
ECS 120: Theory of Computation

Homework 5 Solution

Due: 5/3/06

Problem 1.

[Linz, Section 4.2, Exercise 6).]

Before illustrating the algorithm, we need to prove that the family of regular
languages are closed under reversal.

Let LR = {w : wR ∈ L} and prove that LR is also regular:
Since L is regular, it is accepted by a DFA M = (Q,Σ, δ, q0, F ).
Let MR = (Q ∪ {qR},Σ, δR, qR, {q0}) be an NFA that accpets LR, where:

• qR is the new start state. Let δR(qR, λ) = F .

• For each transition in δ: δ(qi, a) = qj =⇒ δR(qj , a) = qi.

• {q0} is the set of final states for MR.

You can prove by induction that L(MR) = LR – i.e., x ∈ L(MR) ⇔ x ∈ LR.

The following describes an algorithm that determines whether a regular lan-
guage L contains any string w such that wR ∈ L in finite steps:

1. Construct a DFA M = (Q,Σ, δ, q0, F ), where L = L(M).

2. Construct a DFA MR, where L(MR) = {w : wR ∈ L}.

3. Coonstruct a DFA M ′, such that L(M ′) = L(M) ∩ L(MR) (based on
Theorem 4.1).

4. If L(M ′) 6= ∅ (using the algorithm from Theorem 4.6 to determine this
property), then there exists some wR ∈ L.
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[Linz, Section 4.2, Exercise 14.]

The following describes an algorithm that determines whether a regular lan-
guage L contains infinite number of even-length strings in finite steps:

1. Construct a DFA M = (Q,Σ, δ, q0, F ), where L = L(M).

2. Construct a DFA ME , where L(ME) = {w : w ∈ Σ∗ and |w| mod 2 = 0}.

3. Coonstruct a DFA M ′, such that L(M ′) = L(M) ∩ L(ME) (based on
Theorem 4.1).

4. If L(M ′) is infinite (using the algorithm from Theorem 4.6 to determine
this property), then L contains infinite even-length strings.

[Linz, Section 4.3, Exercise 5(d).]

No. Prove by contradition using the pumping lemma:
Given m, let w = a2m

, which is in L. w can be decomposed into xyz, where
|xy| ≤ m and y 6= λ. Suppose y = ak, where 1 ≤ k ≤ m, then we pump i
times to generate a string that contains 2m + k · (i − 1) a’s. Let i = 2, then
xy2z = a2m+k. Since 2m + k < 2m+1, a2m+k /∈ L. Thus, L is not regular.

[Linz, Section 4.3, Exercise 5(e).]

No. Prove by contradition using the pumping lemma:
Given m, let w = ap·q, where p and q are prime numbers and p · q ≥ m. w can
be decomposed into xyz, where |xy| ≤ m and y 6= λ. Suppose y = ak, where
1 ≤ k ≤ m, then we pump i times to generate a string that contains p·q+k·(i−1)
a’s. Let i = 1+p · q, then p · q +k · [(1+p · q)− 1] = p · q +k ·p · q = p · q · (k +1).
Since p · q · (k + 1) cannot be a product of two primes, ap·q·(k+1) /∈ L. Thus, L
is not regular.

[Linz, Section 4.3, Exercise 5(g).]

L∗ = {an : n ≥ 2, is the sum of primes} = {an : n = 0 and n ≥ 2}. Since a
simple DFA can be constructed for L∗, L∗ is regular.

[Linz, Section 4.3, Exercise 10(a).]

Given m, let w = a(m!)2+1 ∈ L. w can be decomposed into xyz, where |xy| ≤ m
and y 6= λ. Suppose y = ak, where 1 ≤ k ≤ m, then we pump i times to
generate a string with (m!)2 + 1 + k · (i − 1) a’s. Let i = 1 + 2·m!

k
.
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Then, (m!)2 + 1 + k · [(1 + 2·m!
k

) − 1] = (m!)2 + 2(m!) + 1 = (m! + 1)2.
Thus, L is not regular.

[Linz, Section 4.3, Exercise 10(b).]

Example 4.11 (on page 119) shows that L is not regular. Thus, by closure
properties L is not regular.

[Linz, Section 4.3, Exercise 15(e).]

No. Prove by contradiction using the pumping lemma.
Given m, let w = ambm ∈ L. w can be decomposed into xyz, where |xy| ≤ m
and y 6= λ. Since |xy| ≤ m, y contains only a’s. Suppose y = ak, where
1 ≤ k ≤ m, then we pump i times to generate a string with m + k · (i − 1) a’s
and m b’s. Let i = 2, then xy2z = am+kbm. Since m < m + k, am+kbm /∈ L.
Thus, L is not regular.

[Linz, Section 4.3, Exercise 15(f).]

Yes. We can construct a DFA M = (Q,Σ, δ, q0, F ) that accepts L, where
Q = {qi : 0 ≤ i ≤ 201}, Σ = {a, b}, F = {qi : 100 ≤ i ≤ 200}, and δ is
defined as follows:

• δ(q201, a) = q201 and δ(q201, b) = q201

• δ(qj , a) = qj+1 and δ(qj , b) = q201, for 0 ≤ j < 100

• δ(q100, a) = q100

• δ(qj , b) = qj+1 and δ(qj , a) = q201, for 100 ≤ j < 200

• δ(q200, a) = q201 and δ(q200, b) = q201

[Linz, Section 4.3, Exercise 24.]

No. For example, suppose L1 = L(a∗b∗) and L2 = {anbn : n ≥ 0}. Clearly, L1

is regular, but L2 is not (shown in Example 4.7). However, L1 ∪ L2 = L(a∗b∗)
is regular.

[Linz, Section 4.3, Exercise 26.]

L is regular and can be accepted by a DFA similar to Section 4.3, Exercise 15(f).
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[a.]

No. The pumping lemma is used for proof by contradiction. Although we could
show that any pumped string is still in L, there is nothing in the pumping
lemma that allows us to conclude that L is regular.

[b.]

No. For any given value of m, there is always a w such that wi ∈ L where i ≥ 0.
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