ECS 120: Theory of Computation

Homework 4 Solution

Due: 4/26/06

Problem 1.

[Linz, Section 3.2, Exercise 4c).]

[Linz, Section 3.2, Exercise 9.]

 $L((a^+(a+b)^++a^*(a^*b+c))(a+b^*)^*)$

[Linz, Section 3.2, Exercise 15.]

 $\begin{array}{l} (++-+\lambda) \cdot \\ (0+1+2+3+4+5+6+7+8+9) \cdot \\ (0+1+2+3+4+5+6+7+8+9)^* \cdot \\ (0+1+2+3+4+5+6+7+8+9)^* \cdot \\ (\lambda+(E(0+1+2+3+4+5+6+7+8+9)*) \end{array}$

[Linz, Section 3.3, Exercise 6.]

 $\begin{array}{l} S \rightarrow a a A | \lambda \\ A \rightarrow b A | a b S \end{array}$

[Linz, Section 3.3, Exercise 10.]

 $\begin{array}{l} S \rightarrow Aab | \lambda \\ A \rightarrow Ab | Saa \end{array}$

[Linz, Section 3.3, Exercise 14.]

Let *L* be a regular language accepted by a dfa $M = (Q, \Sigma, \delta, q_0, F)$. Since *M* does not contain λ , $q_0 \notin F$. Then *L* can be defined by a right-linear grammar $G = (Q, \Sigma, q_0, P)$, where *P* is defined as the following: $q_k \to aq_l$, where $q_k, q_l \in Q$, $a \in \Sigma$, and $\delta(q_k, a) = q_l$ $q_k \to a$, where $q_k \in Q$, $a \in \Sigma$, and $\delta(q_k, a) \in F$.

Problem 2.

Problem 3.

Construction of the DFA: Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$, we construct \widehat{M} that accepts chop(L(M)).

 $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F}), \text{ where } \widehat{F} = \{q \in Q : \exists a \in \Sigma \text{ for which } \delta(q, a) \in F\}.$

Show that $L(\widehat{M}) = chop(L(M))$ by showing $x \in L(\widehat{M}) \iff x \in chop(L(M))$:

If $w \in L(\widehat{M})$, then $\delta^*(q_0, w) \in \widehat{F}$. That means there should exist an $a \in \Sigma$ such that $\delta^*(q_0, wa) \in F$ and $wa \in L(M)$. Thus, $w \in chop(L(M))$ and $L(\widehat{M}) \subset chop(L(M))$.

If $w \in chop(L(M))$, then $\exists a \in \Sigma$ such that $wa \in L(M)$. That means $\delta(\delta^*(q_0, w), a) \in F$ and $\delta(q_0, w) \in \widehat{F}$. Thus, $w \in L(\widehat{M})$ and $chop(L(M)) \subset L(\widehat{M})$.

Since $L(\widehat{M}) \subset chop(L(M))$ and $chop(L(M)) \subset L(\widehat{M})$, $L(\widehat{M}) = chop(L(M))$. We have shown that L is regular and that there is a DFA that accpets chop(L). Thus, regular languages are closed under the *chop* operation.