ECS 120: Theory of Computation

Homework 8 Solution

Date: 5/31/06

[Problem 1.]

[Linz, Section 11.1, Exercise 10]

Yes. Suppose L_1 and L_2 are recursive languages and can be accepted by turing machines M_1 and M_2 , respectively. We construct a turing machine \widehat{M} , such that:

- 1. Given an input $w \in \Sigma^*$
- 2. Break w into two substrings w_1 and w_2
 - (a) Run M_1 with w_1 and M_2 with w_2 seperately in parallel
 - (b) If $w_1 \in L(M_1)$ and $w_2 \in L(M_2)$, then \widehat{M} accepts w.

Clearly, \widehat{M} accepts $L_1 \cdot L_2$. Also, \widehat{M} can decide $w \in \Sigma^*$ in finite number of steps, because step 2 takes at most |w|-1 iterations, and step 2(a) can be done in finite steps (L_1 and L_2 are recursive). Therefore, $L_1 \cdot L_2$ is recursive.

[Linz, Section 11.1, Exercise 16]

Proof by contradiction. Suppose $S_1 - S_2$ is finite, and therefore is countable. Then S_2 must countable, since S_1 is countable. However, S_2 is uncountable, thus $S_2 - S_1$ is infinite and uncountable.

[Linz, Section 11.1, Exercise 19]

Consider numbers between 0 and 1. Irrational numbers have been defined as decimal (non-periodic) fractions. Assume it is possible to enumerate all such decimals. Let's choose an enumeration and list the decimals in the corresponding order:

```
\begin{array}{l} a_1 = 0.a_{11}a_{12}a_{13}a_{14}...\\ a_2 = 0.a_{21}a_{22}a_{23}a_{24}...\\ a_3 = 0.a_{31}a_{32}a_{33}a_{34}...\\ ... \end{array}
```

where a_{mn} stands for the n^{th} digit of the m^{th} decimal. Apply Cantor's diagonal process. To remind, we made an assumption that all the decimals between 0 and 1 have been listed in the

sequence above. Proof by contradiction by showing that at least one decimal is missing from the list. The decimal $b = 0.b_1b_2...$ is constructed a digit by digit. Select b_1 to be any digit but a_{11} . Select b_2 to be any digit but a_{22} . And in general, select b_n to be any digit but a_{nn} . Then b can't equal any decimal a_n , n=1,2,3,... because b differs from a_1 in the first digit; it differs from a_2 in the second digit and so on.

[Linz, Section 11.2, Exercise 8]

For each prduction rule $u \to v$, where |u|, |v| > 2, rewrite u and v such that $|u|, |v| \leq 2$ and $|u| \leq v$. For example, let us rewrite $aABcC \rightarrow aBAc$:

The first step is to rewrite u:

 $aB \rightarrow V_1 V_0$

 $V_1c \rightarrow V_2V_0$

 $V_2C \rightarrow aBAc$

 $V_0 \rightarrow \lambda$

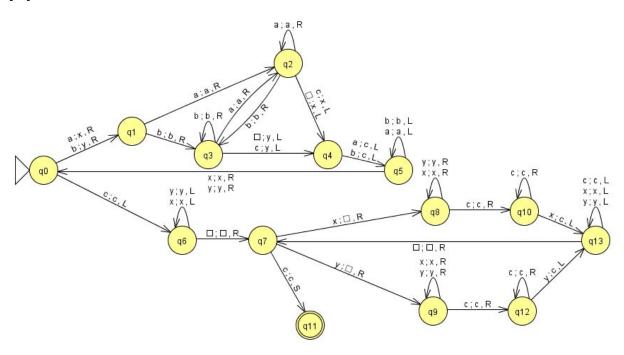
The second step is to rewrite v using similar techniques that convert CFGs to Chomsky normal

 $V_2 \rightarrow V_3 V_4$ $V_3 \rightarrow aB$ $V_4 \rightarrow Ac$

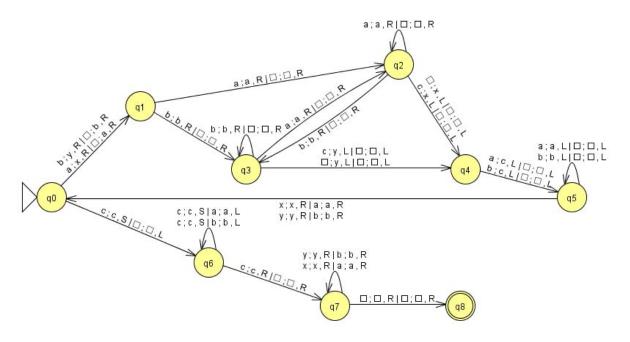
For $u \to v$, where |u| = 2 and |v| = 1, append V_0 to v as used in Exerise 7.

[Problem 2.]

[a.]



[b.]



[c.]

 $T \rightarrow aATZ|bBTZ|aa|bb$

 $Aa \to aA$

 $Ab \rightarrow bA$

 $Ba \rightarrow aB$

 $Bb \rightarrow bB$

 $AZ \rightarrow Za$

 $BZ \to Zb$

 $Z \to \lambda$

Z is used to prevent subsequent swapping.