trust for the Global Ubiquitous
Computer. PhD thesis, University of Aarhus, 2006.

M. Richardson, R. Agrawal, and P. Domingos, “Trust management for
the semantic web,” in Second International Semantic Web Conference,
pp- 351-368, 2003.

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of trust
and distrust,” in World Wide Web (WWW), pp. 403—412, 2004.

I. W. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition. Morgan Kaufmann, 2005.

C. Cortes and V. Vapnik, “Support-vector networks,” pp. 273-297, 1995.
D. Oliveira and S. F. Wu, “Protecting Kernel Code and Data with
a Virtualization-Aware Collaborative Operating System,” Annual Com-
puter Security Applications Conference (ACSAC), December 2009.

J. Golbeck, “Computing with social trust,” Human-Computer Interaction
Series, 2009.

J.-M. Seigner, “Social trust of virtual identities,” in Computing with
Social Trust, pp. 73—118, Springer, 2010.

