
ECS 120: Theory of Computation

Homework 8 Solution

Date: 5/31/06

[Problem 1.]

[Linz, Section 11.1, Exercise 10]

Yes. Suppose L1 and L2 are recursive languages and can be accepted by turing machines M1

and M2, respectively. We construct a turing machine M̂ , such that:

1. Given an input w ∈ Σ∗

2. Break w into two substrings w1 and w2

(a) Run M1 with w1 and M2 with w2 seperately in parallel

(b) If w1 ∈ L(M1) and w2 ∈ L(M2), then M̂ accepts w.

Clearly, M̂ accepts L1 · L2. Also, M̂ can decide w ∈ Σ∗ in finite number of steps, because
step 2 takes at most |w| − 1 iterations, and step 2(a) can be done in finite steps (L1 and L2 are
recursive). Therefore, L1 · L2 is recursive.

[Linz, Section 11.1, Exercise 16]

Proof by contradiction. Suppose S1 − S2 is finite, and therefore is countable. Then S2 must
countable, since S1 is countable. However, S2 is uncountable, thus S2 − S1 is infinite and
uncountable.

[Linz, Section 11.1, Exercise 19]

Consider numbers between 0 and 1. Irrational numbers have been defined as decimal (non-
periodic) fractions. Assume it is possible to enumerate all such decimals. Let’s choose an
enumeration and list the decimals in the corresponding order:
a1 = 0.a11a12a13a14...
a2 = 0.a21a22a23a24...
a3 = 0.a31a32a33a34...
...

where amn stands for the nth digit of the mth decimal. Apply Cantor’s diagonal process. To
remind, we made an assumption that all the decimals between 0 and 1 have been listed in the

1

sequence above. Proof by contradiction by showing that at least one decimal is missing from
the list. The decimal b = 0.b1b2... is constructed a digit by digit. Select b1 to be any digit but
a11. Select b2 to be any digit but a22. And in general, select bn to be any digit but ann. Then
b can’t equal any decimal an, n = 1, 2, 3, ... because b differs from a1 in the first digit; it differs
from a2 in the second digit and so on.

[Linz, Section 11.2, Exercise 8]

For each prduction rule u → v, where |u|, |v| > 2, rewrite u and v such that |u|, |v| ≤ 2 and
|u| ≤ v. For example, let us rewrite aABcC → aBAc:

The first step is to rewrite u:
aB → V1V0

V1c → V2V0

V2C → aBAc
V0 → λ

The second step is to rewrite v using similar techniques that convert CFGs to Chomsky normal
form:
V2 → V3V4

V3 → aB
V4 → Ac

For u → v, where |u| = 2 and |v| = 1, append V0 to v as used in Exerise 7.

[Problem 2.]

[a.]

2

[b.]

[c.]

T → aATZ|bBTZ|aa|bb
Aa → aA
Ab → bA
Ba → aB
Bb → bB
AZ → Za
BZ → Zb
Z → λ

Z is used to prevent subsequent swapping.

3

