
ExecRecorder: VM-Based Full-System Replay for Attack
Analysis and System Recovery

Daniela A. S. de Oliveira Jedidiah R. Crandall Gary Wassermann
S. Felix Wu Zhendong Su Frederic T. Chong

University of California at {Davis, Santa Barbara}
{oliveira,crandall,wassermg,wu,su}@cs.ucdavis.edu, chong@cs.ucsb.edu

Abstract
Log-based recovery and replay systems are important for system
reliability, debugging and postmortem analysis/recovery of mal-
ware attacks. These systems must incur low space and performance
overhead, provide full-system replay capabilities, and be resilient
against attacks. Previous approaches fail to meet these require-
ments: they replay only a single process, or require changes in
the host and guest OS, or do not have a fully-implemented re-
play component. This paper studies full-system replay for unipro-
cessors by logging and replaying architectural events. To limit the
amount of logged information, we identify architectural nondeter-
ministic events, and encode them compactly. Here we present Exe-
cRecorder, a full-system, VM-based, log and replay framework for
post-attack analysis and recovery. ExecRecorder can replay the ex-
ecution of an entire system by checkpointing the system state and
logging architectural nondeterministic events, and imposes low per-
formance overhead (less than 4% on average). In our evaluation its
log files grow at about 5.4 GB/hour (arithmetic mean). Thus it is
practical to log on the order of hours or days between checkpoints.
It can also be integrated naturally with an IDS and a post-attack
analysis tool for intrusion analysis and recovery.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection–invasive software; B.8.1 [Performance
and Reliability]: Reliability, Testing, and Fault-Tolerance

General Terms Security, virtual machines, invasive software

Keywords replay, recovery, malware, worms, virtual machines

1. Introduction
Log-based recovery [2, 3, 5, 11, 19, 23, 24] and replay [7, 10, 13, 17,
20, 21, 27, 30] systems are important for system reliability and sys-
tem security. Recent work has also used a replayer to perform post-
mortem analysis of malcode attacks [10]. After an attack, one may
replay the attack sequence using off-line analyzers. Replay systems
can also be used for recovery from malware attacks by integrating
them with an intrusion detection system (IDS) and an analysis tool.
Upon detecting an attack (with an IDS) and discovering the exe-
cution point at which the attack happened (with an analysis tool),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASID’06 October 21, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-576-2. . . $5.00.

one can roll-back the system execution to an earlier checkpoint and
disable particular effects of the attack.

Replay and recovery systems are generally based on three com-
ponents: checkpoint, log and replay. The checkpoint component
captures a snapshot of the current state of a system at specific times.
The log component records the nondeterministic events that af-
fected system execution since the checkpoint was taken. The replay
component uses the information logged along with the checkpoint
to deterministically replay the system execution during that specific
run (the sequence of states a system passes through during execu-
tion, represented by the partial ordering of events sent and received
and also local events [2, 3]).

These systems must incur low space and performance overhead,
provide full-system replay capabilities, and be resilient against
attacks. Previous approaches fail to meet these requirements. Most
replay only a single process or application [13, 17, 21, 27]. Those
that address the whole system require changes in the host and guest
OS [10], or do not have yet a fully-implemented replay component
[30].

This paper studies full-system log-and-replay for uniprocessors
by logging and replaying architectural events. In order to limit the
amount of information that needs to be logged we characterize
architectural nondeterminism, both by identifying nondeterministic
events and by encoding them compactly. Working at the level of
architectural events enables a full-system replay that is flexible with
respect to the OS and the applications.

We have implemented our system as ExecRecorder, a full-
system, VM-based log and replay framework for post-attack anal-
ysis and recovery. It can replay the execution of an entire system
(not only a process or a distributed application in isolation) by
checkpointing the complete system state (virtual memory and CPU
registers, virtual hard disk and memory of all virtual external de-
vices) and logging all architectural nondeterministic events. The
checkpoints can be taken at any time and the replay does not need
to start from a powered-off machine. Our strategy for checkpoint-
ing the hard disk (HD) is efficient (based on copy-on-write), and is
achieved by using committable/rollbackable disk images.

Virtual machines (VMs) are considered the ideal place, in terms
of security and reliability, where an IDS or a post-attack analysis
tool should be placed. This is because even when the monitored
guest OS is compromised, an attacker cannot easily control the
actions of an IDS or the integrity of logged data. Because Exe-
cRecorder runs as part of a VM, it is not easily accessible to mal-
ware, yet still gives a detailed view of the system execution. In
order to perform post-attack analysis and recovery there should be
integration and cooperation among the IDS, analysis tool and re-
play system. We believe that this can be best achieved when all of
these are running under the complete control of a VM.

ExecRecorder imposes low performance overhead (beyond that
of the VM). In our evaluation, which includes multiple workloads
in both Windows and Linux, its log files grow at about 5.4 GB/hour
(arithmetic mean). Thus it is practical to log on the order of hours
or days between checkpoints. It can also be integrated naturally
with an IDS, such as Minos [8], to determine when an exploit
has occurred. An analysis tool, such as DACODA [9], can point
where the exploit was detected in order to understand the exploited
vulnerability.

The rest of the paper is organized as follows. Section 2 surveys
related work. This is followed by Section 3 which characterizes ar-
chitectural nondeterministic events and provides a compact format
encoding. Then Section 4 presents ExecRecorder and details its im-
plementation, followed by Section 5 which presents our experimen-
tal evaluation. In Section 6 we describe an example of post-attack
analysis using ExecRecorder, and conclude with a discussion of fu-
ture work in Section 7.

Our contributions are as follows. First, we provide a charac-
terization of architectural nondeterminism for uniprocessors and
a compact format encoding. Second, we present a low-overhead,
full-system log and replay framework for uniprocessors that runs
integrated with a VM and does not require any modification in the
guest or host OS. Third, we show with a practical example how
such system can streamline the analysis of a zero-day exploit.

2. Related Work
Instant Replay [17] is a deterministic replay for highly parallel
programs to help the debugging process. During program execution
the relative order of significant events is saved without recording
any data associated with them. It is well-suited for replaying non-
interactive applications.

Flashback [27] is a lightweight OS extension for software de-
bugging that provides replay capabilities for an application. The
main idea is to use shadow processes to capture the in-memory state
of a process at a specific execution point and log the process’ in-
teractions with the system. ExecRecorder can replay the execution
of an entire system in the same environment as it happened during
log and does not require any changes in the OS. In Flashback, a
replayed application may be executed in a different environment.

Rx [21] proposes an interesting technique to survive software
failures by treating bugs as allergies: their manifestations can be
avoided if the execution environment is changed. As in Flashback
[27], it also uses shadow processes and the application replay
happens in a changed environment.

FDR [30] is a low-overhead, full-system hardware recorder for
software debugging. Our system is different from FDR in that it
records architectural events inside a VM and does not address mul-
tiprocessors and DMA, while FDR is an actual design of a hard-
ware recorder for multiprocessors. On the other hand, FDR only
enables replay intervals of approximately 1 second, does not cap-
ture disk state, and does not provide a fully-implemented replayer.
ExecRecorder allows replay windows of any length (provided that
there is enough disk space to store the log files) and checkpoints
the disk with copy-on-write.

BugNet [13] is a log and replay architecture for debugging. It
records the register file contents at any point in time, and the load
values that occur after that point. As it focuses on application level
bugs, it cannot replay the full-system execution.

Dunlap et al. proposed ReVirt [10], a logging and replay sys-
tem for analyzing intrusions that runs integrated with a VM and
performs the logging in the host OS. After an attack, it can replay
the whole VM process for analysis. Our work is different from Re-
Virt because our application requires fine-grained control and more
flexibility in the choice of the guest OS. ExecRecorder does not
require any changes in the guest or host OS. This is important be-

cause most Internet worms attack Windows, and many worms or
attacks must be caught with a specific version of an OS. For our
studies we need to be able to run Windows XP, Windows 2000,
Windows Whistler, as well as a variety of Linux, FreeBSD, and
OpenBSD distributions, and interface with these using a Pentium
hardware interface. ReVirt is implemented as a set of modifications
in the host kernel and the guest OS must be ported to run on their
VM (UMLinux). Second, ExecRecorder gives us complete control
of a system under replay, which is necessary for future work on
attack recovery and replay-based entropy control. In post-attack re-
covery, where we want to recover the system by disabling partic-
ular effects of the attack and replaying the modified run, we need
full-control of each event being replayed. ReVirt, by just replaying
the VM process from the perspective of the host OS, does not of-
fer such level of control. While Bochs limits the performance of our
implementation, we can do very sophisticated analysis without pro-
hibitively affecting system performance by using the low-overhead
ExecRecorder module, and then do the analysis during replay with
much more expensive modules such as DACODA.

3. Nondeterminism
Models of real-world systems necessarily exclude some details of
the systems they model. Within a model, a nondeterministic event
is one that causes a state transition but is not fully determined by
the previous state, i.e., the event could not have been predicted with
certainty from knowledge only of the model’s previous state(s). For
systems based on uniprocessors, the nondeterministic architectural
events are hardware interrupts and input events.

3.1 Hardware Interrupts

External devices such as the HD or the keyboard generate interrupts
asynchronously with regard to the processor clock [18]. Although
it is possible to model the behavior of a certain device with great
accuracy, the exact time at which an interrupt is generated is unpre-
dictable.

We encode an interrupt as an integer representing the difference
between the tick of the last event and the tick at which the inter-
rupt occurred, and an integer encoding the interrupt value, i.e., the
IRQ line number. In our VM, the tick means the number of in-
structions executed before that event happened [31]. Logging just
the tick difference allows us to considerably reduce the amount of
logged data. For example, if the tick at which an interrupt occurred
is 4294967298 and the tick of the last event is 4294967297 (both
requiring 8 bytes for recording), we log just 1 as the tick informa-
tion for the interrupt event. This approach decreases the number of
bytes required to record the event’s timing from 8 bytes to a maxi-
mum of 4 bytes (we have observed that the tick difference does not
exceed 2

32).
In this study we have considered the following external devices:

PIT, CMOS, HD, keyboard, mouse, network card and serial and
parallel port devices. PIT interrupts are generally regarded as de-
terministic events. We are characterizing them as nondeterministic
because, although most of its interrupts occur at a fixed frequency,
there is some nondeterminism coming from noise in the device’s
crystal-controlled oscillator and from our VM’s PIT implementa-
tion. As a result, these interrupts are not entirely predictable.

3.2 Input Events

These are events where data from a device is read to main memory
or a register where the CPU can process it. The exact time at which
these data become available to the CPU is also unpredictable, even
though the behavior of external devices can be modeled. Moreover,
the bytes coming from such events are also nondeterministic be-
cause they can come from user input, network or the environment

(for example, the current time). An important exception are the
bytes coming from the HD. The value of these bytes is based solely
on the contents of the disk and the disk requests made by a pro-
gram. Thus, we characterize input events coming from the HD as
deterministic. We encode an input event as an integer representing
the tick difference and an integer representing the byte(s) read.

4. The Log and Replay Framework
4.1 Log-Based Rollback Recovery

Log-based rollback recovery is a technique used to achieve fault-
tolerance in distributed systems and also to allow the replay of an
application or system for debugging or post-attack analysis. The
main idea is to combine checkpoints with a log file. The check-
point is a snapshot of the system state. The log file contains enough
information to reproduce all nondeterministic events that occurred
during a run. All messages received by the system during a run are
classified as nondeterministic. Log-based rollback recovery relies
on the piecewise deterministic assumption [2, 11] which states that
all nondeterministic events that a process executes can be identi-
fied and all information necessary to reproduce these events can be
logged. This set of information needed to reproduce a nondetermin-
istic event is called the determinant of the event [3].

Besides the checkpoint and the log components, there is also
a replay component. The log component continuously records de-
terminants of nondeterministic events in a non-volatile medium.
The replay component recovers the system state captured by a
checkpoint (usually the latest one) and uses the determinants in the
log file to reproduce the execution of a run. The amount of data
recorded plays an important role on the performance of such sys-
tems. It will directly impact the overhead incurred by the log and
replay components.

4.2 Logging and Replaying Inside a VM

A VM is a software layer running on top of a real machine or a host
OS to support running a system or a process in a target architecture
[25]. The code providing virtualization is usually called virtual
machine monitor (VMM).

VM’s were first developed more than 30 years ago to provide
timesharing capabilities to mainframes. Today, they have been re-
ceiving renewed attention by academia and industry [6, 12, 16, 22,
25,29] due to the advantages they provide for present applications,
especially in the security field. VM’s are suitable for system repli-
cation because they allow several virtual machines execute different
systems or applications concurrently on a single real machine. They
can also provide software compatibility and portability by allow-
ing software written for a certain architecture be executed on an-
other [25]. Further, they can isolate systems and applications from
one another, thus, improving reliability and security: a crash, a bug
or a security breach of a certain system or application will not im-
pact others being executed in different VM’s.

A system-level VM supports an entire guest OS along with its
applications and can be classified as native-VM, hosted-VM or
dual-hosted-VM. A native-VM is installed directly on hardware
and has the best performance among the three. A host-VM is
installed on top of a host OS and has the worst performance due to
the extra level of software. A dual-hosted-VM represents a hybrid
solution by having some of its modules running in priviledged
mode (as in a native-VM) and others in user-mode (as in a host-
VM).

Although native-VM’s present better performance, hosted-
VM’s lend themselves better for post-attack analysis and recovery.
They provide isolation for the host OS: we can have an IDS and a
set of applications running in the host OS even if a guest OS has
been compromised by an attack.

VMM (Bochs)

IDS (Minos)

Hardware (Intel IA−32)

Host OS (Linux 2.6)

Other Linux Applications
Replayer (ExecRecorder)

Analysis Tool (DACODA)

Guest OS (Linux or Windows)

Guest Application Guest Application

Figure 1. Our VM architecture.

4.3 Implementation

We have used Bochs [31] as the VM of our experiments. It is
a hosted-VM that emulates the IA-32 Pentium architecture. The
host OS in these experiments is Linux 2.6. Our VM is currently
integrated with Minos [8], a microarchitecture to catch attacks, and
DACODA [9], a post-attack analysis tool. We have designed this
system to run as a honeypot. Figure 1 illustrates this architecture.
ExecRecorder has three main components: checkpoint, log and
replay.

4.3.1 Checkpoint

This module is executed immediately before the logging of a sys-
tem run. It is responsible for saving the system state (virtual main
memory, CPU registers, HD and memory from external devices) at
the current instant of time. We have implemented it by duplicating
the Bochs VM process via the fork system call. After the fork, the
parent process waits in the background for a SIGUSR1 signal while
the child process continues its execution. The suspended parent rep-
resents the frozen state of the system at the time the checkpoint was
taken.

The checkpoint of the virtual HD is achieved by using the
undoable disk mode of Bochs. An undoable disk is a commit-
table/rollbackable disk image [31]. It is based on a read-only
disk image combined with a file, called redolog, that contains all
changes made to the read-only image. After a run the redolog file
can be merged to the read-only image or simply discarded. Ex-
ecRecorder always starts the VM with the read-only disk image.
When a checkpoint is taken, the child process continues its execu-
tion with a new redolog file, which is initialized with the contents
of the parent process redolog file.

4.3.2 Log

The log component records in the host HD enough information
about the nondeterministic events happening in the system so that
they can be later replayed.

In order to correctly replay input events we need to log more
information than just the characterization of nondeterministic input
events given in Section 3.2. Although an input event can be solely
characterized by the time or tick at which it occurred and the
bytes read, our replay component needs enough information about
the input instruction itself to correctly reproduce it. For example,
for the Intel IA-32 architecture [14] we have input instructions to
transfer a (or a string of) byte(s), word(s), or a double word(s)
between an I/O port and a CPU register. To simulate an I/O port
instruction, our VM implementation requires knowledge of the
number of bytes being transferred and whether it is to a register
or memory. In theory, this type of information is not required in the
log file.

Figure 2. ExecRecorder.

Although we have considered all input events from the HD as
deterministic, the replay component still needs information about
the HD input instruction to reproduce it. The reason is that, during
replay, we need to make the disk requests synchronized with the
tick at which an HD interrupt occurs. If we do not log and replay
such instructions, it may occur that (at least in our Bochs VM)
a HD interrupt is raised before the intended bytes are read from
the disk. Note that we do not log the bytes read from the disk but
only information about the input instruction. FDR [30], on the other
hand, logs all values returned from I/O loads.

The format of our log files is as follows:

• event type (1 byte): input event, interrupt or the handling of an
interrupt by the CPU (the last one is Bochs-specific);

• tick difference (4 bytes);

• Input events-specific: port address (2 bytes), bytes (4 bytes,
not logged for HD), flags (1 byte encoding information about
number of bytes being transferred and whether it is to a register
or memory), memory address (4 bytes, logged only if bytes are
being transferred to memory);

• Interrupts-specific: IRQ number (1 byte).

4.3.3 Replay

After the logging of a run this module can be called to reproduce
the system execution from a certain checkpoint. The child process
wakes up the parent process with a SIGUSR1 signal. The parent
process, which captures the system state at the point the checkpoint
was taken, resumes its execution. The virtual disk image used is
also the one at the time the checkpoint was taken. However, all
interrupts or input events that may be generated are disabled and
do not affect the state of the system. Being in replay mode, the VM
uses all information recorded in the log file to reproduce the events
at the tick at which they happened during the log phase. Figure 2
illustrates how ExecRecorder works.

The log and replay framework also acted as an oracle in validat-
ing our characterization of architectural nondeterministic events.
We have validated our characterization of nondeterminism by try-
ing to remove each type of nondeterministic event and then replay-
ing the system execution. The exclusion of a certain type of nonde-
terministic event would prevent a successful replay.

4.3.4 Multiprocessors and DMA Discussion

Our proof-of-concept implementation currently does not address
multiprocessors and DMA. However, our approach can be ex-
tended, in principle, to include them. A first direction for this fu-

ture work is to extend our VM to model the cache subsystem, DMA
and the bus. From these models we can extend ExecRecorder to log
DMA writes and the minimal subset of memory races according to
the algorithm proposed in the FDR design [30].

5. Experimental Results
In our experiments we have analyzed, for Linux and Windows, the
size of the log files generated by ExecRecorder and the log files’
growth rate when we varied the workload in the guest OS. We have
also analyzed the performance overhead incurred by the logging
component. We have studied the system in the following situations:
running a Web server which is receiving a burst of requests in a
noisy campus network, executing intensively its CPU and disk, and
running multitask activities, and idle.

We have selected a set of publicly available applications as our
workloads. For each one of our experiments we ran each workload
three times and averaged the results obtained. The workloads cho-
sen for Linux and Windows were independent from one another
because we have used publicly available workloads or benchmarks
and, in general, they are developed for a specific OS. The experi-
ments were executed on a Pentium 4 SMP with 2 3.2 GHz CPU’s
and 1 GB of RAM.

5.1 Linux

We have selected two workloads for our Linux 2.4.21 guest OS.
The first one tests the system running the Apache Web server [4].
It generates, from an external network, a burst of 2000 requests to
fetch a 3K html document.

The second workload was UnixBench [28], which is a bench-
mark suite for Linux that integrates CPU, file I/O, process spawning
and other workloads. The following tests were performed: Dhrys-
tone 2 using register variables, arithmetic, system call overhead,
pipe throughput, pipe-based context switching, process creation,
execl throughput, file system throughput, concurrent shell scripts,
compiler throughput, and recursion.

5.2 Windows XP

We have selected three workloads for Windows. The first is the
same used to test Linux as a Web server [4]. We tested the Apache
Web server in Windows by generating 200 requests to fetch a 3K
html document. The requests were also generated from an external
network, where, in this case, we have generated one request per sec-
ond. We have inserted a light load in our Web server for Windows,
because it could not handle well more than 200 HTTP requests per
second.

The second workload was Microsoft SQLIO [26], a disk subsys-
tem benchmark tool. It generates disk workload so as to simulate
aspects of the I/O workload of the Microsoft SQL Server. In our
tests, we had one thread reading for approximately two minutes
from a file using 2 KB IO’s over 128 KB stripes with 64 IO’s per
run.

The third workload was an implementation of the Sieve of
Erastosthenes. Our goal was to generate a CPU-intensive workload.
We have chosen to use this algorithm not only because it is usually
part of several well-known CPU benchmarks, but also because
publicly available CPU benchmarks for Windows were interactive
and we did not want the user response time to influence our results.

5.3 Results

Figure 3 shows how the size of our log files varied for each consid-
ered workload for Linux and Windows, and Figure 4 presents the
corresponding log file growth rate in GB/hour.

Although our choice of applications does not represent a char-
acterization of a certain type of workload, we observe that I/O-
intensive applications, especially those that extensively use the HD,

Figure 3. Log size (MB) for different workloads - Linux and
Windows.

Figure 4. Log file growth rate.

tend to have a larger log file growth rate. Also, our results show that
ExecRecorder is feasible and practical for different types of work-
loads provided that the frequency at which checkpoints are taken is
chosen appropriately, considering the amount of disk space avail-
able for logging. As the cost of HD’s is relatively low, checkpoints
can be taken every hour, twice a day or every day, depending on
the demand of the application. Although the redolog file (Section
4.3.1) should count as part of the non-volatile storage necessary, we
did not consider it as part of the ever-growing log. This is because
the redolog file can be at most the size of the original HD no matter
how long we run a benchmark.

Figure 5 illustrates the performance overhead of the logging
component for our selected workloads. For all cases the overhead
due to logging is low (less than 4% on average). We have not shown
performance results during replay because according to Elnozahy
and Alvisi [11], it has been observed that in replay mode the sys-
tem can run considerably faster than in normal execution. During
normal execution a process may block waiting for I/O events while
during replay all events can be immediately replayed.

6. Post-Attack Analysis
Here we describe a practical example of using ExecRecorder to
perform post-attack analysis. In this experiment we have Minos
as our IDS and DACODA as our analysis tool, according to the
architecture shown in Figure 1.

Minos is a security-enhanced microarchitecture that prevents at-
tacks that hijack program control flow. Every 32-bit word of mem-
ory and every 32-bit general purpose register in the x86 architecture
is augmented with one tag bit which represents the integrity level

Figure 5. Performance overhead due to logging - Linux and
Windows.

of this word (zero meaning low integrity and one high integrity).
This bit is set by the kernel based on the trust it has for the data.
The basic assumption is that any control transfer (instructions such
as jump, call, and return) involving untrusted data is a system vul-
nerability and a hardware exception traps to the kernel whenever
this occurs.

DACODA is a tool that analyzes attacks using symbolic execu-
tion. It labels each byte coming from the network with a unique
identifier and tracks these bytes in the system during their life-
time. When Minos catches an attack, DACODA provides informa-
tion about it, such as processes involved, if the attack involved ker-
nel or user processes, tokens that compose the attack trace and the
predicates found. A limitation of this tool is the performance over-
head it incurs, because for each instruction executed, DACODA
has to perform symbolic execution. This overhead is exacerbated
for exploits that require considerable amount of computation such
as Code Red II and ASN.1. IntroVirt [15] also uses predicates to
detect intrusions. The difference between the two is their goals.
IntroVirt checks if a system has been exploited in the period be-
tween vulnerability discovery and patch release, while DACODA
analyzes and generates signatures for zero-day exploits.

ExecRecorder, Minos and DACODA currently run as extensions
to Bochs. To integrate ExecRecorder with them we just need to log
and process more information. For Minos we have to log the in-
tegrity bit of every word transferred in input events and for DA-
CODA we have to log all incoming network packets because their
bytes need to be labeled in the order that they were received by the
network card and not in the order delivered to the CPU (the bytes
are usually reordered in the network card).

A solution is to turn off DACODA in our honeypot and only
execute it off-line using ExecRecorder. Our honeypot executes Mi-
nos along with ExecRecorder in log mode, which incurs very low
performance overhead. When Minos catches an attack, we use the
log file generated since the last checkpoint and analyze the attack
off-line with DACODA.

Here we analyze, for an exploit of the wu-ftpd 2.6.0 vulnerabil-
ity [1], the size of the log file generated and the execution time of
the attack in three situations: when it executes with only Minos on,
when it executes with Minos and ExecRecorder in log mode, and
when it executes with Minos and DACODA on. Figure 6 shows the
exploit execution time for these three situations. The log file for the
exploit is 1.769 MB.

DACODA provided us with the following information about
this attack: (1) it has a total of 2888 predicates and all of
them were found in user space, (2) the process involved is
wu-ftpd, (3) the longest signature token has 283 bytes, and
(4) the token length histogram as “Number(size in bytes)” is
4(283),4(119),4(11),1(10),1(9),1(6),4(5),3(4),4(3),10(2),41(1).

Figure 6. Execution times for wu-ftpd 2.6.0 exploit.

7. Discussion
In this work we presented ExecRecorder, a full-system, VM-based
log and replay framework for uniprocessors to perform post-attack
analysis and recovery. It addresses the limitations found in current
replay systems by providing full-system replay capabilities and low
performance overhead without requiring any OS changes.

The lessons we have learned can be summarized as follows. We
can considerably decrease the amount of logged data by recording
the tick or time difference of an event and the last one, instead
of its absolute timing value. Also, although an input event can
be characterized by its timing and bytes only, a replayer usually
will need information about the input instruction itself to correctly
reproduce the event. This extra information will vary depending
on the system architecture or the VM implementation. Input events
from the HD are deterministic but we still need to log information
about their associated input instruction to synchronize the event
with its corresponding interrupt. The HD bytes, however, do not
need to be logged.

As future work, we intend to extend ExecRecorder for multipro-
cessors and DMA use and to improve it by allowing checkpoints to
be saved in a non-volatile medium. Also we plan to implement a
post-attack recovery strategy using ExecRecorder, our IDS, Minos,
and our analysis tool, DACODA. We are also using ExecRecorder
to analyze covert channels through repeated replays with varying
confidential data.

8. Acknowledgments
This work has been supported by grants 0335299, 0520269,
0627749 from NSF. We would like to thank the anonymous re-
viewers for their helpful comments and the developers of the Bochs
project.

References
[1] http://x82.inetcop.org/h0me/papers/free-ur-mind.pdf.

[2] L. Alvisi. Understanding the Message Logging Paradigm for Masking
Process Crashes. PhD thesis, Cornell University, 1996.

[3] L. Alvisi and K. Marzullo. Message Logging: Pessimistic, Optimistic,
Causal, and Optimal. IEEE Transactions on Software Engineering,
24(2):149–159, February 1998.

[4] Web benchmark. http://www.serverwatch.com/news/article.
php/10824_1133391_2.

[5] T. C. Bressoud and F. B. Schneider. Hypervisor-Based Fault Tolerance.
ACM TOCS, 14(1):80–107, February 1996.

[6] P. M. Chen and B. D. Noble. When Virtual is Better than Real. HotOS,
May 2001.

[7] J.-D. Choi and H. Srinivasan. Deterministic Replay of Java Mul-
tithreaded Applications. ACM SIGMETRICS SPDT, pages 48–59,
August 1998.

[8] J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention
Orthogonal to Memory Model. MICRO, pages 221–232, December
2004.

[9] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong. On Deriving Unknown
Vulnerabilities from Zero-Day Polymorphic and Metamorphic Worm
Exploits. ACM CCS, pages 235–248, November 2005.

[10] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging
and Replay. SIGOPS Oper. Syst. Rev., 36(SI):211–224, 2002.

[11] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
Survey of Rollback-Recovery Protocols in Message-Passing Systems.
University of Michigan Technical Report CSE-TR-410, 34(3):375–408,
September 2002.

[12] T. Garfinkel and M. Rosenblum. When Virtual is Harder than
Real: Security Challenges in Virtual Machine Based Computing
Environments. HotOS, June 2005.

[13] Z. Gutterman and B. Pinkas. BugNet: Continuously Recording
Program Execution for Deterministic Replay Debugging. ISCA-32,
pages 284–295, June 2005.

[14] Intel. IA-32 Intel Architecture Software Developer’s Manual. Volumes
1, 2 and 3.

[15] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting Past
and Present Intrusions through Vulnerability-specific Predicates. ACM
SOSP, pages 91–104, October 2005.

[16] S. T. King, G. W. Dunlap, and P. M. Chen. Operating System Support
for Virtual Machines. In USENIX, 2003.

[17] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on Computers,
36(4):471–482, April 1987.

[18] R. Love. Linux Kernel Development. 2005.

[19] D. E. Lowell and P. M. Chen. Discount Checking: Transparent, Low-
Overhead Recovery for General Applications. University of Michigan
Technical Report CSE-TR-410-99, 1998.

[20] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level
Speculation Mechanisms to Debug Data Races in Multithreaded
Codes. ISCA-30, pages 110–121, June 2003.

[21] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating Bugs as
Allergies—A Safe Method to Survive Software Failures. ACM SOSP,
pages 235–248, October 2005.

[22] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors: Current
Technology and Future Trends. IEEE Computer Society, 38(5):39–47,
May 2005.

[23] J. Slye and E. Elnozahy. Supporting Nondeterministic Execution in
Fault-Tolerant Systems. FTCS, 1996.

[24] J. H. Slye and E. N. Elnozahy. Support for Software Interrupts in
Log-Based Rollback-Recovery. IEEE Transactions on Computers,
47(10):1113–1123, October 1998.

[25] J. E. Smith and R. Nair. Virtual Machines - Versatile Platforms for
Systems and Processes. Morgan Kaufmann, 2005.

[26] Microsoft SQLIO. http://www.microsoft.com/downloads/.

[27] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback:
A Lightweight Extension for Rollback and Deterministic Replay for
Software Debugging. USENIX, June 2004.

[28] UnixBench. http://www.tux.org/pub/tux/benchmarks/
System/unixbench/.

[29] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. Rethinking the
Design of Virtual Machine Monitors. IEEE Computer, 38(5):57–62,
May 2005.

[30] M. Xu, R. Bodik, and M. D. Hil. A Flight Data Recorder for Enabling
Full-System Multiprocessor Deterministic Replay. ISCA-30, pages
122–133, June 2003.

[31] bochs: the Open Source IA-32 Emulation Project (Home Page).
http://bochs.sourceforge.net.

