
ECS 120: Theory of Computation

Homework 1 Solution

Due: 4/5/06

[Problem 1.] Linz, Page 13, Exercise 1.

Prove by induction on |S|.
Basis: When |S| = 0, then S = ∅ and 2S = {∅}. |2S | = 1 = 20 = 2|S|.

Induction Hypothesis: Assume the statement holds for |S| = k, such that |2S | =
2k = 2|S|.

Inductive Step: When |S| = k + 1, suppose S = Sk ∪ {x}, where |Sk| = k.
Then 2S contains Sk plus the following subsets:

• the sets {x} and S

• for each subset of size m in 2Sk , where 1 < m < k, include x. Thus, the
subsets of size m in 2S now contains every subset of size m in 2Sk and
every subset of size m − 1 in 2Sk to include x (there are Ck

m−1 extra).

In addition to the set 2k, we need to add 1 + Ck
1 + Ck

2 + ... + Ck

k−1
+ Ck

k
= 2k

more subsets (based on binomial series). Thus, |2k+1| = 2k + 2k = 2k+1 = 2|S|.

[Problem 2.] Linz, Page 14, Exercise 7.

Prove both sides of the equation.
If x ∈ S1 ∪ S2, then x /∈ S1 ∪ S2. By DeMorgan’s Law: S1 ∪ S2 = S1 ∩ S2.

Thus, x /∈ S1 ∩ S2 → x ∈ S1 ∩ S2.

If x ∈ S1 ∩ S2, then x /∈ S1 ∩ S2. By DeMorgan’s Law: S1 ∩ S2 = S1 ∪ S2.
Thus, x /∈ S1 ∪ S2 → x ∈ S1 ∪ S2.

1



[Problem 3.] Linz, Page 14, Exercise 10.

Use Boolean Laws for logic.

x ∈ S1 ∩ (S2 ∪ S3) ≡ (x ∈ S1) ∧ (x ∈ S2 ∪ S3)

≡ (x ∈ S1) ∧ ((x ∈ S2) ∨ (x ∈ S3))

≡ ((x ∈ S1) ∧ (x ∈ S2)) ∨ ((x ∈ S1) ∧ (x ∈ S3))

≡ (x ∈ S1 ∩ S2) ∧ (x ∈ S1 ∩ S3)

≡ x ∈ (S1 ∩ S2) ∪ (S1 ∩ S3)

[Problem 4.] Linz, Page 14, Exercise 14.

Partition the set into equivalence classes based on the relation:

x ≡ y ↔ x mod 3 = y mod 3

We get {6, 9, 24}, {4, 25, 31, 37}, {2, 5, 23}.

[Problem 5.] Linz, Page 15, Exercise 18.

Given f(n) = O(g(n)) ⇒ f(n) ≤ c · g(n) and g(n) = O(h(n)) ⇒ g(n) ≤ d ·h(n),
where c and d are positive integers.
Then f(n) ≤ cd · h(n), thus f(n) = O(h(n)).

[Problem 6.] Linz, Page 15, Exercise 25.

Proof by induction on n.

Base case, where n = 1

1∑

i=1

i2 = 12 = 1 =
n(n + 1)(2n + 1)

6
=

1 · 2 · 3
6

= 1

Assume that the statement holds for n = k,

k∑

i=1

i2 =
k(k + 1)(2k + 1)

6
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Show that the statement holds for n = k + 1.

k+1∑

i=1

i2 =
k∑

i=1

i2+(k+1)2 =
k(k + 1)(2k + 1)

6
+(k+1)2 =

(k + 1)(k + 2)(2k + 3)

6

Therefore the statement is proven by induction on any n ≥ 1

[Problem 7.] Linz, Page 15, Exercise 28.

[a.] f(n) = O(2n)

Use induction to show that f(n) ≤ 2n.

Basis: when n = 1, 2, f(1) = 1 < 2 = 21 and f(2) = 1 < 4 = 22.

Inductive hypothesis: suppose f(k) ≤ 2k for k ≥ 3.

Induction step: show that f(k + 1) ≤ 2k+1.

f(k + 1) = f(k − 1) + f(k)

≤ 2k−1 + 2k = 3 · 2k−1

< 4 · 2k−1 = 2k+1

[b.] f(n) = Ω(1.5n)

Use induction to show that for very large n, f(n) ≥ 1

3
1.5n.

Basis: when n = 1, 2, f(1) = 1 > 0.5 = 1

3
· 1.51 and f(2) = 1 > 0.75 = 1

3
· 1.52.

Inductive hypothesis: suppose f(k) ≥ 1

3
· 1.5k for k ≥ 3.

Induction step: show that f(k + 1) ≥ 1

3
· 1.5k+1.

f(k + 1) = f(k − 1) + f(k)

≥ 1

3
· (1.5k−1 + 1.5k) =

1

3
· 2.5 · 1.5k−1

>
1

3
· 2.25 · 1.5k−1 =

1

3
· 1.52 · 1.5k−1 =

1

3
· 1.5k+1

[Problem 8.] Linz, Page 15, Exercise 29.

Proof by contradiction.
Suppose

√
8 is rational, then

√
8 = 2

√
2 = a

b
where a and b are integers and

have no common factor. This equation gives us
√

2 = a

2b
. However

√
2 is not

rational (proved in Example 1.7), contradiction. Thus
√

8 is not rational.
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[Problem 9.] Linz, Page 16, Exercise 32.

[a.] True.

Prove by contradiction, suppose a

b
+ irrational = c

d
.

Where a, b, c, d ∈ N
Then irrational = bc−ad

bd
, contradiction.

[b.] False.

For example, 2 +
√

2 + 2 −
√

2 = 4.

[c.] True.

Prove by contradiction, suppose a

b
× irrational = c

d
.

Where a, b, c, d are non-zero integers
Then irrational = bc

ad
, contradiction.

Thus, the statement is true for non-zero rationals.

[Problem 10.] Linz, Page 16, Exercise 35.

Given any triplet < n, n + 2, n + 4 > (where n ≥ 2), the numbers in the triplet
must be either all odds or all evens. Here we will focus on only the odd triplets,
since we’re looking for prime numbers in a triplet. However in every odd triplet,
there exists exactly one number that is divisible by 3. By observing the odd
number series, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, ..., we can see that between two
immediate multiple of 3’s, there contains two odd numbers. This means we can
pick any consecutive triplet which will contain a mutiple of 3. Therefore the
only triplet that contains all primes is < 3, 5, 7 >.
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