
A Distributed Host-based Worm Detection System

Senthilkumar G. Cheetancheri1, John Mark Agosta2, Denver H. Dash2,

Karl N. Levitt1, Jeff Rowe1, Eve M. Schooler2

1UC Davis
Dept. of Computer Science

Davis, CA - 95616. USA

{cheetanc, levitt, rowe}@cs.ucdavis.edu

2Intel Research
2200 Mission College Blvd.

Santa Clara, CA 95052. USA

firstname.MI.lastname@intel.com

ABSTRACT
We present a method for detecting large-scale worm attacks
using only end-host detectors. These detectors propagate
and aggregate alerts to cooperating partners to detect large-
scale distributed attacks in progress. The properties of the
host-based detectors may in fact be relatively poor in isola-
tion but when taken collectively result in a high-quality dis-
tributed worm detector. We implement a cooperative alert
sharing protocol coupled with distributed sequential hypoth-
esis testing to generate global alarms about distributed at-
tacks. We evaluate the system’s response in the presence
of a variety of false alarm conditions and in the presence of
an Internet worm attack. Our evaluation is conducted with
agents on the Emulab and DETER emulated testbeds using
real operating systems and computing platforms.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive Software; G.3 [Probability and Statistics]: Se-
quential Hypothesis Testing ; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Sequential Hypothesis Test-
ing

General Terms
Security

Keywords
Worm detection, Sequential Hypothesis Testing

1. INTRODUCTION
Monitoring for and responding to security incidents in

large-scale, complex enterprise networks requires a new ap-
proach to security incident management. Security reports
indicating a policy violation, come from a heterogeneous col-
lection of components, such as intrusion detection sensors,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

firewall access policy violations or anomalous network traf-
fic loads. Protecting against attacks currently in progress or
eliminating a new vulnerability involves the reconfiguration
of several different types of devices, such as firewalls, border
gateways, software updates, and even host-based wrappers.

The challenge is to collect all information from the nu-
merous data sources and to decide on appropriate actions
for each reactive component. Simply forwarding all reports
to a central location will not scale to large networks. Local
decision making, however, may lack the global view neces-
sary to thwart large-scale attacks.

Defending against worms, particularly day-zero worms,
is perhaps the most pressing challenge for a large enter-
prise. Such a worm can have a devastating impact as it
automatically propagates itself to all vulnerable machines
on a network. Defending against worm attacks, for which
no pre-existing attack signature is available, requires the au-
tomation of tasks that current system administrators must
perform manually. These include: automatic aggregation
and correlation of security reports to detect activity at a
local site, automated short-term defensive actions to stop
local worm infections, cooperative alert sharing across ad-
ministrative boundaries to protect sites not yet infected, and
automated back-off when a worm is contained or in the event
of a false alarm.

2. A DISTRIBUTED COLLABORATIVE DE-
FENSE

As a complement to centralized cyber-security defensive
systems we have developed and evaluated cooperative defen-
sive schemes. Centralized systems are designed primarily to
protect enterprises by monitoring aggregate traffic at fixed
locations in the network and responding by blocking or de-
laying observed malicious behavior. In some circumstances,
however, such centralized systems may not be suitable; or-
ganizations may not have the resources to acquire and man-
age a large system, there may not be sufficient trust between
sub-domains to accept a centralized protection policy, and
large numbers of mobile nodes may exit and enter the net-
work leaving them temporarily without protection.

Previous work by us and others[11, 2, 5, 6] have devel-
oped cyber-defenses based upon collaborative alert-sharing
as a way to detect and react to large-scale distributed at-
tack such as Internet worms. Evaluation of these schemes
is usually done both analytically and through simulation.
Assumptions regarding the false positive rates are idealized

abstractions due to the lack of a realistic testing and evalu-
ation framework.

2.1 Collaborative Distributed Attack Detec-
tion

In this paper we describe and evaluate a scheme for dis-
tributed attack detection using cooperating end-hosts. In
this system, all events are generated using software detec-
tion agents on individual end-hosts. Currently, we monitor
inbound and outbound network traffic at the host and de-
tect local anomalies in traffic features. Due to the limited
view of these detectors, however, isolated end-hosts alone
would serve only as low-quality (high false positive or high
false negative) detectors of distributed attacks. Our goal
is to cooperatively share information such that the aggre-
gation of end-host alerts produces a high-quality (low false
positive and low false negative) global attack detector. We
accomplish this by implementing a distributed version of the
sequential hypothesis test(SHT) used successfully in central-
ized detection schemes[12]. With this method, all collabo-
rating sites maintain a decision table constructed using the
ratio of the likelihood that the features are a good indicator
of the current worm attack to the likelihood for the features
to occur at random. When the observed behavior exceeds
a predetermined threshold, enough evidence has been accu-
mulated to reach a correct decision with high probability.

In this formulation, let H1 and H0 be the hypotheses that
there is and is not a worm respectively. Let Yi be the random
variable that says there is an attack or not at site i. This
represents the weak local end-host detector at site i.

Yi =

8

>

>

<

>

>

:

1 if there is an attack;
could be a false positive(fp)

0 if there is no attack;
could be a false negative(fn)

By definition,

P[Yi = 0|H1] = fn; P[Yi = 1|H1] = (1 − fn)

P[Yi = 1|H0] = fp; P[Yi = 0|H0] = (1 − fp)

The observation vector ~Y = {Y1, Y2 · · ·Yn} then is the set
of measurements obtained by n conditionally independent
end-hosts. We then define the Likelihood Ratio from the
observation as,

L(~Y) =
P[~Y |H1]

P [~Y |H0]
,

and assuming all Yi’s are independent measurements, we
have,

L(~Y) =
P [Y1|H1].P [Y2|H1]. · · · .P [Yn|H1]

P [Y1|H0].P [Y2|H0]. · · · .P [Yn|H0]

for a sequence of n local detectors sampled. Then if vector
~Y has a 1’s and b 0’s, the Likelihood ratio is,

L(~Y) =
(1 − fn)a ∗ fnb

fpa ∗ (1 − fp)b

Using this we compute a table of the outcomes of many
random walks through a collection of local detectors. For
example, entry (5,2) would contain the likelihood ratio of
finding two alerts after sampling five independent sites.

The strength of the desired global detector, then, is spec-
ified by two quantities: desired detection rate, DD, and de-

sired false alarm rate, DF . DF , in other words, is the max-
imum acceptable failure rate of the global detector. Using
these, one can calculate thresholds in the table of likelihood
ratios:

T0 =
1 − DD

1 − DF
and T1 =

DD

DF

Each host, then, implements a global intrusion detector
that make decisions as follows: if, after including the local
detector state, the calculated likelihood ratio, L(~Y) < T0,
accept the hypothesis that there is no worm (H0) and halt

the query. If L(~Y) > T1, accept the worm hypothesis (H1)
and raise a global alarm, otherwise continue the random
walk among end hosts. This defines upper and lower blocks
in the decision table as a region likely to have been pro-
duced by an attack and a region likely to come from normal
behavior. By independently sampling weak local end-host
detectors with given fp and fn, one can achieve a strong
global detector if enough sites are traversed.

2.2 Cooperative Messaging Protocols
In the scheme described above, the method for obtaining

random samples from cooperating end-hosts is left unspec-
ified. In the case of Internet worm attack, our initial tests
were performed using an epidemic spread protocol. Cooper-
ating hosts contain a random subset of the addresses of all
nodes in the collection. Nodes with new alerts from their lo-
cal detectors choose m other end-hosts at random and send
the message “{1, 1}”, which means, “one site has reported
one alert”. Hosts receiving this message add their local in-
formation (e.g. it would generate a “{2, 1}” if had not seen
the activity, and a “{2, 2}” if had) and attempt to arrive
at a decision based upon the table of likelihood ratios. If
no decision is reached, m new sites are selected at random
and the message propagates. In this manner multiple SHT
sequences(chains) of evidence are spread randomly across
cooperating end-hosts. If “normal behavior” decisions are
reached in any chain, that chain halts. If a “likely worm
attack” decision is reached at any point, a global warning is
broadcast to all nodes. Figure 1 shows an example message
chain with a fan-out, m = 2. Preliminary experiments on
Emulab[23] and DETER[4] testbeds have led us to conclude
that messaging overheads for protocols with m > 1 provide
little benefit in early detection and result in needless com-
munications in the presence of local false positives. During
times of widespread attacks multiple query chains are initi-
ated by local detectors, forming an ever-increasing number
of independent queries.

3. EXPERIMENTAL EVALUATION ON AN
EMULATED TEST-BED

One major difficulty in testing any large-scale defensive
systems is that a large number of test machines have to
be configured and managed efficiently. To accomplish these
tasks, we have developed a preliminary worm defense testing
framework[8] that wraps around existing network testbeds
like Emulab and DETER.

This testing framework allows experimenters to rapidly
deploy and easily repeat large-scale worm experiments using
several hundreds to thousands of machines. These experi-
ments can be used to analyze the efficiency of novel defenses
against different kinds of worms.

Local Alert

WORM!
{3, 3}

{3, 2}

{3, 1}
No Worm

 {2, 2} {3, 2} {4, 2} . . . {n, 2}

{3, 3} {4, 3} . . . {n, 3}

{4, 4} . . . {n, 4}

{n, n}

{1, 1} {2, 1} {3, 1} {4, 1} . . . {n, 1}

No Worm

W
ORM

!

Global Decision Table maintained at each site

{i, j} = j local alerts seen after i steps

{2, 2}

{1, 1}

{1, 1}

{2, 2}

{3, 2}

{3, 2}

{2, 1}

{2, 1}

{3, 2}

Figure 1: Diagram illustrating the co-operative messaging protocol and the decision table used in SHT used

to generate a global worm detector

This framework receives a description of our network topol-
ogy format along with the detection engine and compiles
them in a “NS-2” format required by the testbed. Though
it provides its own library of worms and a server that is vul-
nerable to those worms, we override these two components
with a more powerful worm simulator engine called Worm-
sim[17] and its companion XML worm-specification library.
These components are described in detail in the next section.

The Event Control System(ECS) is the central software
piece in the Emulab testbed that helps run experiments and
collects logs. Our framework wraps the ECS system. It
does this in the following order. The detection engine and
Wormsim are started on all nodes. Each Wormsim agent is
then configured to be either vulnerable or not to a particular
worm on a certain port. A random process chooses which
nodes are vulnerable based on the vulnerability density spec-
ified along with the user network topology. Alternatively,
specific nodes can be set to be vulnerable in the topology
specification. The experiment is started by launching a seed
worm to one of the vulnerable nodes.

The experiment’s progress is monitored by observing the
logs recorded by the detection engine. The experiment is
deemed complete once a ’worm’ decision is recorded in the
log, or when no more logs are recorded for a pre-determined
period of time. Once an experiment is completed, the ECS
collects logs from the various experiment nodes in a database
and initiates an experiment with new parameters. An over-
all architecture for our worm testing framework is shown in
Figure 2.

3.1 Experimental Setup
The goals of our experiments are to evaluate our algo-

rithms’ effectiveness in identifying worm outbreaks, to de-
termine its robustness against false alerts and to measure
the network overhead of the cooperative protocol itself.

The major components of our current experiment setup
are:

• A worm simulator engine(Wormsim)

• A local intrusion detection system (IDS) to generate
low level sensor inputs.

Choose Worms

XML worm specs

Worm Library

WormSim

Event Control
System

Compiler
NS to NS−testbed

Worm Detection
SHT Algo.

NS−testbed
Topology

Evaluations

Evaluation Framework
Worm Defense User’s

Testbed

Data Analysis
Tools

NS topology

Figure 2: A worm defense evaluation framework ar-

chitecture

• A global detection algorithm and protocol implement-
ing the distributed sequential hypothesis test.

• The evaluation infrastructure including the network
test-bed itself and instrumentation toolkits.

We describe these components briefly.

Wormsim. To test distributed defenses in the presence of
realistic worm attacks without installing vulnerable soft-
ware, we developed the Wormsim worm emulation frame-
work. The goal of this framework is to generate network
traffic patterns that mimic, as closely as possible, the pat-
terns generated if malicious code had actually existed on
the end hosts. Rather than executing malicious binary in-
structions that govern worm propagation, Wormsim agents
interpret XML specifications written to emulate the same
behavior. Agents accept and parse messages in an XML for-
mat and then, based upon the specification, connect to other
“victim” hosts, sending them the same XML worm instruc-
tions. The targets are identified based upon the parameters
in the XML worm specifications. Some other features that
can be specified are the scan method, the transport protocol
to use, the scan rate, etc. Each Wormsim engine can be re-

motely configured to be either vulnerable or not vulnerable
to a particular worm.

A Local IDS. In tune with our philosophy of achieving
high-confidence correlations from weak detectors, we imple-
mented a very weak end-node IDS. The IDS would raise an
alarm to trigger SHT whenever there is a connection attempt
to an un-serviced port. The reasoning is that, a legitimate
connection attempt usually never goes to a host that does
not service it. On the contrary, automated attacks such as
worms, ignoring sophisticated ones that have information
from prior reconnaissance, try to make connections indis-
criminately. Thus, those nodes that service a certain port
have no protection and do not trigger the SHT. However,
IDSes used in practice are much better than the one we use
and will help in detecting a more sophisticated attack. This
will enable even the vulnerable nodes to participate in the
protocol.

Since Wormsim knows the vulnerability status of the host
at a certain port, it can easily use the event of receiving
XML specifications on a non-vulnerable node to trigger the
detection algorithm. Hence this IDS was implemented as a
patch to Wormsim itself.

Global Detection Algorithm. The sequential hypothesis
test (SHT) detection algorithm and cooperative messaging
protocol were implemented as a ’C’ program. As a message
propagates, each detection agent adds one to the number of
nodes queried and one to the number of positives if it has
seen a similar alert locally. At this time, we assume there is
only one alert that can be raised and hence no information
about the kind of attack is passed along. However, we envi-
sion using an anomaly vector in future to describe the event
so that stronger correlations can be made.

The SHT parameters DD and DF were set to 98% and
2% respectively(section 2.1). The local IDS miss rate, fn,
was set at 1%. Their false alarm rates were set as described
in the next section. The fan-out, m, for the co-operative
alert protocol (section 2.2) is set to 1. With each new in-
fection, one new SHT sequence is created. After the first
few infections, there are multiple parallel global alert chains
propagating simultaneously. Each member propagates an
alert by sharing it with another randomly chosen member.
Besides satisfying a basic requirement for the SHT algo-
rithm, such random selection defends the protocol from the
following two attacks. One, malicious members gaming the
protocol. Two, clever or hit-list worms, or a combination
of both, circumventing our protocol by targeting only those
nodes that will not be chosen to share the alert.

Evaluation Infrastructure. The experimental test network
was configured with 100 PCs, a mixture of Pentium IVs and
64-bit Xeons randomly assigned by the testbed, running
FreeBSD 4.10. All nodes were assigned to a single LAN,
though we emphasize that we could have used several thou-
sand machines. Each one of them can be as far away from
each other on the Internet and only connectivity amongst
the nodes matter. We also emphasize that we are not try-
ing to save the entire Internet from the worm attack. We
are only interested in an early detection for this particular
federation of willing participants.

A 1Mb LAN was used so that test machines on different
switches could be assigned to our experiment. This speeds

up node assignment on the testbed to our experiment with-
out significant changes in experimental results since our co-
operative protocol was not expected to consume much of the
total bandwidth.

4. EXPERIMENTAL RESULTS
To evaluate our system we focused upon three primary

properties: the ability of the algorithm to detect worms,
the likelihood of generating a global worm alert for a given
level of local false alarms, and the messaging overhead of
the system under various false alarm conditions.

4.1 False Alarm Experiments
Since, the local host IDS operates on a very näıve princi-

ple, we expect to initiate cooperative chains conducting the
SHT quite frequently and on false pretexts. Each and every
local false alarm, or even a malicious port scan, will initiate
a query sequence. We take this into account by assigning to
each local IDS a certain false alarm rate fp. That is to say,
for each IDS, a certain n alarms out of every 100 will be spu-
rious. To test the effects of the quality of the local detector
on the global decision, we set the local host IDS quality at 5
different levels, where n = (1, 3, 5, 10, 20). This property of
the IDS forms an input to calculating the likelihood ratios
that go into the decision table held by each participant. We
perform experiments with one of these IDS quality settings
at a time.

It would be impractical to use the false alarm rates, con-
figured as a parameter of the local detectors, to generate
sensor events in the test-bed experiment. Most of the ex-
periment time would be spent in simply waiting for a rare
event. Alternatively, we selectively generate the rare events
themselves and record the effects of these events on our SHT
algorithm. The goal here is to generate simultaneous false-
alarm conditions so that a SHT sequence has multiple mem-
bers that have seen a local false alarm. We use the Event
Control System (ECS) of the emulab test-bed to trigger false
alarms in a number, m, of participants simultaneously. We
choose m = (3, 5, 10, 20) in order in the experiments de-
scribed below. The results, then, can be applied to systems
with differing local host IDS false alarm rates using the like-
lihood of seeing 3, 5, 10 or 20 simultaneous false alarms for
the given IDS.

Thus, we have a family of 20 experiments with different
configurations (m simultaneous false alarm conditions times
n local IDS quality levels) to run. We repeat each experi-
ment 20 times to reduce the effects of random fluctuations.
These experiments were conducted with the detection sys-
tem running on all 100 nodes. There was no need for Worm-
sim to be run, except the IDS portion.

The first question we attempt to answer is; for a given
number of simultaneous false alarms what is the chance
that the distributed system will generate a false global worm
alert? Figure 3 shows the fraction of times out of 20 rep-
etitions of the false alarm experiments that the distributed
SHT claimed that there was indeed a worm. Naturally the
likelihood of false worm claims goes up as the number of si-
multaneous false alarms increases. However, as the quality
of the end-node IDS goes down, the quality of the global
detector goes up. For example, for a very poor quality lo-
cal host IDS (with a 20% fp) the distributed SHT algorithm
makes the global detector highly suspicious of alerts received
resulting in fewer wrong decisions.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

F
al

se
 W

or
m

 d
et

ec
tio

n
fr

ac
tio

n

of simultaneous false alarms

Performance under false alarms

Quality of IDSs
1%
3%
5%

20%

Figure 3: Wrong worm decisions due to false alerts

For the higher quality local host IDS, 5 simultaneous false
alarms will produce a global worm alert using our distributed
SHT 15% of the time. While this may not seem particularly
small, the chance of getting 5 simultaneous false alarms to
begin with will be quite small for these types of detectors.

0

10

20

30

40

50

60

70

0 5 10 15 20 25

of

 m
es

sa
ge

s

of simultaneous false alarms

Network traffic overhead

Quality of IDSs
1%
3%
5%

10%
20%

Figure 4: Total number of messages required before

distributed SHT reaches a decision

The second question we wish to address is, how much
network resources will be consumed by running this coop-
erative alert protocol under normal operating conditions?
The concern here is that if the local host IDS quality is too
low, during normal operations, the distributed SHT would
require an excessive number of queries in each chain before a
decision were obtained one way or the other. In essence, the
path taken in the decision table would remain in the mid-
dle, undecided portion rather than reaching any decision,
correct or incorrect. Were this to happen continuously it
might adversely affect network operations or allow a sophis-
ticated attacker to trigger minor false alarms to deliberately
induce periods of high bandwidth message passing. Figure
4 shows the number of messages required to arrive at a deci-
sion, right or wrong, for the four levels of simultaneous false
alarms and for five different qualities of the local end-host
detectors. The numbers are averaged over 20 experiments.

The maximum standard deviation observed was 3.2 mes-
sages; when 20 false alarms were fired simultaneously from
end-node IDSes whose fp rates were pegged at 3%.

The number of messages increases in proportion to the
number of simultaneous false alarms since each false alarm
initiates a new query chain. The number of messages de-
pends little, however, on the quality of the local end-host
IDS. During periods of false alarms, since the local alerts are
independently distributed across end-hosts (next hop neigh-
bors are selected at random), decisions are reached regarding
false alarms after querying only four end-hosts on average.
There seems to be little danger here in a runaway distributed
SHT algorithm causing harm to normal network operations,
even when the local end-host detectors are relatively poor.

4.2 Performance in Detection Worm Attacks
The second set of experiments was performed to test the

system’s response in the presence of self-propagating worm
attack. We do not study the effects of false alarms in pres-
ence of worm traffic as it would only help to make a “worm”
decision sooner. For our worm experiments we set the vul-
nerability density to be 25%; a random process chooses
which specific nodes in the test-bed are vulnerable. We con-
figured the worm to send out a random subnet scan every
1 second. Since the entire vulnerable population is on one
subnet, this worm is effectively a random scanning worm.
The worm scan speed does not have any impact on detec-
tion unless it is faster than the detection algorithm. The
morphology of the worm is also not of concern as we do not
deal with worm semantics. We only exchange much coarser
information about anomalies.

We want to determine the effect of various local end-host
IDS quality on decision time and infection rates. Thus, we
have n experiments to run against this worm; one for each
end-host IDS quality. We again repeat this experiment 20
times to reduce the effects of random fluctuations.

0

20

40

60

80

100

0 5 10 15 20 25 30 35

%
 o

f v
ul

ne
ra

bl
es

 in
fe

ct
ed

Time (s)

Sample worm and detection (IDS fp rate = 10%)

Worm detected

Random Scanning worm 1 scan/s

Figure 5: A sample infection sequence and detection

instant

The results from a typical worm attack experiment are
shown in Figure 5. The percentage of vulnerable machines
infected is plotted as a function of time and exhibits the
characteristic s-curve infection profile. In this example, the
decision table is constructed using a 10% false alarm rate
in the end-node detectors. At this rate, a worm decision is

reached at 14 seconds after the launch of the attack with
32% of the vulnerable nodes already infected. Since the
local end-host IDS in this case is rather poor, a decision is
not reached until relatively late in the infection profile.

0

10

20

30

40

50

60

0 5 10 15 20 25
0

10

20

30

40

50

%
 v

ul
ne

ra
bl

es
 in

fe
ct

ed

T
im

e
to

 d
et

ec
tio

n

Quality of IDSs (fp rates)

Time to true worm Detection

% Infected
Time to Detection(s)

Figure 6: Results from all worm experiments show-

ing the percentage of infected nodes at detection

time as a function of local end-host IDS quality

Detection times and percentages of infected hosts from
all experiments were collected and are shown plotted to-
gether in Figure 6. We notice that the number of infections
before worm-detection increases with decreasing quality of
end-node detectors. While poorer quality end-host detec-
tors do not necessarily lead to larger problems with respect
to false alarms, they have a significant impact on the global
distributed SHT detector’s ability to quickly detect worms;
before unacceptable numbers of vulnerable nodes have been
compromised. Since the global distributed SHT must be
more tolerant to high levels of false alarms, it takes longer
to claim a worm with the required high levels of confidence.
However, there are no cases of missed worms. Sooner or
later, worms are always detected. Only those worms that
carefully avoid all non-vulnerable nodes will not be detected.
However, as mentioned earlier in section 3.1, IDSes used in
practice are much better than the one we used and can de-
tect more sophisticated attacks enabling even the vulnerable
nodes to participate in the protocol.

5. RELATED WORK
This work was inspired by the Jung et al.’s algorithm

for quick portscan detection[12]. While they use Sequen-
tial Hypothesis Testing to identify malicious port-scanners,
we adapted the principle to detect worms.

There is a vast literature on novel approaches to worm
detection and defense including those that use collaborative
techniques. We briefly review a few representative ones,
consider their strengths and weaknesses, compare them with
our approach, and acknowledge a few others[3, 9, 16, 2]. Zou
et al.[24] present an algorithm for early detection of worms
using a network of monitors employing Kalman filters and
an aggregator that digest the observations sent by them.
Their model suffers from single point failures and demands
that observations be immediately available to the aggregator
even in presence of a worm. These shortcomings make it
difficult for deployment in production environment whereas

our approach is completely distributed and there is no single
point failure.

Sidiroglou et al.[20] approach the problem with end-point
solutions. They use sand-boxing techniques to automati-
cally generate localized patches to prevent worms from in-
fecting production systems. However, they leave identifying
worms to other third party systems like honeypots and ID-
Ses.

Autograph[13] proposes a distributed content-based pay-
load partitioning method to identify worms and their signa-
tures. They propose multicasting information about suspect
port-scanners to all participants in the distributed detection.
Earlybird[19] is a very promising approach toward identi-
fying and generating signature for zero-day worms. It uses
content prevalence and dispersion of participating addresses.
Nevertheless, it needs to be installed at a high-visibility site
where large amounts of network traffic can be monitored.
Monitoring at the border may be infeasible for some sites.
Both of the above use Rabin fingerprints to characterize the
suspicious traffic.

Columbia University’s[21] uses its predecessor PAYL[22]
to profile normal data and flag any data that does not match
this profile. It first uses ingress/egress correlation. If there
is a suspicious anomaly, it then tries to correlate that with
one another site. If there is a match, a worm is declared and
the correlated string is used as a worm signature. But this
minimalist correlation is fraught with high false positives.

Cai et al.[7]propose a collaborative worm containment tech-
nique. It needs to be deployed on edge-networks and requires
high processing power and careful manual oversight owing
to its high-visibility location on the network. Furthermore,
their work is also supported by simulations only.

Dash et al.[10] extend collaborative anomaly detection to
distributed belief passing among end-hosts with outgoing
traffic local detectors. Both this and our work is distin-
guished from all of the other work described above in that
we do not need a monitor at a high-visibility place like at the
border gateway or at the DMZ. Both leverage relatively sim-
ple and weak IDSes on individual end-host computers and
make high confidence distributed correlations using simple
anomaly vectors. Distributed detection also avoids single
points of failure. Dash et al. support their performance
results by extensive discrete-event simulation experiments.
Complementing theirs, we evaluated the system in an emu-
lated test-bed environment and have demonstrated the effi-
cacy of our system using real software components that run
on real operating systems.

6. FUTURE WORK
There are quite a few important aspects that we still need

to address. A couple of them are listed below.
We need to define the anomaly vector to share amongst

the detection agents. Some of the features of this vector
could be a flag to indicate presence of machine instructions
in traffic to servers, the size of such instruction sequences,
the frequency of such connection attempts, the recent CPU
usage statistics, etc.

In our current study we have not taken into considera-
tion the effect of the worm traffic from outside our network
of interest. To address this, we are developing an Internet
scale-down node. This node represents the Internet external
to our network and would generate traffic into our emula-
tion network based on the mathematical model of the worm

specification. We may be able to make use of the work done
by Liljenstam et al.[15] for this. Evaluating distributed SHT
in the presence of traffic from this Internet Scale-down node
forms our next step in this direction.

We have also not considered the effects of malicious nodes
in the federation in these experiments. To overcome such
problems, we could introduce several variations in the pro-
tocol. For example, instead of declaring ’worm’ immedi-
ately after the first such decision, we could wait until a
certain number of unique participants make the same de-
cision. It is worth noting that a similar problem has already
been formulated and solved by the systems community as
the Byzantine General’s problem[14, 18, 1]. Those solutions
might help alleviate this problem at the cost of using more
network bandwidth and a delayed detection.

7. ACKNOWLEDGMENTS
We would like to thank the staff at the Emulab and DE-

TER testbeds for their excellent support. This work was
sponsored by a generous grant from Intel IT Research and
NSF NRT grant 0335299. We would also like to thank
Jaideep Chandrashekar and Denys Ma for their valuable tips
and reviews of this work.

8. REFERENCES
[1] E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber.

Some constraints and tradeoffs in the design of
network communications. In SOSP ’75: Proceedings of
the fifth ACM Symposium on Operating Systems
Principles, pages 67–74. ACM Press, 1975.

[2] K. G. Anagnostakis et al. A cooperative immunization
system for an untrusting internet. In Proceedings of
the 11th IEEE International Conference on Networks
(ICON03), pages 403–408, October 2003.

[3] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis,
and A. D. Keromytis. Robust reactions to potential
day-zero worms through cooperation and validation.
In Proceedings of the 9th Information Security
Conference (ISC)., 2006. To Appear.

[4] R. Bajcsy et al. Cyber defense technology networking
and evaluation. Commun. ACM, 47(3):58–61, 2004.

[5] L. Briesemeister, P. Lincoln, and P. Porras. Epidemic
profiles and defense of scale-free networks. In
Proceedings of the I ACM Workshop on Rapid
Malcode (WORM03), pages 67–75, Oct. 2003.

[6] L. Briesemeister and P. Porras. Microscopic simulation
of a group defense strategy. In Proceedings of
Workshop on Principles of Advanced and Distributed
Simulation (PADS05), pages 254–261, June 2005.

[7] M. Cai, K. Hwang, Y.-K. Kwok, S. Song, and
Y. Chen. Collaborative internet worm containment.
IEEE Security and Privacy, 4(3):34–43, May 2005.

[8] S. G. Cheetancheri, D. Ma, T. Heberlien, and
K. Levitt. Towards a framework for worm defense
evaluation. In Proceedings of the 1st Malware
Workshop, (IPCCC06), Phoenix, Az, Apr. 2006.

[9] M. Costa et al. Vigilante: end-to-end containment of
internet worms. In SOSP ’05: Proceedings of the
twentieth ACM Symposium on Operating Systems
Principles, pages 133–147. ACM Press, 2005.

[10] D. Dash et al. When gossip is good: Distributed
probabilistic inference for detection of slow network

intrusions. In Proceedings of the Twenty-First
National Conference on Artificial Intelligence
(AAAI06), 2006. To Appear.

[11] D.Nojiri, J.Rowe, and K.Levitt. “Cooperative
Response Strategies for Large Sacle Attack
Mitigation”. In Proceedings of the DARPA
Information Survivability Conference and Exposition.
DISCEX, 2003.

[12] J. Jung, V. Paxson, A. W. Berger, and
H. Balakrishnan. Fast Portscan Detection Using
Sequential Hypothesis Testing. In IEEE Symposium
on Security and Privacy, Oakland, CA, May 2004.

[13] H.-A. Kim and B. Karp. Autograph: Toward
automated, distributed worm signature detection. In
Proceedings of the USENIX Security Symposium, 2004.

[14] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[15] M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S.
Gray. “Simulating Realistic Network Worm Traffic for
Worm Warning System Design and Testing”. In
Proceedings of the I ACM Workshop on Rapid
Malcode (WORM03), Washington, DC, October 2003.

[16] D. J. Malan and M. D. Smith. Host-based detection of
worms through peer-to-peer cooperation. In
Proceedings of the III ACM Workshop on Rapid
Malcode(WORM05), pages 72–80. ACM Press, 2005.

[17] J. McAlerney. “An Internet Worm Propagation Data
Model”. Master’s thesis, University of California,
Davis., Sept. 2004.

[18] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. J. ACM,
27(2):228–234, 1980.

[19] S. Singh, C. Estan, G. Varghese, and S. Savage.
Automated worm fingerprinting. In Proceedings of the
Sixth ACM/USENIX Symposium on Operating System
Design and Implementation (OSDI), San Francisco,
CA, Dec. 2004.

[20] S.Sidiroglou and A. D. Keromytis. Countering
network worms through automatic patch generation.
IEEE Security and Privacy, 3(6):41 – 49, Nov. 2005.

[21] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous
payload-based worm detection and signature
generation. In Proceedings of the Eighth International
Symposium on Recent Advances in Intrusion
Detection(RAID05), 2005.

[22] K. Wang and S. J. Stolfo. Anomalous payload-based
network intrusion detection. In Proceedings of the
Eighth International Symposium on Recent Advances
in Intrusion Detection(RAID04), Sept 2004.

[23] B. White et al. An integrated experimental
environment for distributed systems and networks. In
Proc. of the Fifth Symposium on Operating Systems
Design and Implementation, pages 255–270, Boston,
MA, Dec. 2002. USENIX Association.

[24] C. C. Zou, L. Gao, W. Gong, and D. Towsley.
Monitoring and early warning for internet worms. In
Proceedings of the 10th ACM conference on Computer
and communications security(CCS03), pages 190–199.
ACM Press, 2003.

