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Abstract. Previous work has used theories of evidence to incorporate belief into
trust and reputation systems. Some important questions that remain, however,
are how agents might recover reputation lost in disputed transactions, and how
new agents with little or no past transaction history might enter the trust net-
work. We attempt to address these issues by extending previous work using the
Dempster-Shafer theory of evidence to include formal argumentation. Reasons
for past bad transaction assignment can be taken into account in new transactions
and discounted by importance. New agents can participate in trust networks by
forwarding evidence as arguments in a distributed reputation system. We present
our preliminary model on incorporation of argumentation frameworks into trust
management systems to support more complex reasoning mechanisms.
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1 Introduction

Trust and reputation systems have gained widespread use and are increasingly impor-
tant in distributed online applications. Online financial transactions, social networking
and mobile ad hoc networks are some typical examples where trust is used to gauge the
potential for successful exchange. A variety of research has modeled methods for build-
ing reputation and combining reputation into the notion of trust [9, 12, 14–17]. Defining
and measuring the quality of trust, finding out domain suitable incentives to encourage
participation, dealing with false identities that aim to deceive others by contaminating
trust and decreasing trust transitivity are some potential research areas.

Most reputation systems assume the existence of a pre-built trust network, where
some initial trust values are already in place. Very few provide a basis for deriving
the initial value when past transaction records are unavailable. Another interesting area
deserving attention is the recovery of reputation after a small number of anomalous
bad transactions. How might a trust query distinguish between transactions with some
strong reason why the outcome was bad and transactions whose outcomes were judged
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bad for minor reasons? In these cases, the target agent deemed bad has no way to defend
itself. Again, most reputation systems consider only “witnesses” (who participate in the
transaction by giving reference) or “target agents” (about whom the query pertains).
But there could be other agents that are neither targets nor reference providers, yet have
some relevant information that could be very helpful in making decisions about trust.
Currently, these agents and their information are mostly neglected in decision making.

We assert that argumentation is a mechanism which gathers both complete and
incomplete information from different sources and reaches a conclusion through logical
reasoning. Consider the situation when a seller in a financial transaction is tagged as
untrustworthy and wishes to defend himself. Argumentation allows us to logically infer
the reason behind a supposed bad transaction from the propositions exchanged between
the buyer and the seller agents involved.

Here, we describe our preliminary work in using argumentation to address the above
areas in reputation and trust management. We extend the work of Yu and Singh [22],
which proposes a distributed reputation management system using the Dempster-Shafer
theory of evidence. In the following sections, we describe the background work, fol-
lowed with the extensions in our model.

2 Background

In [22], the authors proposed a reputation management system which employs the
Dempster-Shafer theory of evidence as the underlying computational framework. Their
model applies the Dempster-Shafer belief function and Dempster’s rule of combination
to compute local and total belief of agents. Our model extends Yu and Singh’s model
[22] and resolves the scenario when an agent wants to defend himself to retrieve his past
good reputation. In addition, we propose a mechanism to aggregate discrete but relevant
information from trusted agents and use this in measuring belief in a specific agent. We
also discuss rewards and penalties to control the flow of authentic information between
agents.

In Section 2.1, we give the basic notions of the Dempster-Shafer Theory of evi-
dence, which is the foundation for Yu and Singh’s work and for our extensions. Then
we describe how Dempster-Shafer theory was issued by Yu and Singh. In Sections 2.2
and 2.3, we elaborate very briefly on Yu and Singh’s way of computing “local trust”
from past transactions and “total trust” by combining the local trust values of neigh-
bors. Section 3 then introduces argumentation and describes how argumentation can be
used to extend the kind of reasoning possible in Yu and Singh’s work. Finally, Section
4 summarizes and outlines future work.

2.1 Dempster-Shafer Theory

The seminal work on the Dempster-Shafer (DS) theory of evidence is Shafer’s work
“A Mathematical Theory of Evidence” [20] which is an extension of Dempster’s work
“Upper and Lower Probabilities induced by a Multivalued Mapping” [4]. We can say
DS theory is a generalization of traditional probability theory, except that in DS theory,
probabilities are assigned to sets of hypotheses instead of a single hypothesis. This
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property makes DS theory more expressive then simple probability theory. In DS theory,
there is no relationship between believing in a hypothesis and disbelieving it. Say agent
A’s belief in some hypothesis is 0.8. According to DS theory, it is not necessary to
assign the remaining 0.2 to be disbelief in the hypothesis, but rather it could be assigned
to the set of all the possible hypotheses, indicating a lack of knowledge about them.
As evidence is accumulated, the uncertainty narrows down to a subset of the entire
hypothesis set [11]. Say we have two hypotheses T and ¬T , then Bel(T ) represents
belief in hypothesis T , Bel(¬T ) represents belief in hypothesis ¬T , which is disbelief
in T , and Bel({T,¬T }) represents belief in the hypothesis T or ¬T , which represents a
lack of belief in T or ¬T , or, alternatively, uncertainty about which of T and ¬T is true.

Another feature of DS theory is that it does not require a priori knowledge, which
makes it appealing in cases with no previous data.

Below we introduce the terminology upon which we base our work.

Definition 1 (Frame of Discernment). The Frame of Discernment Θ is the set of ex-
haustive and mutually exclusive hypotheses under consideration.

While DS theory allows for arbitrary frames of discernment, in this paper we will typ-
ically be concerned with frames of discernment that contain just a proposition and its
negation {T,¬T }.
Definition 2 (Basic Probability Assignment). TheBasic Probability Assignment (BPA)
is a function mapping the power set of the frame of discernment to the interval between
0 and 1. The BPA of the null set is 0 and the summation of BPA’s of all the subsets of
the power set is 1.

We can write the constraints on the basic probability assignment as follows,

m : 2Θ → [0, 1]

whereΘ = {T,¬T } is the frame of discernment. We will writeL for 2Θ, and so we have:

m(∅) = 0

and �

A⊂L
m(A) = 1

Thus:
m({T }) + m({¬T }) + m({T,¬T }) = 1

m(A) is also called the basic probability number and is the measure of the belief that is
committed exactly to A and does not include any belief committed to any subsets of A.

Definition 3 (Belief Function). For a subset A, the Belief Function Bel(A) sums the
basic probability number, or total belief, of all the nonempty subsets of A which are
also called the Focal Elements of Bel(A). The Belief Function of A is defined as:

Bel(A) =
�

B⊂A
m(B)
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Thus,
Bel({T,¬T }) = m({T }) + m({¬T }) + m({T,¬T }) = 1

For individual members, Bel and m are the same. Therefore, Bel({T }) = m({T }) and
Bel({¬T }) = m({¬T }).

2.2 Local Belief from Statistical Data

[22] gives two ways to evaluate the trustworthiness of a given agent, called the target.
The first is used when some other agent has sufficient previous experience with the
target agent. In this case, the agent will build its local belief towards the target from
the historical data. The process is as follows: after each transaction, the agent collects
its user’s rating about the transaction and saves the latest, say, H of them. Suppose
agent A has had several past transactions with agent V , and he wants to evaluate the
trust he assigns to V . Thresholds Ω and ω are defined as the upper and lower trust
limits of agent A respectively. Function f (ρ) returns the probability of a given value ρ,
where ρ ∈ {0.0, 0.1, 0.2, . . . , 1.0} represents the quality of the services reflected in past
transaction ratings for V . A’s local belief towards V , according to [22] is the following:

Bel({T }) = m({T }) =
1�

ρ=Ω

f (ρ)

Bel({¬T }) = m({¬T }) =
ρ=ω�

0
f (ρ)

Bel({T,¬T }) = m({T,¬T }) =
ρ=Ω�

ρ=ω

f (ρ)

2.3 Combining Beliefs of the Witnesses

The second approach to evaluating trustworthiness in [22] is collecting local belief from
the witnesses. Suppose that A does not have many past transactions with the target V .
In this model, A will ask for references from its trusted neighbors. If they have had
enough transactions with V , they will already have computed their local trust and can
pass that value to A. If, however, they also lack sufficient transaction history, they will
pass a reference to another of their trusted agents in turn. The referenced agent then
supplies its local trust about V or passes along yet another reference. The authors define
a depthLimit as the maximum length of the referral chain. Let α be the focal element
of belief function Bel over L. Bel1 and Bel2 are two belief functions over L based on
different evidence. m1 and m2 are the BPA’s of Bel1 and Bel2, respectively. According
to Dempster’s rule of combination, m = m1(α) ⊕m2(α) will be the new combined BPA
over α, which is the sum of the form m1(X)m2(Y), where X and Y range over all subsets
whose intersection is α. Therefore,

m(∅) = 0
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and

m(α) =
�
Xi∩Yj=α m1(Xi)m2(Yj)

1 −�Xi∩Yj=∅ m1(Xi)m2(Yj)

Here, {X1, X2, . . . Xn} are the focal elements of m1, and {Y1,Y2 . . . Ym} are the focal ele-
ments of m2. And, �

Xi∩Yj=∅
m1(Xi)m2(Yj) < 1

is also called conflict. This indicates the conflict between two distinct bodies of evi-
dence.

In the model, τ and π are defined as the functions that return the local belief and
total beliefs of an agent, respectively. Therefore, in the presence of the witnesses ∆ =
{w1,w2, . . .wn}, agent A will update its total belief over V , considering all of the local
beliefs from its witnesses.

πA = τw1 ⊕ τw2 ⊕ . . . ⊕ τwn

As threshold for trustworthiness is then defined. Agent A will trust agent V if,

I. τA({TV })−τA({¬TV }) ≥ trust threshold, in the case when agent A constructs its local
belief from its own historical data.

II. πA({TV }) − πA({¬TV }) ≥ trust threshold, when agent A constructs its total belief,
combining the local belief of its witnesses.

Having described the approach suggested by Yu and Singh, we will go on to de-
scribe how argumentation can be used to extend the model.

3 Argumentation to Compute Trust

In the following sections, we will first describe the basic ideas of argumentation frame-
works and the acceptability semantics. In later sections, we will describe our model in
different scenarios.

3.1 Argumentation Background

In this subsection, we briefly describe some key elements of argumentation. We follow
Dung’s notions of argumentation [5], where an argumentation framework is an abstract
entity whose role is determined by its relation to other arguments.

Definition 4 (Argumentation Framework). An argumentation framework is a pair:

AF = �AR,R�

where AR is the set of arguments and R is the binary attack relation between arguments.
That is, R ⊆ AR × AR.

43



For two arguments A and B, we say A attacks B if (A, B) ∈ R.
To illustrate further the notion of argumentation, we are considering a particular

argumentation system stated in [2] that handles inconsistency in the knowledge base.
According to [2], arguments are built from a propositional knowledge base Σ that could
be inconsistent. � stands for classical inference and ≡ stands for logical equivalence.
Definition 5 (Argument). [2] An argument is a pair (H, h), where H ⊆ Σ such that

H � h

H is assumed to be consistent and minimal (for set inclusion). H is called the support,
and h is the conclusion of the argument.

To illustrate the attack relation a little more, [7] defined two relations, Rebut and Un-
dercut, which are as follows:

Definition 6 (Rebut). Let (H1, h1) and (H2, h2) be two arguments. (H1, h1) rebuts
(H2, h2) iff h1 ≡ ¬h2.

Definition 7 (Undercut). Let (H1, h1) and (H2, h2) be two arguments. (H1, h1) under-
cuts (H2, h2) iff ∃h ∈ H2 such that h ≡ ¬h1.

Though the definition of attack in [2] includes the notion of rebut, we do not use rebut
here because it has been shown to have some unfortunate consequences for argumenta-
tion systems using propositional logic [1].

Definition 8 (Conflict Free). We say, a set S is conflict-free if ∀A ∈ S , �B ∈ S such
that (B, A) ∈ R

Definition 9 (Acceptable). An argument A is acceptable with respect to a set S iff
∀B ∈ AR, if (B, A) ∈ R, then ∃C ∈ S such that (C, B) ∈ R.

That is, an argument is acceptable to a rational agent, iff he can defend that argument
from his own knowledge base.

Definition 10 (Admissable). Consider S as a conflict-free set of arguments in the
framework �AR, Attacks�. S is admissible iff each argument in that set is acceptable
with respect to set S .

Definition 11 (Preferred Extension). A preferred extension is the maximal (with re-
spect to set inclusion) admissible set of the argumentation framework AF.

Example 1. Let AF = �{A, B,C}, {(B, A)(C, B)}�. Clearly, here the preferred extension
E = {A,C}.

Example 2. Let AF = �{A, B}, {(A, B), (B, A)}�. There are two preferred extensions, {A}
and {B}.

Example 3. Let AF = �{A, A}, {(A, A)}�. Here the preferred extension is the empty set.

Definition 12 (Stable Extension). A conflict-free set of arguments S will be a stable
extension (SE) iff S = {A|∀B � S will be attacked by S }.
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In examples 1 and 2 above, the preferred extensions are also stable extensions. But in
example 3, the empty set is not a stable extension.

The preferred and stable extensions are considered to both be credulous — they
consider an argument to be acceptable when a more skeptical approach might not. Ar-
gumentation also has more skeptical notions of an extension which we will introduce
below.

Definition 13 (Characteristic Function).Dung defined a monotonic characteristic func-
tion FAF that returns the acceptable sets for each input set.

That is,
FAF : 2AR → 2AR

FAF(S ) : {A|A is acceptable with respect to S }
Dung also showed that if the argumentation framework is finitary which is, for each
argument, there are a finite number of arguments that attack it, then FAF is continuous
and its least fixed point can be can be found by iteratively applying it to the empty set.

Definition 14 (Complete Extension). An admissible set S is a Complete Extension iff
all arguments defended by S are also in S .

There could be more than one complete extension each corresponding to a particular
viewpoint.

Definition 15 (Grounded Extension). A conflict-free set of arguments S is theGrounded
Extension if it is the minimal (with respect to set inclusion) complete extension.

defeated as well as all those arguments that are supported directly or indirectly by these
un-attacked arguments. A grounded extension is also the Least Fixed Point of FAF .
In example 1, {A,C} is also the grounded extension, but in example 2, the grounded
extension is empty. In other words, we can say that a skeptical reasoner will conclude
nothing if the grounded extension is empty.

3.2 First Scenario: Target Has No Historical Data

In this scenario, we consider the situation when an agent needs to transact with another
one with whom he has no previous experience and no referral. Suppose, a buyer Xi has
to buy a product from seller Yj, Neither Xi nor any of his neighbors have any previous
transactions with Yj. How is Xi going to decide if he will trust Yj or not? Consider the
conversation between Xi and Yj to be as follows:

X�i s claims: {A, B,C,D}
Y �j s claims: {a, b, c, d}

From Figure 1(a), we can see that Yj’s claim a is attacked by Xi’s A. Yj backed up his
claim with b, which attacks A. b is again attacked by Xi’s claims C and D. In the same
way, D is attacked by d and c, and B attacks c. At this point, Xi will build an argumen-
tation framework AF out of the conversation and compute the stable extensions. Here
we are assuming a meaningful argument should be well-founded and coherent. As we
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(a) graphical representation of dialogue (b) argumentation framework, AF,
after providing evidence

Fig. 1. Conversation between Xi and Yj

are also assuming all agents are skeptical reasoners, they will decide nothing unless a
winning extension is found.

Xi’s AF and the generated stable extensions will look like the following (we follow
Dung’s notion of abstract argumentation here):

F = �Arg, Att�
= �{A, B,C,D, a, b, c, d}, (A, a), (b, A), (C, b), (D, b), (d,D), (c,D), (B, c)}�

where SEXi = {A, B,C,D} and SEYj = {a, b, c, d}.
As our agents are skeptical reasoners, they tend to follow the grounded extension as

its conclusions are not controversial. Figure 1(a) shows, Xi has two unattacked claims
B and C and Yj has one unattacked claim d. At this point, we can say Xi has two
arguments that no one can attack but can we say that Xi has two arguments that no one
can disprove? No. If we follow this process, anyone in Yj’s place can provide as many
arguments as he can for the sake of winning. Unfortunately, this could happen both
ways around and could go on and on, which will destroy the well-founded structure of
the framework.

Instead of computing the conventional grounded extension (GE), we propose an ex-
tendedGE, which is limited to considering evidence as the starting point. In our model,
evidence is the vital element to win an argument. Our opinion is that, if someone is
saying something true he should be able to support his claim with evidence. Here by
“evidence”, we are indicating statements about the ground truth of the domain which
are non-conflicting if the domain is consistent. At this point, neither Xi nor Yj has pro-
vided any evidence. This forces them to supply evidence to fortify their claims. In Fig-
ure 1(b), we see that, Xi supports his claim C with evidence r. As evidence provides the
non-conflicting ground truth, the attacked arguments will automatically be eliminated.
Therefore, r eliminates b. Likewise, Yj supports his claim c with evidence q, which
eliminates B. The agent must iteratively return arguments which are themselves evi-
dence or have evidence as a supporting argument. These will eliminate the arguments
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that these arguments attack. This process follows until the agents reach a conclusion.
After elimination, the new stable extensions will look like the following:

SEXi = {A,C, r}
SEYj = {a, c, d,q}

At this point, both of the stable extensions have exactly one piece of evidence. In
our model, the evaluator will break this tie by considering the depth of the supporting
evidence. We extend the idea of depthLimitR from Yu and Singh [22] and propose
depthLimitE which denotes the number of hops the evidence is away from the claim
it is supporting. In the example above, r is two hops away from the initial claim A,
and q is six hops away from its initial claim a. Intuitively, evidence is more relevant if
depthLimitE is short, and evidence becomes more irrelevant as depthLimitE increases.
This makes SEXi the winner. Therefore, Yj fails to defend his claims, and Xi will rate Yj
from its lower trust limit range which will be used later to compute the BPA of Yj, and
afterwards belief in Yj.

Fig. 2. Trust Scale of agent Xi

Consider the following example: Xi’s upper trust limit is Ω = 0.8 and lower trust
limit is ω = 0.4. Therefore, all the transactions with ρ = [0.8, 1.0] count for {T } and
ρ = [0, 0.4] count for {¬T }. The rest count for {T,¬T }. The scenario we present is a
special case where Xi has no previous data about Yj. Xi will select a value from its
lower trust limit range [0, 0.4], depending on how badly Yj failed to defend himself as
a prior rating for Yj. Let Xi select 0.2 as the initial rating for Yj and Xi’s probability of
making a good decision as 0.8. A potential way of measuring initial local belief Bel in
Yj could be:

Bel(Yj) =
Good decisions taken by Xi
Total decisions taken

× Prior rating for Yi = 0.8 × 0.2 = 0.16

Though Xi’s probability of making a good decision is high, the result is low due to
Yj’s poor rating. If this value is below the risk threshold, then Xi will not engage in any
communication or transactions with Yj.

The idea of depthLimitE to count the number of hops across pieces of evidence
could later be used in risk analysis. As we said before, evidence is more relevant when
it supports claims closer to the primary claim. Hence, we can say:

depthLimitE ∝ risk
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Some researchers propose a semantics (the ideal semantics) that is less skeptical then
grounded extension but more skeptical than preferred extension [6]. In our model, we
can control the skepticism by taking depthLimitE into account. Intuitively:

depthLimitE ∝
1

skepticism

We assume that each agent has its distinct risk threshold which solely depends on the
current state of that agent. A higher risk threshold indicates the agent is capable of
taking more risk. Therefore we can say that an agent with a high risk threshold can
choose to consider evidence with larger depthLimitE . Thus depthLimitE could be a
potential factor to consider in analyzing trust sensitivity. Note that we reserve discussion
of risk analysis and trust sensitivity for future work.

3.3 Second Scenario: Target has Transaction History

In this section, the seller is known to the buyer. As the buyer has had previous trans-
actions with the seller, it will build its local trust from the previous trust rating using
Dempster-Shafer theory. Consider the following: Xi has had six previous transactions
with Yj. After the last transaction, Yj’s ratings are, say, {0.2, 0.6, 0.9, 0.7, 0.3, 0.2}. Let
x ∈ {0.2, 0.6, 0.9, 0.7, 0.3, 0.2}. According to Dempster-Shafer theory, Yj’s BPA will be:

m({T }) =
1�

Ω=0.8
f (x) = 1/6 = 0.167

m({¬T }) =
ω=0.4�

0
f (x) = 1/6 × 3 = 0.5

m({T,¬T }) =
Ω=0.8�

ω=0.4
f (x) = 1/6 × 2 = 0.333

Therefore, the belief values for Yj would be:

Bel({T }) = 0.167
Bel({¬T }) = 0.5

Bel({T,¬T }) = 0.333
As we can see, Bel({T }) − Bel({¬T }) is negative (−0.333), which is obviously a lot less
then the trust threshold. Thus the buyer will not engage in any transactions with the
seller.

In the equation used for deciding “to trust” or “not to trust”:

Bel({T }) − Bel({¬T }) ≥ trust threshold
if the difference is large (the seller is either highly trusted or highly distrusted), then
it will follow the same process. But if the difference is small, which is, a big number
of transactions fall under an uncertain state, then the buyer will follow the process of
the first scenario, outlined in Section 3.2, to see if the current transaction can limit the
uncertain state.
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3.4 Third Scenario: Combining Trust in a Prebuilt Trust Network

In most practical cases, the evaluator or buyer does not have enough transactions or has
no transactions at all with the desired seller. Here, buyers often look for referrals to
the learn something about the seller. The situation where no referrals are available was
described in Section 3.2. Now we are going to describe the case of combining referrals.
In our model, the buyer or evaluator sends out the query to its trusted neighbors asking
for testimonies about the seller. If the neighbors have past experience and have built a
local belief structure (in the way described in Section 3.2), then they pass their belief
value(s)4 to the buyer. In cases where the seller is also unknown to the neighbor, the
neighbor may pass a referral on to a potential agent who may have past experience with
the seller. This process follows until the evaluator gets the desired testimony (or there
are no more agents left to query). As mentioned earlier, in [22], the authors present
depthLimitR, which denotes the length of the referral chain. We introduce some addi-
tional constraints here. If depthLimitR falls outside of a given range, then the seller will
be treated as a newcomer with no referral history; and the scenario described in Section
3.2 will be followed. This range will be set by risk analysis, which is a topic we reserve
for future work.

Fig. 3. Local trust propagation in pre-built trust network

4 Multiple belief values may exist, for example, where beliefs are contextualized and a vector
associates individual beliefs with a set of contexts. Here, we abstract the notion of belief into
a single value and reserve discussion of belief as a complex data structure for future work.
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Consider the graph in Figure 3. Our buyer, A, sends out a query about seller C to
its trusted neighbors B, D and E. Among them, only B has previous experience with
C and has hence built a local belief structure about C. This local belief will be passed
on as a testimony to A. The transaction will be between A and C; and C’s dialogues,
along with its testimony, will be passed to A. At the same time, D and E will pass the
query to G and F, respectively. It is a very common scenario in practical cases that G
and F have no information aboutC, but they do have experience about the product he is
selling—which is crucial in making a decision, but was not explicitly requested in the
query. These claims, along with the testimonies, will be passed to A in a similar fashion.

Local belief values will be merged using the method proposed in [21]. We use the
concatenation and aggregation operators proposed in [13], and subsequently used by
[21], to merge the trust values in the graph. The concatenation operator is used to merge
trust within the same referral chain. On the other hand, the aggregation operator is
used to combine the trust values on the same topic that come from different sources
(agents). In our example, consider that A’s local belief towards its trusted neighbors
B, D and E are MB, MD and ME , respectively. Again, B holds MC , its local belief
structure concerning C, E holds MF , its beliefs in F, and D holds MG, its beliefs in
G. Here, MB = BelB. This belief function has three parts: “Belief” in B, “Disbelief”
in B. and “Uncertainty” about B. Separately, Bel({T }) = m({T }), Bel({¬T }) = m({¬T })
and Bel({T,¬T }) = m({T,¬T }), which are the summation of the probabilities of “Good
transactions”, “Bad transactions” and “Uncertainty”, respectively (as discussed above).
For simplicity and similarity, we will follow the notions used in [21]. Let,

m({T }) = PB
m({¬T }) = NB

m({T,¬T }) = UB

Therefore, following [21], we construct A’s primary beliefs about C as follows:

MAC = MB ⊗ MC

PAC = PB × PC
NAC = PB × NC
UAC = 1 − (PB × PC) − (PB × NC)

Here, ⊗ is the concatenation operator, which is just Dempster’s rule from before. At this
point, we can say that A has MAC primary belief in C’s claim {a, b}. MAF and MAG will
be constructed in a similar way. We mention A’s “primary belief” in C because A still
has to assimilate all of the information he gets from G and F to come up with his final
belief.

Next, all these dialogues from C, F and G will be put in an argumentation frame-
work, along with A’s knowledge similar to the scenario described in Section 3.2, except
that the pivotal point will be the “combined local belief” in those claims. That means A
will consider the following in constructing the argumentation framework:

MAC{a, b} ∪ MAG{i} ∪ MAF{p, q} ∪ DA
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Here, DA is A’s knowledge about the domain. Following our earlier assumption, high-
valued claims will be prioritized over low-valued claims, while defeating each other.
If there is a tie (same combined trust), then the scenario in which there is no prior
history (Section 3.2) will be followed again, and this time “evidence” will be used as
the tie-breaker.

3.5 Discussion

This section highlights three issues that have not been specifically addressed above, but
need to be considered when using argumentation to compute trust. These issues are: the
Fake Profile problem, the Trust Transitivity problem, and the Incentive problem. Each
is discussed briefly, below.

The Fake Profile problem is a major issue in reputation systems. Membership in
most social networking and business rating sites such as Yelp5, for example, is free. As
a result, there is very little to stop people creating many different profiles with which
they boost or downgrade the reputation of an entity. These fake profiles have a very bad
impact on cooperation or even initiation of a transaction. This impacts how newcomers
will be treated [8]. In our model, every agent has to defend his claims with evidence. No
matter how many profiles that agent has received or how many good referrals were col-
lected, in the end, he needs to hold evidence. This requirement suppresses fake profiles
to a great extent. Moreover, as shown in [18], with enough exchanges of arguments, it is
not possible for one agent to deceive another indefinitely— eventually their knowledge
bases converge.

In belief systems, Trust Transitivity is another major issue. It is possible that what
the evaluator decides is most heavily influenced by its witnesses’ beliefs. In this case,
making decisions that depend upon witnesses’ local beliefs is prone to deception. There
are several proposals in the literature addressing trust transitivity [3, 10, 14, 19, 22]. In
our model, since contributing agents are invisible to each other (e.g., in Figure 3, C, F
and G are invisible to each other), a malicious agent does not gain any advantage by
deceiving a trusted node, as he does not necessarily know who opposes his claim. This
leaves him with no choice but to deceive large numbers of agents, possibly all of an
evaluator’s trusted nodes! And, in the end, the deceiver is required to show evidence;
trust transitiveness does not help him much here.

There are cases when trusted agents exist but have little incentive to contribute in-
formation to third-party transactions. To encourage them to participate, we propose
rewardVal and penaltyVal, respectively. The latter, penaltyValwill decrease the agent’s
rating and hence belief in him. Similarly, the former, rewardVal, will increase this rat-
ing. This will incentivize agents to contribute and will penalize malicious agents for
infusing unauthentic information. The risk threshold of the agent can thus be com-
pared to the penaltyVal and rewardVal to optimize decision making. If these values
are made public, then it is possible to guess an agent’s current state by analyzing these
values. Moreover, if an agent is willing to deceive and can afford the penaltyVal (i.e.,
penaltyVal < riskThreshold), then he may take the risk of deceiving the evaluator
agent. We will discuss these values more in our future work.
5 http://www.yelp.com
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4 Summary and Future Work

In our model, we have addressed some problems in current trust management and rep-
utation systems by incorporating evidence into an argumentation framework, and then
integrating it into multiple trust management scenarios. In future work, our plan is to re-
fine the theory and focus more on risk analysis. In particular, we are considering adding
the concept of utility to our trust management models in order to capture the differential
importance of evidence to different agents. This might be used to perform a risk analysis
to judge the effects of making incorrect trust-based judgments. We also intend to inves-
tigate foundations and formulations for assigning trust thresholds and choosing ratings
to measure BPA which will make our model more precise. Later, we plan to implement
it in a more practical environment, such as a recommendation system for online social
network applications.
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