ECS 120: Theory of Computation

Homework 8 Solution

Date: 5/31/06

[Problem 1.]

[Linz, Section 11.1, Exercise 10]

Yes. Suppose L_1 and L_2 are recursive languages and can be accepted by turing machines M_1 and M_2 , respectively. We construct a turing machine \widehat{M} , such that:

- 1. Given an input $w \in \Sigma^*$
- 2. Break w into two substrings w_1 and w_2
 - (a) Run M_1 with w_1 and M_2 with w_2 separately in parallel
 - (b) If $w_1 \in L(M_1)$ and $w_2 \in L(M_2)$, then \widehat{M} accepts w.

Clearly, \widehat{M} accepts $L_1 \cdot L_2$. Also, \widehat{M} can decide $w \in \Sigma^*$ in finite number of steps, because step 2 takes at most |w| - 1 iterations, and step 2(a) can be done in finite steps (L_1 and L_2 are recursive). Therefore, $L_1 \cdot L_2$ is recursive.

[Linz, Section 11.1, Exercise 16]

Proof by contradiction. Suppose $S_1 - S_2$ is finite, and therefore is countable. Then S_2 must countable, since S_1 is countable. However, S_2 is uncountable, thus $S_2 - S_1$ is infinite and uncountable.

[Linz, Section 11.1, Exercise 19]

Consider numbers between 0 and 1. Irrational numbers have been defined as decimal (nonperiodic) fractions. Assume it is possible to enumerate all such decimals. Let's choose an enumeration and list the decimals in the corresponding order:

 $\begin{aligned} a_1 &= 0.a_{11}a_{12}a_{13}a_{14}... \\ a_2 &= 0.a_{21}a_{22}a_{23}a_{24}... \\ a_3 &= 0.a_{31}a_{32}a_{33}a_{34}... \\ ... \end{aligned}$

where a_{mn} stands for the n^{th} digit of the m^{th} decimal. Apply Cantor's diagonal process. To remind, we made an assumption that all the decimals between 0 and 1 have been listed in the

sequence above. Proof by contradiction by showing that at least one decimal is missing from the list. The decimal $b = 0.b_1b_2...$ is constructed a digit by digit. Select b_1 to be any digit but a_{11} . Select b_2 to be any digit but a_{22} . And in general, select b_n to be any digit but a_{nn} . Then b can't equal any decimal a_n , n = 1, 2, 3, ... because b differs from a_1 in the first digit; it differs from a_2 in the second digit and so on.

[Linz, Section 11.2, Exercise 8]

For each prduction rule $u \to v$, where |u|, |v| > 2, rewrite u and v such that $|u|, |v| \le 2$ and $|u| \le v$. For example, let us rewrite $aABcC \to aBAc$:

The first step is to rewrite u: $aB \rightarrow V_1V_0$ $V_1c \rightarrow V_2V_0$ $V_2C \rightarrow aBAc$ $V_0 \rightarrow \lambda$

The second step is to rewrite v using similar techniques that convert CFGs to Chomsky normal form:

 $\begin{array}{l} V_2 \rightarrow V_3 V_4 \\ V_3 \rightarrow aB \\ V_4 \rightarrow Ac \end{array}$

For $u \to v$, where |u| = 2 and |v| = 1, append V_0 to v as used in Exerise 7.

[Problem 2.]

[a.]

[c.]

 $\begin{array}{l} T \rightarrow aATZ|bBTZ|aa|bb\\ Aa \rightarrow aA\\ Ab \rightarrow bA\\ Ba \rightarrow aB\\ Bb \rightarrow bB\\ AZ \rightarrow Za\\ BZ \rightarrow Zb\\ Z \rightarrow \lambda \end{array}$

Z is used to prevent subsequent swapping.

[b.]