ECS 120: Theory of Computation

Homework 6 Solution

Due: 5/10/06

Problem 1.

[Linz, Section 6.2, Exercise 2).]

 $\begin{array}{l} S \rightarrow AC \\ C \rightarrow SB \\ A \rightarrow a \\ B \rightarrow b \end{array}$

[Linz, Section 6.2, Exercise 11.]

 $\begin{array}{l} S \rightarrow aSB \\ A \rightarrow a \\ B \rightarrow b \end{array}$

[Linz, Section 7.1, Exercise 4(d).]

Click to download solution.

[Linz, Section 7.1, Exercise 4(h).]

Click to download solution.

[Linz, Section 7.1, Exercise 4(k).]

Click to download solution.

[Linz, Section 7.1, Exercise 6.]

Click to download solution.

[Linz, Section 7.1, Exercise 17.]

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be an npda, where

$$L(M) = \{ w \in \Sigma^* : (q_0, w, z) \stackrel{\circ}{\vdash}_M (p, \lambda u), p \in F, u \in \Gamma^* \}.$$

We construct an npda \widehat{M} , such that $N(\widehat{M}) = L(M)$ and $\widehat{M} = (Q \cup \{p_f\}, \Sigma, \Gamma, \widehat{\delta}, q_0, z, \{p_f\})$:

- $\widehat{\delta}(p,\lambda,\gamma) = \{(p,\lambda)\}, p \in F, \gamma \in \Gamma$
- $\widehat{\delta}(p,\lambda,z) = \{(p_f,z)\}, p \in F$

Prove that $x \in L(M)$ iff $x \in N(\widehat{M})$:

If $x \in L(M)$, then $(q_0, x, z) \stackrel{*}{\vdash}_M (p, \lambda, u), p \in F, u \in \Gamma^*$. When feeding x to \widehat{M} , the new transitions will continuously pop out the existing stack symbols until the stack is empty. Thus, $(p, \lambda, u) \stackrel{*}{\vdash}_{\widehat{M}} (p_f, \lambda, z), p \in F, u \in \Gamma^*$ and $x \in N(\widehat{M})$. If $x \in N(\widehat{M})$, then there must exist $u \in \Gamma^*$ and $p \in F$ such that $(q_0, x, z) \stackrel{*}{\vdash}_{\widehat{M}} (p, \lambda, u)$ and $(p, \lambda, u) \stackrel{*}{\vdash}_{\widehat{M}} (p_f, \lambda, z)$. Since M finish reading x as it reaches a state in $F, x \in L(M)$. Therefore, $L(M) = N(\widehat{M})$.

Problem 2.

 $[\mathbf{a.}]$

 $L=\{aaa^nb^n:n\geq 1\}.$

[b.]

Click to download solution.

[c.]

Click to download solution.

[d.]

Click to download solution.