
This paper will appear at the Twelfth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XII), October 21–25, 2006

Temporal Search: Detecting Hidden Malware Timebombs
with Virtual Machines

Jedidiah R. Crandall Gary Wassermann Daniela A. S. de Oliveira
Zhendong Su S. Felix Wu Frederic T. Chong

University of California at {Davis, Santa Barbara}
{crandall,wassermg,oliveira,su,wu}@cs.ucdavis.edu, chong@cs.ucsb.edu

Abstract
Worms, viruses, and other malware can be ticking bombs counting
down to a specific time, when they might, for example, delete files
or download new instructions from a public web server. We propose
a novel virtual-machine-based analysis technique to automatically
discover the timetable of a piece of malware, or when events will
be triggered, so that other types of analysis can discern what those
events are. This information can be invaluable for responding to
rapid malware, and automating its discovery can provide more
accurate information with less delay than careful human analysis.

Developing an automated system that produces the timetable of
a piece of malware is a challenging research problem. In this paper,
we describe our implementation of a key component of such a
system: the discovery of timers without making assumptions about
the integrity of the infected system’s kernel. Our technique runs a
virtual machine at slightly different rates of perceived time (time
as seen by the virtual machine), and identifies time counters by
correlating memory write frequency to timer interrupt frequency.

We also analyze real malware to assess the feasibility of using
full-system, machine-level symbolic execution on these timers to
discover predicates. Because of the intricacies of the Gregorian
calendar (leap years, different number of days in each month, etc.)
these predicates will not be direct expressions on the timer but
instead an annotated trace; so we formalize the calculation of a
timetable as a weakest precondition calculation. Our analysis of
six real worms sheds light on two challenges for future work: 1)
time-dependent malware behavior often does not follow a linear
timetable; and 2) that an attacker with knowledge of the analysis
technique can evade analysis. Our current results are promising
in that with simple symbolic execution we are able to discover
predicates on the day of the month for four real worms. Then
through more traditional manual analysis we conclude that a more
control-flow-sensitive symbolic execution implementation would
discover all predicates for the malware we analyzed.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection–invasive software

General Terms Security, languages

Keywords worms, malware, virtual machines

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

1. Introduction
The current response when anti-malware defenders discover new
malware is to carefully analyze it by disassembling the code, and
then release signatures and removal tools for customers to defend
themselves from new infections or to remove infections before the
malware does any damage. Three trends are challenging this pro-
cess: 1) increasingly, malware is installing itself into the kernel of
the system where analysis is more difficult; 2) malware is becoming
more difficult and time-consuming to analyze because of packing
(compressing or obfuscating a file so that it must be unpacked be-
fore analysis), polymorphism (encrypting the malware body), and
metamorphism (techniques such as binary rewriting that change the
malware body without changing its functionality); and 3) malware
is expected to spread on a more rapid timescale than ever before in
the coming years [46, 47]. Suppose a metamorphic, kernel-rootkit-
based worm is released that will spread to hundreds of thousands
of hosts in just thirty minutes and then launch a denial-of-service
attack on a critical information system such as ATMs, the 911 emer-
gency system, or even the Internet itself [41]. Suppose also that the
denial of service attack is easily averted if known about ahead of
time. How can we discover this ticking timebomb as early as pos-
sible?

We propose a novel automated, virtual-machine-based tech-
nique to do exactly that. Given a system that is infected with a
piece of malware, we describe a technique that extracts how the
system is using special timing hardware such as the Programmable
Interval Timer (PIT) to keep track of time and then discovers the
trigger time for any anomalous events that the system is count-
ing down to. Our goal is to summarize the timetable of a piece
of malware quickly and accurately so that responding malware de-
fenders can decide what the best course of action is. For example,
the Sober.X worm [57, W32.Sober.X@mm] was programmed to
generate random (but predictable to its author) URLs from which
to download new instructions starting on 6 January 2006. An-
tivirus professionals were able to de-obfuscate the packed code of
Sober.X and determine the URLs and the date on which this would
occur months ahead of time. The public web servers that the worm
instances would be contacting were notified and were able to block
those URLs from being registered. In this paper, we aim at enabling
this kind of effective response, but on a shorter timescale to be able
to handle rapid malware, by automatically discovering the critical
date and time.

1.1 Proposed Approach and Contributions of this Paper

The problem turns out to be more difficult than simply speeding up
the system clock and seeing what happens. Any study of behavior
and time must account for the complex interactions of behavior and
time, such as Lamport’s study of distributed systems [33] where

events in such systems were shown to be only partially ordered. In
our case, malware’s behavior can depend on not only the current
absolute time (for example, what date and time is shown on the
clock) but also relative time (such as how much time has elapsed
since initial infection). And, naturally, the passage of relative time
changes what the current absolute time is. As a concrete example
of this, the Kama Sutra worm [57, W32.Blackmal.E@mm] deletes
files on the victim host on the 3rd day of every month, but it only
checks the day of the month 30 minutes after either the initial
infection or a reboot of the victim host. Thus if a malware analyzer
simply infects a machine with Kama Sutra on the 1st of January
and speeds up the clock to compress the next year into an hour, this
behavior will not be observed because the check for the day of the
month will occur only on the 1st of January and never again.

Simply speeding the system up has other disadvantages as well.
First, it requires a much more dramatic perturbation of time than
our technique does, making it easy for the malware to detect the
time perturbation. Furthermore, if the system is somewhat loaded,
as it will be for a worm that spawns possibly hundreds of threads to
spread itself, the virtual machine will not perform at a high rate of
timer interrupts. Some behaviors may be skipped because the worm
will never be scheduled to run during that time window. In addition
to not revealing some behaviors, it will also not be able to explain
why any behaviors that it does elicit occurred.

We propose a technique that uses temporal search to build the
malware’s timetable. Our approach is to first discover timers by
slightly perturbing time and watching for correlations between the
rate of perceived time and the rate of updates to each physical mem-
ory location. Then through symbolic execution [23] (to discover
predicates) and predicate inversion (to make the infrequent case
frequent) we build an abstract program of the timekeeping archi-
tecture of the system. Both of these steps have been implemented
for this paper; the first is automated, except for the discovery of ad-
ditional dependent timers, and the second is done manually. Once
this timekeeping architecture has been identified, placing symbolic
execution on any timer that the malware might use, by assigning
a symbolic expression for each value read from that location, al-
lows us to discover predicates. This step requires distinguishing
malware predicates from regular system predicates on time, which
is done manually in this paper. Predicate inversion can then elicit
the next behavior of the malware without waiting for its predicate
on time to become true. From this point it should be possible to
build an abstract program of the entire trace between the timer and
the predicate to discern the malware’s timetable. These steps are
also done manually in this paper for real malware to demonstrate
their efficacy and identify the inherent challenges. By iterating the
last two steps for some arbitrary amount of time into the future it is
possible to construct a timetable of the malware’s behavior. In fu-
ture work, a richer model than a linear timetable for time-dependent
malware behavior is desirable.

Our main contributions toward such an automated system in this
paper are 1) detailed results of timer discovery for both Linux and
Windows, without making any assumptions about the integrity of
the kernel of the infected host; 2) promising initial results on the
possibility of using symbolic execution to discover the predicates
based on analysis of six real worms; 3) a formalization of temporal
search that accounts for the intricacies of the Gregorian calendar;
and 4) discussion of the challenges of fully automating the process
along with an adversarial analysis.

1.2 Structure of the Paper

The rest of the paper is organized as follows. Section 2 provides
some context for our analysis in terms of being both automated
and behavior-based. Then Section 3 gives detailed results on timer
discovery for both Linux and Windows. This is followed by Sec-

tion 4 where we analyze six real worms to show the efficacy of
symbolic execution to discover malware predicates on the date and
time and discuss the inherent challenges. In Section 5 we formally
define the problem of how to solve the annotated traces that lead to
malware behaviors predicated on time, and illustrate the basic idea
with a walk-through of the Code Red worm. Then a discussion of
challenges for future work and an adversarial analysis of temporal
search in general, against an attacker that seeks to evade our analy-
sis, is in Section 6. Finally, we present related work (Section 7) and
conclude (Section 8).

2. Automated, Behavior-Based Analysis
The work presented in this paper differs from traditional mal-
ware analysis techniques in two dimensions: behavior-based vs.
appearance-based, and in the level of automation. Cohen [6] dif-
ferentiates behavior-based virus detection from appearance-based
detection (such as modern virus scanners) by saying that behavior-
based detection is a question “of defining what is and is not a le-
gitimate use of a system service, and finding a means of detect-
ing the difference.” Behavior-based analysis has the same goal as
detection. For our work we seek to detect illegitimate use of the
special hardware that the system provides for keeping track of the
date and time. We assume that the system is infected with mal-
ware and we wish to know if that malware is using the timekeep-
ing architecture of the system to coordinate malicious behavior;
and if so how it is doing this so that we can discern the malware’s
timetable. Behavior-based detection and analysis, like appearance-
based, was shown to be formally undecidable by Cohen [6], but
Szor [48] points out that it is not a requirement for a technique to
be applicable to every possible piece of malware, it is sufficient for
malware defenders to have an arsenal of techniques, one of which
will be a good solution in any particular scenario.

In Section 4 we will discuss in detail our experience and lessons
learned in performing behavior-based analysis. A fact that can
be either a strength or a weakness of behavior-based analysis,
depending on how well it is understood, is that the results of
analysis are as much a reflection of the virtual environment as they
are of the malware itself. A good analogy is Simon’s description
of an ant walking along the beach [44]. The ant’s complex path,
walking over twigs, around steep hills, or along ridges, draws more
of its complexity from the beach than from the ant. “An ant, viewed
as a behaving system, is quite simple. The apparent complexity
of its behavior over time is largely a reflection of the complexity
of the environment in which it finds itself [44].” Similarly, we
discuss in Sections 4 and 6 how the time-dependent behavior of
malware is not in fact always a simple, linear timetable and can be
miscalculated if the analysis is not done in a sufficiently complex
environment.

The complexity of the environment is also a challenge for au-
tomation. Even when not considering an attacker who deliberately
tries to evade our temporal search analysis, the two separate pro-
cesses of discovering predicates on the date and time and then re-
lating those predicates to actual dates and times in the real world are
interesting program analysis problems. This is because of the intri-
cate integer calculations and loops involved in computations that
are based on the Gregorian calendar. There are seven days in the
week for cultural reasons, varying numbers of days in each month
because the rates of revolution of the moon around the earth and
the earth around the sun are not integer multiples [7], and leap
years every four years (except for the first years of centuries that
are not evenly divisible by 400) because the spin of the earth is not
an integer multiple of the length of a year [7]. Thus our current full-
system, machine-level symbolic execution engine, DACODA [10],
is able to discover predicates on a system timer when the predicate
is on a day of the month (or hour, minute, second, etc.), but in fu-

ture work will need to be more control-flow-sensitive to discover
predicates on the month or year. Furthermore, once the predicate is
discovered, relating it back to an event in the real world (e.g. the
15th of the month in the Gregorian calendar) is not a simple matter
of solving an expression but requires a weakest precondition calcu-
lation (as described in Section 5).

3. Temporal Search
This section describes how to discover timers in a real system us-
ing a virtual machine, even if the kernel’s integrity has been com-
promised, and how to automate this process. This step is impor-
tant because malware is increasingly being implemented as kernel
rootkits, and there have even been proposals of implementing mal-
ware as a virtual machine in which the victim operating system
executes [25].

3.1 How Time is Measured by a System

Without special hardware a system has only an implicit concept of
time. Its operations are sequential and the fact that each operation
takes some time to complete before the next can begin can be used
to infer the passage of time. However, without detailed performance
profiling of the entire system, this is not a precise measurement.
Because malware shares the processor with the rest of the system it
also relies on special hardware to accurately measure the passage of
time. In a virtual machine this special hardware is virtualized and
completely controlled by the malware analyzers. Measurements of
time external to the system can be modeled in many cases, such
as the Network Time Protocol (NTP) server connection by the
the Sober.X worm. Modeling any arbitrary kind of external time
coordination that a piece of malware might do would have to be the
subject of future research.

The simplest example of such special hardware, and the most
commonly used for PC systems, is the Programmable Interval
Timer (PIT). The PIT uses a crystal-based oscillator that runs at
one-third the rate of NTSC television color bursts (or 1.193182
MHz) for historical reasons. The PIT device has three timers: one
used for RAM refresh, one for PC speaker tone generation, and a
third that can be programmed to interrupt the processor at regular
intervals. Modern PC-based operating systems use the third timer
as their main timekeeping device. Linux kernel 2.4 and Windows
XP both program this timer to interrupt the processor at a rate of
100 Hz, meaning that the PIT interrupt is generated 100 times per
second. Linux kernel 2.6 programs it for 1000 Hz, and different
versions of Windows range from 64 Hz to 1000 Hz. Other special
hardware is available in many PC systems, such as the CMOS real
time clock, local APIC timers, ACPI timers, the Pentium CPU’s
Time Stamp Counter, or the High Precision Event Timer. We only
consider the PIT for this work, but other special hardware should be
a natural extension. A more comprehensive document on timekeep-
ing in systems and virtual machines is available from the VMware
company [49].

From the operating system’s point of view, time is kept by
adding a constant to a variable once per interrupt. Linux kernel 2.4
adds 10,000 to a microseconds counter that is reset every 1,000,000
microseconds when a seconds counter is incremented. The date
is kept as a 32-bit counter of seconds starting from 1 January
1970. Windows adds a value equal to about 10,000,000 (adjusted
to the accuracy of the PIT timer for that particular system) to a 64-
bit hectonanoseconds counter that counts hectonanoseconds from
1 January 1601.

The intervals are trivial to infer based on how the PIT is pro-
grammed but the epochs (when the absolute time is counted from,
such as 1 January 1970 for Linux) are also needed to relate a
counter value to an actual date and time in the real world. When a
computer is turned off it keeps the date in a known format in the

CMOS, and upon boot this value is read by the operating system
to initialize the date and time. This epoch, the time of boot, is the
only important one since all measurements of absolute time must
be derived from it. Through symbolic execution we can determine
how any particular absolute time variable is initialized and use that
as the epoch.

We define an absolute time as a time that relates to an actual
time and date in the real world while a relative time is relative
to some arbitrary start time. Both Linux and Windows keep a
relative time that starts at 0 at boot and is incremented on every
PIT interrupt. This variable is called “jiffies” in the Linux kernel
and is used for relative timing needs such as scheduling timeouts.
For example, if a process asks to sleep for 10 seconds and the
“jiffies” variable at start time is 5555, the process will not be
scheduled to run again until the “jiffies” variable is greater than
or equal to 6555, assuming the PIT is programmed for 100Hz (The
actual implementation of timers in Linux is not quite this simple).

The PIT model of Bochs (http://bochs.sourceforge.
net), the virtual machine we use for our experiments, uses the num-
ber of instructions executed to roughly guess when PIT interrupts
should be scheduled, but this is adjusted to approximate real time.
Periodically, a measurement of real time from the host machine is
compared to the number of PIT interrupts in the last interval to ad-
just and more accurately track real time for the next interval. We
define real time as the passing of time on the physical host ma-
chine (which should nearly mirror the physical wall time in the real
world) and perceived time as the passing of time as seen by the
system emulated by Bochs.

3.2 Symbolic Execution

For symbolic execution and predicate discovery, we use the DA-
CODA symbolic execution engine [10]. Basically, DACODA labels
values in memory or registers and then tracks those labels symboli-
cally through operations and data movements throughout the entire
emulated Pentium system. It also discovers predicates about that
data whenever a control flow decision is predicated on a labeled
value. We modified DACODA’s source code to also discover in-
equality predicates through the Sign Flag (SF) and Overflow Flag
(OF), in addition to equality predicates through the Zero Flag (ZF).

As an example, suppose a byte is labeled and moved into the AL
register, the integer 4 is added to it, and a control flow transfer is
made predicated on the result being greater than 55.

mov al,[AddressWithLabel1999]
; AL.expr <- (Label 1999)

add al,4
; AL.expr <- (ADD AL.expr 4)

; /* AL.expr == (ADD (LABEL 1999) 4) */
cmp al,55

; FLAGS.left <- AL.expr

; /* FLAGS.left == (ADD (Label 1999) 4) */
; FLAGS.right <- 55

jg JumpTargetIfGreaterThan55
; P <- new Predicate(GREATERTHAN ZFLAG.left ZFLAG.right)
; Q <- new Predicate(LESSTHANOREQUAL ZFLAG.left ZFLAG.right)

; /* P == (GREATERTHAN (ADD (Label 1999) 4) 55) */
; /* Q == (LESSTHANOREQUAL (ADD (Label 1999) 4) 55) */

; if ((ZF == 0) && (OF == SF)) then AddToSetOfKnownPredicates(P);
; else AddToSetOfKnownPredicates(Q);

; /* Discover predicate if branch taken */

This illustrates how DACODA will discover either the predi-
cate (in prefix notation), “(GREATERTHAN (ADD (Label 1999)
4) 55)”, or its inverse depending on the result of the conditional
check.

3.3 The Basic Idea

The basic idea for discovering timers via virtual machines is that
the system has certain counters that will speed up or slow down

when the rate of perceived time within the virtual machine is sped
up or slowed down. A timer has the following properties:

1. It should depend on time: When the rate of perceived time
is sped up or slowed down there should be a corresponding
speedup or slow-down of the timer.

2. It should define a series: A counter has some operation applied
to it that defines a series, for example: “1, 2, 3, 4, ...”, or “55, 44,
33, ...”, or “10000, 20000, 30000, ...”. Timers should be based
on such a counter. For our purposes we assume a series to be
defined such that each subsequent value is simply the previous
value plus or minus a constant.

3. It could depend on another timer: An example of this is
“xtime.tv sec” which counts seconds in the Linux kernel. It
is important for calculating the date throughout the system, and
it is only incremented every second when a microseconds timer,
“xtime.tv usec”, reaches the value 1,000,000 and is reset.

3.3.1 Types of Noise

There are several types of noise that must be filtered out to find the
timers.

Performance-based phase behavior: Programs can have certain
phase behaviors [42] that cause them to update the same mem-
ory or increment the same counter at regular time intervals, even
though their timing is based on performance and not on time.

Memory updates independent of state: Many memory locations
are updated regularly based on time but do not keep state from
one timer interrupt to the next. Examples include local variables
and return pointers on the stack while timer interrupts are being
handled, as well as pixels on the screen.

Memory updates dependent on state that do not define a series:
Some memory locations do keep state but do not define a series.
An example is a semaphore.

Delayed interrupt handling and NTP: Interrupt handlers in Linux
and other operating systems are often divided into a top half
and a bottom half. When an interrupt occurs the top half ac-
knowledges the interrupt and schedules work to be done by
the bottom half (this is the opposite of the top half and bot-
tom half in FreeBSD but the idea is the same). The bottom
half can be executed later or even skipped. For keeping time
in Linux “jiffies” is incremented in the top half and then
when the bottom half executes the “jiffies” counter is com-
pared to “wall jiffies”, which is the stored “jiffies” from
the last bottom half execution. If ticks have been skipped the
“xtime.tv usec” variable is incremented for every tick that
was skipped. This gives “xtime.tv usec” a non-uniform be-
havior when the system is busy. Furthermore, the Network Time
Protocol (NTP), if enabled, occasionally adds or skips ticks to
adjust the “xtime” structure to inaccuracies in the PIT timer.
These kinds of details in the timekeeping architecture of a sys-
tem can be viewed as noise.

3.3.2 The Basic Steps

Thus, here are the basic steps we use for finding timers:

1. Do an update count: The system is allowed to run for a specified
amount of time in a number of different stages (4 stages of about
8 seconds per stage was used for all examples that follow, fewer
stages or shorter stages may be possible but was unnecessary for
these experiments), each stage with a slightly different rate of
perceived time (we perturbed time by as much as 35% for these
experiments but much smaller perturbations are also possible
as will be explained in Section 3.7). We can implement a basic

“tainting” mechanism by marking memory with an idempotent
expression that “taints” any other values derived from it. When
a physical memory location is updated with untainted data it
is tainted, and when it is updated with tainted data a physical-
address-specific counter is incremented. Thus any memory lo-
cations that may be keeping state are tainted. This filters out
memory updates independent of state early on for performance
reasons. The physical memory locations whose update rates are
most correlated with the rate of perceived time are chosen (the
top 100 in Linux and Windows, or any appropriate number to
account for the amount of noise in the system).

2. Use symbolic execution to solve the series: For each candidate
timer, the system is allowed to run and any update to that candi-
date physical memory location is labeled by DACODA. When-
ever labeled data is written to that physical memory location
the symbolic expression is checked to determine if it defines a
series. This can be done for an arbitrary number of times. In
practice ten symbolic checks are enough to determine whether
the memory location defines a series or not.

3. Discover additional dependent timers: For each discovered
timer, we mark it with symbolic execution (all reads from the
counter are labeled) and if the same predicate is discovered peri-
odically for some minimum number of times (ten is sufficient)
we invert it (true becomes false, and false becomes true) and
repeat step 1. For example, when symbolic execution is per-
formed on “xtime.tv usec” the predicate is discovered ev-
ery 1

100
th of a second that it is less than 1,000,000. Invert-

ing this predicate makes the infrequent case frequent, causing
“xtime.tv sec” to be incremented 100 times a second. This
will allow us to discover the additional timer “xtime.tv sec”
by repeating step 1. Each series can then be solved to convert
its values to real time with simple multiplication.

3.4 Linux Example

The following results were taken from a Red Hat Linux system
running Linux Kernel version 2.4.21. The Linux kernel keeps a 64-
bit internal timer called “jiffies” that starts at 0 at boot and is
incremented every PIT timer interrupt. To keep track of the date a
structure “{xtime.tv sec, xtime.tv usec}” is updated every
time the PIT timer interrupt bottom half is executed as explained
above. For Linux Kernel version 2.4 the PIT timer is programmed
for 100 Hz, so an interrupt is generated 100 times per second of
perceived time.

3.4.1 Update Count

The first step is to run the physical memory location update count
for 4 different stages, each with a slightly different rate of perceived
time. Perturbing time is accomplished by biasing Bochs’ measure-
ments of real time so that real time will appear to Bochs to be pass-
ing at a different rate than it actually is, and Bochs will adjust ac-
cordingly. Then we must measure the actual rate of perceived time
achieved because it will usually not be exactly what was requested.

Doing the update count produces the following top 100 candi-
date timers (some redundant entries that do not define a series are
left out for brevity):

Ranking Error Phys. Addr. Update Counts Symbol

0 0.000001332 0027ff31 2038 2303 2547 2820 (init_task_union)
...

3 0.000001955 0027e0fc 677 765 846 937 (init_task_union) *

4 0.000001955 0027e10c 677 765 846 937 (init_task_union) *
5 0.000001955 0027e18c 677 765 846 937 (init_task_union) *

6 0.000001955 00269414 677 765 846 937 (i8253_lock)
7 0.000001955 00269a20 677 765 846 937 (prof_counter) *

8 0.000001955 0027e0f8 677 765 846 937 (init_task_union) *
9 0.000001955 0027ff45 2031 2295 2538 2811 (xprt_clear_backlog)
...

12 0.000001955 0027ff48 677 765 846 937 (xprt_clear_backlog)

...
16 0.000001955 0027ff54 677 765 846 937 (xprt_clear_backlog)

...

43 0.000001955 0027ffa4 677 765 846 937 (xprt_clear_backlog)
44 0.000001955 002c1800 1354 1530 1692 1874 (irq_desc)

45 0.000001955 002c1810 1354 1530 1692 1874 (irq_desc)
46 0.000001955 002dcd90 677 765 846 937 (kstat) *
47 0.000001955 002edb20 677 765 846 937 (bh_task_vec)

...
51 0.000001955 002edea8 677 765 846 937 (time_phase)

52 0.000001955 002edec4 677 765 846 937 (jiffies) *
53 0.000001955 002eef88 677 765 846 937 (timer_jiffies) *

54 0.000002214 002eded4 683 773 855 946 (xtime.tv_usec) *
55 0.000002351 0027ff6a 2032 2295 2538 2811 (init_task_union)

...

63 0.000004048 0026af78 678 766 848 939
64 0.000004072 0027ff72 678 765 846 937 (init_task_union)

...
98 0.000011106 0026af74 2728 3078 3408 3780 (xtime_lock)
99 0.000012059 002ed720 677 766 846 939 (irq_stat)

The first column is the ranking by error rate, and the second
column is the error rate calculated as explained below. This is
followed by the physical address and the four actual update counts
from each stage. For clarity we have manually appended the symbol
from the Linux kernel symbol table for each memory location.
An asterisk next to the symbol indicates that in the next step
this memory location will be found to define a series. For the
experiment above the respective rates of perceived time to real time
were 0.71570, 0.93835, 1.14214, and 1.36502 for the four stages.

Error is calculated as the sum of the square of the differences
between the update count in all four stages and the perceived rate
of time in that stage (with all update counts normalized to the third
stage). The value of the error is not as important as the ranking. We
want to find the top 100 candidate timers no matter what their error
from the true rate of perceived time is, because the actual value can
vary from system to system and also depending on what the system
is doing.

3.4.2 Solving the Series

In the next step in our example each of the top 100 candidate timers
is executed with symbolic execution to determine if it defines a se-
ries. For example, the “jiffies” counter is defined by the follow-
ing series (which is the result of a Pentium increment operation):

PhysicalMemory[0x002edec4] = PhysicalMemory[0x002edec4] + 1

PhysicalMemory[0x002edec4] = PhysicalMemory[0x002edec4] + 1
PhysicalMemory[0x002edec4] = PhysicalMemory[0x002edec4] + 1

...

The “xtime.tv usec” defines this series:

PhysicalMemory[0x002eded4] = PhysicalMemory[0x002eded4] + 10000

PhysicalMemory[0x002eded4] = PhysicalMemory[0x002eded4] + 10000
PhysicalMemory[0x002eded4] = PhysicalMemory[0x002eded4] + 10000
...

A memory location such as “xtime lock”, which is a
semaphore, can be determined to not define a series by observing
the following sequence of symbolic operations:

PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] - 1
PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] + 1

PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] - 1
PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] + 1

PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] - 1
...

Qualitatively speaking, we are mostly interested in the
“xtime” structure and the “jiffies” counter but the other
counters discovered (“prof counter”, “kstat”, members of
“init task union”, and “timer jiffies”) are also important
because they do keep track of time and could be used for such by
malware. Adding these to the set of timers on which we do sym-
bolic execution should not have a dramatic effect on the accuracy

or performance of predicate discovery because these counters do
not appear to be heavily used in predicates under normal operation
of the system.

3.4.3 Additional Dependent Timers

After running symbolic execution on all of the timers for a while
predicates on a certain timer, “xtime.tv usec”, will be seen to
repeat regularly at a specific program counter location:

Predicate: (PhysicalMemory[0x002eded4] <= 999999)

Predicate: (PhysicalMemory[0x002eded4] <= 999999)
Predicate: (PhysicalMemory[0x002eded4] <= 999999)
Predicate: (PhysicalMemory[0x002eded4] <= 999999)

...

If we invert this predicate (tell the Pentium emulator that it is
true when it is false, and that it is false when it is true through the
OF, SF, and ZF flags) and repeat steps 1 and 2 we will discover
an additional timer, “xtime.tv sec”, which defines the following
series:

Predicate: (PhysicalMemory[0x002eded4] > 999999)

PhysicalMemory[0x002eded0] = PhysicalMemory[0x002eded0] + 1
Predicate: (PhysicalMemory[0x002eded4] > 999999)

PhysicalMemory[0x002eded0] = PhysicalMemory[0x002eded0] + 1
Predicate: (PhysicalMemory[0x002eded4] > 999999)
PhysicalMemory[0x002eded0] = PhysicalMemory[0x002eded0] + 1

...

A simple calculation reveals that this timer is a 1 Hz timer.

3.5 Time Perturbation in Windows

In Windows XP we found three timers of interest: a “jiffies”-
like counter, which we will call “TickCount”, at the linear virtual
address 0x8053cfc0 (physical address 0x0053cfc0) in the Hard-
ware Abstraction Layer (HAL) part of the kernel and two hecto-
nanosecond counters mapped in a structure at linear virtual address
0xffdf0000. This structure is in fact the KUSER SHARED DATA
structure that is mapped into the virtual address space of every
process in the system. The counter at 0xffdf0014 (physical ad-
dress 0x00041014), called “SystemTime”, is the one that is used
to calculate the system time and date when a process calls the
GetSystemTime() library function or any other library function
for retrieving the date and time. Thus nearly all Windows mal-
ware to date that has a timetable can be analyzed through sym-
bolic execution on this memory address. The other hectonanosec-
ond counter is “InterruptTime” at 0xffdf0008 and is irrelevant
for our present purposes.

3.6 Comparing How Timers are Used

Figure 1 shows the number of predicates per second discovered for
different timers in Windows and Linux over equivalent durations
of real time. Note that all five data series were taken at different
times and that the rate of perceived time to real time is different
for Windows and Linux. What the graph is intended to show is that
some timers have a structure that makes them easier to analyze than
others. Windows’ “SystemTime” counter is checked several times
a second in the kernel or in library functions having to do with
file accesses (“SystemTime” is the timestamp that file creation
and modification times are given) but the only predicates in user
space below the libraries are the predicates every minute from the
clock (a big part of each spike is actually the calculation, in the
library code mapped for the clock process, of the day, month, year,
hour, etc. based on the “SystemTime” counter, the predicates are
from while loops such as those shown in Figure 3). The pattern
of “xtime.tv sec” from Linux is also very simple, suggesting
that temporal search on system times and dates need not be very
sophisticated. There are many predicates on “xtime.tv usec” but
they are virtually all based on two checks for every PIT interrupt:

Figure 1. How timers are used.

whether or not it is equal to 999999 (discovered through the ZF
flag) and whether or not it is less than 999999 (discovered through
the OF flag).

The “jiffies” timer in Linux is slightly more com-
plicated, but with the Linux source code it is easy to
determine that all of the predicates on the flat part of
the line come from run timer list(), which keeps a se-
ries of dependent counters that could be discovered in the
same fashion as we showed for “xtime.tv sec”, and that
the spike every minute comes from only a handful of
functions (rt check expire thr(), internal add timer(),
sys rt sigtimedwait(), and rs timer()). These may or may
not be checking predicates for interesting events, such as cron jobs.
We would need to understand the “TickCount” timer of Windows
as well to be able to, for example, discover a predicate that the
Kama Sutra worm is waiting 30 minutes before it checks the date.
As shown in Figure 1, however, this may require a great deal of
effort or a better understanding of the Windows kernel’s timer ar-
chitecture. Not only does the number of predicates per second vary
quite a bit, but analyzing these predicates reveals that they come
from a great many different places throughout the kernel and user
space.

3.7 Why Must Perceived Time be Perturbed?

In order to filter out performance-based phase behavior noise we
need to distinguish between counters dependent on perceived time
and counters dependent on performance. Since performance is
based on time for a given machine, we need to separate perfor-
mance and time by perturbing time. Counters dependent on perfor-
mance should not speed up or slow down when we perturb the rate
of perceived time, and we can use this fact to filter them out.

For example, we ran our timer discovery algorithm while the
system was busy executing the Kama Sutra worm and corre-
lated with real time, and 202 timers had a smaller error than
a block of 14 candidate timers containing the two we were in-
terested in (“SystemTime” at physical address 0x00014014 and
“TickCount” at physical address 0x0053cfc0). This was due to
performance-based phase behavior noise. Time perturbation of the
exact same trace, or correlation with perceived time, moves the
block with the two timers we are interested in to the top of the
list.

The perturbation of time need not be dramatic. We perturbed
time about 10-35% for all experiments in this paper but the pertur-
bation of time need only be slightly larger than the error in the rate
of the interesting timers, which is typically never more than 2%.
The Bochs PIT model will not allow us to perturb perceived time
with that degree of precision.

4. Discovering Predicates
In this section we evaluate the efficacy of discovering malware
predicates on a timer using symbolic execution to trace the dataflow
from the timer to the predicate. We evaluated six worms using
both DACODA [10] and more traditional manual analysis tech-
niques. The relevant timer for all malware presented in this sec-
tion is “SystemTime” at physical address 0x41014 in Windows
XP (0x3cf014 in Windows Whistler, which was used to analyze
Code Red).

4.1 Environment

In the explanation of the behavior of each worm it will be apparent
why a realistic virtual environment is necessary to produce the
desired results. In our environment DACODA runs as a virtual
machine implemented as part of the Bochs emulator. For these
experiments the emulator ran on a host (192.168.33.1) to which
it was connected with the tuntap interface (local emulation of an
Ethernet connection) and given the IP address 192.168.33.2.
Various services were emulated on the host, including TIME (port
37 TCP), NTP (port 123 UDP), HTTP (port 80 TCP), and listening
on port 135 TCP to receive Microsoft RPC DCOM connections.
The host also ran a Python script using the Scapy library [56] which
allowed us to spoof ARP replies, DNS query replies, and TCP reset
(RST) packets from unassigned IPs. ARP requests for hosts on the
192.168.33.0/24 network are spoofed with the Ethernet address
of the host (192.168.33.1). The host will not reply to DNS
queries sent to it intended for fake DNS servers (192.168.33.33
and 192.168.33.44) but the Scapy script also spoofs answers
to DNS queries with all queries resolving to 192.168.33.1. For
analyzing Code Red and Blaster it was necessary to send TCP
RSTs to match outgoing TCP SYN packets so that the worm would
continue scanning and not stop to wait for a reply. Sometimes
malware expects to be able to contact a static IP address before it
will run, which we did not implement because it was not necessary

for any of these six worms. An advantage of Scapy is that any
network spoofing necessary can be scripted, usually with only a
few lines of Python code.

As a very simple method to distinguish malware predicates
from the numerous legitimate predicates in the system, we pro-
grammed DACODA to only print predicates below the virtual ad-
dress 0x40000000 in any process (user code will typically be be-
low this address, libraries and kernel code will be above it). A few
predicates on the minute, hour, and day appear every minute from
the desktop clock (typically in the lower right-hand corner of Win-
dows systems). Any predicates beyond that came from the mal-
ware, which we confirmed by comparing them to published reports
and through traditional analysis techniques.

4.2 Code Red v1 (no CME [54] assigned)

We infected a Windows Whistler system (Whistler was an evalua-
tion version of XP) running IIS 5.1 with the Code Red worm (we
used the version 1 variant [57, W32/CodeRed.a.worm], which is
equivalent to the notorious version 2 variant but did not random-
ize victim IP addresses). Code Red makes some assumptions about
memory locations specific to a particular service pack of Windows
2000 so we helped it find its malicious code on the heap using the
virtual machine. We did the experiment between the 20th of Febru-
ary and the 28th of February which is important for understanding
the predicates in Figure 4 of Section 5. Since Code Red uses the
GetSystemTime() library function the dates are in coordinated
universal time (UTC) format.

By placing symbolic execution on the “SystemTime” timer we
discovered two predicates on the date: a comparison to 20 and a
comparison to 28. This predicate is checked apparently every time
a thread completes a TCP connection to port 80 of a pseudorandom
IP address. This was consistent with published reports of Code
Red [15, 36], which was programmed to spread until the 20th of
the month, perform a denial-of-service attack on the IP address of
the White House until the 28th, and then go to sleep for a very long
time. Code Red does not predicate any behavior on the month or
the year.

It is possible, as we initially did before adding TCP RSTs to the
environment, to come to the incorrect conclusion that Code Red
only checks the date once (as does Blaster) and therefore once the
worm reaches saturation the denial-of-service only occurs upon the
re-infection of a machine. With TCP RSTs it is apparent that each
Code Red thread checks the date every time it finishes trying to
connect to one victim IP address and is about to try another.

4.3 Blaster.E (no CME assigned)

According to published reports on the Blaster worm [57,
W32.Blaster.E.Worm] it will perform a denial-of-service on
windowsupdate.com (the Blaster.E variant we analyzed actually
attacks kimble.org) if the month is September through December
or if the day of the month is the 16th or later. DACODA is only able
to discover the predicate on the day of the month, not on the month
itself. This is because more control-flow sensitivity would be re-
quired to discern the integer relationship between the system timer
and the month as calculated in a while loop shown in Figure 4 of
Section 5. Figure 4 shows that the integer relationships between the
calculated month and year and the timer on which symbolic execu-
tion has been placed depend on the conditions of while loops and
are not direct expressions, something DACODA does not currently
handle.

According to a publicly available decompilation of the Blaster
worm [55] it uses GetDateFormat() to get the numbers for the
day of the month and the month as strings, then converts these to
integers. So the “SystemTime” timer is converted into the day and
month integers (and adjusted to local time), these are converted into

strings, and then back to integers before the predicate. This requires
DACODA to follow data flow through the Pentium instruction set
architecture’s address resolution logic, which is also necessary for
MyParty.A (but for a different reason).

Published reports [57, W32.Blaster.E.Worm] on the Blaster
worm also state that the date is only checked once either upon
initial infection or reboot, which we confirmed by discovering the
predicate only once even while spoofing TCP RSTs. This kind of
behavior is important for malware defenders to understand before
responding because it could mean, for example, that slowing down
the rate of infection through throttling might exacerbate the denial-
of-service attack by causing more initial infections to occur after
that critical date.

4.4 Klez.A (no CME assigned)

Klez.A [57, W32.Klez.A@mm] is programmed to infect systems
with the ElKern virus, perform large-scale e-mailing, and make
files to be zero bytes in length on the 13th of every other month,
starting with January. It uses the GetLocalTime() library function
which adjusts the date and time to the local time zone. The pred-
icate that the month of the year be odd is not discovered by DA-
CODA for the reason already described. The equality predicate for
the day of the month to be equal to 13 is discovered. This predicate
is repeated periodically meaning that the worm repeatedly checks
the date while running.

4.5 MyParty.A (no CME assigned)

MyParty.A only attempts to spread if the month is January, the year
is 2002, and the day of the month is between the 25th and the 29th,
inclusive. DACODA discovers predicates on the day of the month,
but not the month. A predicate against the hard-coded value 2002
is discovered, but is an artifact of various conversions and relating
this to a year would require proper tracking of the year through
more control-flow-sensitive symbolic execution. We were able to
see MyPary.A in unpacked form by placing a breakpoint on the
GetSystemTime() library function which pauses the worm after
it has unpacked itself. MyParty.A uses both the GetLocalTime()
library function and a combination of GetSystemTime() and
GetTimeZoneInformation() to get the local time in a format
broken down into year, month, day of the month, etc. (it is not clear
why two equivalent methods are used), and then converts this to an
integer (apparently in seconds since 1900). It then takes this integer
and breaks it down into year, month, day of the month, etc. before
checking the predicate. It also checks the current time against the
file creation time of the executable before exiting, which DACODA
discovers as equality predicates. Two predicates that are irrelevant
but could be useful for identification of MyParty.A is that it checks
that the year is between 1970 and 2038. Because of what appears to
be compiler optimizations much of this integer arithmetic is done
through address resolution logic, which DACODA handles. The
predicate is not repeated because MyParty.A always exits in our
environment, possibly because no SMTP server was configured.

4.6 Kama Sutra (CME-24) and Sober.X (CME-681)

The Kama Sutra [57, W32.Blackmal.E@mm] worm deletes files
on the 3rd day of every month, but only checks the day of the
month 30 minutes after either the initial infection or a reboot.
The Sober.X worm [57, W32.Sober.X@mm] uses Visual Basic’s
DiffDate() function to calculate the difference in days between
the current date and 29 October 2005. It decides when to start
spreading, and on which two days to download new instructions
from a public web server, based on this difference being 23, 68, or
69 (the worm also has a condition for -777, which appears to be
an error condition). This explains the outbreak on 21 November
2005 and widely publicized updates scheduled for 5 January

2006 and 6 January 2006 (these may have actually occurred on
the 6th and 7th since the logic reportedly is an inequality, see the
LURQH analysis [34] for a good explanation).

Sober.X does not use the local system timer but instead contacts
a variety of NTP and TIME1 servers. It keeps a list of the DNS
addresses of 40 different servers, so through DNS spoofing we are
able to cause the worm to contact the host (192.168.33.1) and
then place symbolic execution on the dates and times read over
network.

Rather than wait 30 minutes for Kama Sutra to check the date, it
should be possible to discover the predicate used to wait 30 minutes
and invert that predicate. This would require placing symbolic
execution on “TickCount” rather than “SystemTime” and using
more sophisticated means of distinguishing the malware predicates
from the numerous other predicates in the kernel space on the
“TickCount” variable.

Both the Kama Sutra worm and Sober.X are written in Visual
Basic. DACODA was not able to discover any useful predicates for
either worm. Sober.X uses the Visual Basic DiffDate() function
which we suspect would, like predicates on the month or day,
require more control-flow sensitivity than is currently implemented
in DACODA. Visual Basic represents dates as strings, such as
#3/8/2006#. DACODA handles the string conversions of worms
written in Visual C++ but apparently needs more work to handle
those of worms written in Visual Basic.

4.7 Summary of Results on Discovering Predicates

This raises three challenges that our proposed automated, behavior-
based analysis of time-dependent malware must take into consider-
ation. The first is that month and year calculations require control-
flow sensitivity. Secondly, the analysis must be able to distinguish
between malware predicates and other predicates, possibly by pro-
filing the system before and after infection. Sometimes, we found,
the malware also generates predicates that are not relevant to time-
dependent behavior. This is due to the fact that some malware uses
the system time or other timers as a seed for pseudorandom number
generation. And third, the environment must be sufficiently com-
plex for the malware to behave as it would “in the wild.”

What becomes apparent in studying the operation of these six
worms is that there are many different library calls in Windows
that malware can use to check the date and time, and that the for-
mat of the date and time can take many various forms, including
conversions between UTC and local time. As seen in MyParty.A
and Blaster.E, conversions among different formats are often pro-
grammed into the malware and not done using existing library func-
tions. Furthermore, in addition to the fact that malware is increas-
ingly executed in kernel space, the KUSER SHARED DATA structure
that contains the “SystemTime” timer is mapped into every user
space process, so that neither system calls nor library calls are nec-
essary for checking the date and time. This means that, for example,
in the context of rapid malware that is obfuscated to make disas-
sembly and manual analysis difficult, even if the attacker makes
no specific effort to hide the malware’s timetable, by the time a
new worm is unpacked and all of its date and time calculations are
reverse-engineered, the critical time may have passed.

However, all checks of the date and the time and conversions
to different formats can be traced back to the “SystemTime”
timer, and ultimately to the PIT; and a suitably control-flow-
sensitive, full-system, machine-level symbolic execution imple-
mentation should be able to discover and trace any predicates on
any form of the date and time from this source, or from other known
sources such as NTP.

1 This is an antiquated protocol on TCP port 37 that returns time as an
integer counting seconds since 1900.

atrace ::= aentry | aentry, atrace
aentry ::= (pred, eip, n) | (asgn, eip, n)
pred ::= bterm | bterm || pred
bterm ::= bfac | bfac && bterm
bfac ::= bval | !bval
bval ::= comp | (pred)
comp ::= < | > | =
exp ::= term | term opa exp
opa ::= + | −
term ::= fac | fac opm term
opm ::= × | ÷ | mod
fac ::= val | (exp)
val ::= var | i ∈ Z | gettime()
var ::= u ∈ Vτ | v ∈ Vp

asgn ::= var := exp;

Figure 2. Grammar for predicates and expressions, where eip ∈
EIP , n ∈ N.

5. Recovering the Timetable
Section 4 showed how to discover timers using predicates and
dataflow information recovered by a virtual machine. This section
presents a technique for using the knowledge of a program’s timers
along with dynamically discovered predicates to recover the pro-
gram’s timetable. The goal is to relate a predicate, for example, on
the day of the month, back to the system timer value after all of the
calculations that were performed to calculate the day of the month.
Because of the intricacies of these calculations we formalize this as
a weakest precondition [13] calculation.

5.1 Definitions

Given a piece of time-dependent malware, a malware analyzer
would like to know when the program will exhibit malicious be-
haviors. This section defines a timetable in terms of an execution
trace.

By inferring variable names, we construct from DACODA’s out-
put for one execution of a program an annotated trace, consisting
of assignments and predicates. Figure 2 defines annotated traces
with a grammar as a list of entries (aentrys), each consisting of an
assignment or a predicate, followed by the address (eip ∈ EIP
in our grammar, but in practice a tuple of CR3 and EIP is neces-
sary to handle multiple processes in the system) of the instruction
in the program code and the time (which we model as a natural
number, in the set N, because computers measure time based on dis-
crete events; see Section 3.1) at which the instruction was executed.
For two adjacent entries e1 and e2 with times t1 and t2 respec-
tively, t1 ≤ t2. The predicates in the trace are the branch condition
predicates that DACODA discovered as being time-dependent. The
function gettime() is an abstract function defined by the results
of timer discovery in Section 3. It returns the integer stored in that
timer at the time the function is called.

In the formal grammar, EIP is a set of addresses, Vτ is a set of
variables identified as timers, Vp is a set of variables not identified
as timers, and gettime() is an abstract function that returns an
integer corresponding to the current time.

Executions of a program exhibit behaviors. We define behaviors
using an analyzer-provided set L ⊆ EIP of behavior labels.
For example, given a program with a section of code for network
activity and a section for waiting, a malware analyzer may label
an instruction at the beginning of each section. In our setting,
we discover such sections through runtime profiling. Given an
annotated trace t, a behavior b of t is a longest subsequence of
t such that: the eip l of the first instruction is in L, and for an
instruction in b with eip l′, either l′ 6∈ L or l′ = l. For example, if a

malicious program executes a denial-of-service attack by looping
over a section of code that has a single labeled instruction, the
whole attack will be considered one behavior. The prefix of t not
part of any other behavior is called the startup behavior.

A timetable summarizes the behaviors of an annotated trace
according to time. An entry for a behavior b of a timetable is a
triple (τs, τt, l), where τs and τt are the time of the first and last
instructions in b and l is either the eip of the first instruction in b or
“startup” if b is the startup behavior. The integer representations of
time can be translated into dates, and the eip’s can be replaced with
labels to produce a more meaningful summary.

5.2 Discovering Timetable Entries

Our goal is to recover a timetable that extends into the future. In or-
der to do this, we need a more efficient method than simply running
the program. This section explains how, after the startup behavior
has been discovered by observing the program’s execution, we dis-
cover the end time of a behavior using its beginning time.

If a program will execute a certain behavior for a bounded
period of time, it typically runs a loop in which it checks that
the time meets some condition, executes some code, and then
checks the time again. We can utilize this looping structure to find
timetable entries. When label l is first observed, the values of the
variables are known. We can then continue to execute the program,
recording an annotated trace t of predicates and assignments until
the second time l is encountered. At this point, we conclude that
we have completed one cycle through the loop, and one of the
predicates observed on that cycle is the loop guard. By analyzing
t we can recover the number of times this loop will execute, under
certain assumptions.

Let t = [c0, · · · , ci, p, ci+2, · · · , cn], where p is a predicate
and the c’s are either assignments or predicates. Because t is
one iteration through a loop, we can cut it at p to form t′ =
[ci+2, · · · , cn, c0, · · · , ci, p], an iteration of the same loop in which
p is assumed to be the loop guard.

We can now use the weakest precondition (WP) [13] of t′ to
discover the range of possible values for the timer variables at the
beginning of t′. A partial correctness assertion on commands is
structured as “{A} c {B},” where A is a predicate on the system
state, c is a command that (potentially) modifies the state, and B
is the predicate on the system state resulting from the execution of
c. A predicate A1 is weaker than a predicate A2 if A2 ⇒ A1. The
WP, wp(c, B), for command c and post-assertion B is defined as
follows (see Dijkstra [13] for more details):

wp(v := e, B) = [e/v]B (assignment)
wp(c1, c2, B) = wp(c1,wp(c2, B)) (sequence)

where [e/v]B stands for the assertion obtained from B by replacing
each occurrence of v with e.

The first-order theory of integers with addition and subtraction
is known as Presburger arithmetic, and is decidable [52]. If the only
arithmetic operations in the WP are + and −, we can use this re-
sult to find the ranges of values for the timer variables that satisfy
the WP. If arbitrary operations are permitted, this becomes unde-
cidable, but we may apply automated theorem proving techniques
from the program verification and automated deduction areas to this
setting.

5.3 An Illustrating Example

This section gives an example of how to use the WP semantics
to analyze Code Red. Figure 3 shows excerpts from the Sanos
gmtime() function [37] (Windows source code is not available to
us but our symbolic execution results from the Code Red worm in
Section 3 confirm that the Windows implementation is similar; note
that the epoch for 32-bit UNIX systems is different making the leap

#define LEAPYEAR(year) ((year) % 4 != 0)
#define YEARSIZE(year) (LEAPYEAR(year) ? 366 : 365)
const int _ytab[2][12] =
{
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

};
...
while (dayno >= (unsigned long) YEARSIZE(year))
{
dayno -= YEARSIZE(year);
year++;

}
while (dayno >= _ytab[LEAPYEAR(year)][tmbuf->tm_mon])
{
dayno -= _ytab[LEAPYEAR(year)][tmbuf->tm_mon];
tmbuf->tm_mon++;

}
...
tmbuf->tm_mday = dayno + 1;

Figure 3. Excerpt from ctime()’s source code.

year calculation simpler). Figure 4 shows excerpts from a trace that
is taken from executing gmtime(), and the variable names have
been replaced to show the correspondence between the trace and
the high-level code. The last line of the trace shows the predicate p
that serves as a post-assertion for the trace. For each statement s, if
s’s WP is different from its post-assertion, then s’s WP is displayed
above it. The first WP (i.e., the bottom-most shaded predicate) is
constructed mechanically using the rules in Section 5.2. The WPs
above it are simplified, so that implied predicates are omitted, and
arithmetic expressions are simplified. For the mod operation, we
identify implied predicates with the rule:

((v % m = c1) && (v % m != c2))
⇒ ((v % m = c1) ⇒ (v % m != c2))

The top-most command uses integer division, in which the remain-
der gets truncated. To simplify the arithmetic correctly for the ex-
pression “(timer / 86400) < 12478”, we calculate “timer <
(((12478 + 1) × 86400) - 1).” Although the operations “%”
and “/” are outside of Presburger arithmetic, we can provide logical
inference rules to handle the cases encountered in this example.

The variable timer is a known timer variable, so both its fre-
quency and its starting value are known. These values combined
with the top-most WP reveal that this path will be taken from
12:00am on 20 February 2006 to 11:59pm on 28 February
2006.

5.4 Completing the Timetable

Sections 5.2 and 5.3 show how to use the WP semantics to find a
range of times in which a code path (on a loop) will continue to be
taken. The trace t′ (see Section 5.2) is constructed based on an EIP
l ∈ L, so that every EIP of an entry in t′ is either l or is not in L.
Consequently the time range discovered based on timer variables
and a WP defines the time range for a behavior corresponding to l.
This behavior can be added to the program’s timetable, and if the
last two entries have the same label, they can be merged.

In order to begin the next iteration of this process, we set the
timer variables to the values we expect them to have at the time
immediately after the behavior previously discovered. We then
resume execution at the predicate p at the end of t′. By repeating
this process, we discover a timetable to an arbitrary point in the
future.

(timer >= 1077321600) && (timer < 1078185599)

dayno = timer / 86400;

year = 1970;

.

.

.

(year % 4 != 0)

(dayno >= 365)

dayno >= 12469 && dayno < 12478 && (year % 4 = 2)

dayno = dayno - 365;

dayno >= 12104 && dayno < 12113 && (year % 4 = 2)

year = year + 1;

.

.

.

(dayno >= 781) && (dayno < 790) && (year % 4 = 0)

(year % 4 = 0)

(dayno >= 366)

(dayno >= 781) && (dayno < 790)

&& (year % 4 != 3) && (year % 4 != 2)

dayno = dayno - 366;

(dayno >= 415) && (dayno < 424)

&& (year % 4 != 3) && (year % 4 != 2)

year = year + 1;

(dayno >= 415) && (dayno < 424)

&& (year % 4 != 0) && (year % 4 != 3)

(year % 4 != 0)

(dayno >= 365)

(dayno >= 415) && (dayno < 424) && (year % 4 != 3)

dayno = dayno - 365;

(dayno >= 50) && (dayno < 59) && (year % 4 != 3)

year = year + 1;

(year % 4 != 0)

(dayno < 365)

tm year = year - 1900;

tm yday = dayno;

(dayno >= 50) && (dayno < 59) && (year % 4 != 0)

dayno = dayno - 31;

(dayno >= 19) && (dayno < 28) && (year % 4 != 0)

(year % 4 != 0)

(dayno >= 19) && (dayno < 28)

!(dayno >= 28)

(dayno + 1 >= 20)

tm mday = dayno + 1

(tm mday >= 20)

Figure 4. Annotated trace with weakest preconditions (shaded).
The post-assertion is shown on the last line.

6. Challenges for Future Work
This section enumerates the challenges that must be addressed by
future work in this area, both for malware that does not explicitly
use knowledge of the analysis to evade analysis, and for malware
where the attacker knows about the analysis technique and seeks to
evade it. In both bases, we first consider challenges for behavior-
based analysis in general and then for temporal search in particular.

6.1 Regular Malware

As discussed in Section 1, it is not necessary for a malware analy-
sis technique to be impossible to evade for it to be useful. In fact,
both in practice and in theory, no malware analysis technique is im-
possible to evade. There still remain challenges for future research
even in the domain of regular malware, however, because of the
complexity of the domain of the problem we have chosen.

6.1.1 Challenges for Behavior-Based Analysis

Two challenges common to any behavior-based analysis will be
1) defining what is and is not a malicious use of a service; and
2) providing an environment complex enough to elicit the desired
behaviors from the malware.

6.1.2 Challenges for Temporal Search

The manifestation of these two challenges for temporal search is
particularly interesting. Defining what is and is not a malicious use
of the time and date was simple for the six worms analyzed in this
paper, but, for malware that installs itself into the system kernel or
uses other timers not considered in Section 4, more general tech-
niques are needed. In addition to the need to supply a sufficiently
complex environment to elicit time-dependent behaviors from mal-
ware, we feel that it will be desirable in future work to develop a
formal model of malware behavior over time. The model should be
based on formalisms richer than a linear timetable, such as finite
state transition systems [5].

A need particular to temporal search is for more control-flow-
sensitive symbolic execution, and program analysis techniques spe-
cific to the kinds of calculations performed on dates and times. Pro-
gram analysis involving integer arithmetic is undecidable in gen-
eral, but date and time calculations are a limited domain in which
practical analysis should be possible.

6.2 Evasive Malware

While no malware analysis technique needs to be impossible to
evade in order to be useful, it is important that malware defenders
know the capabilities and limitations of each technique in their
arsenal.

6.2.1 Challenges for Behavior-Based Analysis

The greatest challenge for any behavior-based analysis will be
that an attacker with knowledge about the virtual environment that
analysis will be performed in can make the malware not behave the
same way in that environment as it does on a real victim machine
(see [57, W32.Gaobot.EUX] or [57, W32.Toxbot]). For example,
the malware might use performance metrics to determine if it is
executing in a virtual machine or on native hardware, or it could
use the network to find out if it is really connected to the Internet
or not. King et al. [25] have explored many of the issues of virtual
machine detection in their implementation of malware as a virtual
machine. The Pioneer project [40] and recent related work [16] are
also relevant to this discussion.

A discussion of the different strengths and weaknesses of attack
and defense in this domain is well beyond the scope of this paper,
but we will point out that many types of malware analysis, such
as temporal search, can be carried out on a trace. Thus all that is
needed is zero-performance-overhead logging for deterministic re-
play. We have built a system similar to ReVirt [14], but where all
logging and replay of the virtual machine occurs at the architectural
level on port I/O and interrupts. In theory, a hardware implementa-
tion of this could achieve zero performance overhead.

6.2.2 Challenges for Temporal Search

Specific to our approach, there are many ways for an attacker
to evade temporal search. Our timer discovery step assumes a
certain structure of timers: that they define a series and the lower
granularity timers have a direct dependency on a predicate that
DACODA can discover. Breaking this structure will make this step
fail. For example, the attacker could take a microseconds timer
and pass it through a channel DACODA does not track before
comparing it to 1 million and incrementing a seconds counter.
These channels are also a problem for the predicate discovery

step. It may also be more difficult to discriminate between valid
uses of the timer and malicious uses by an adversarial attacker.
Furthermore, program analysis techniques to track predicates back
to a timer are formally undecidable in the general case. To evade
the analysis in Section 5 (or make the analysis problem much more
difficult in practice) the attacker need only use operations outside
of Presburger arithmetic, such as multiplication and division. All
of this is based on the fact that if the attacker knows the defenses
they can defeat it eventually, and if the defender knows the attack
beforehand they can defeat it, but is it possible for an attacker to
count down to a specific time in a cryptographically secure manner?

In the general domain of temporal search, an attacker could, in
theory, keep a counter called a cryptocounter [53] that is crypto-
graphically secure against analysis to determine what its value is.
It is not clear if this directly translates into a way to count down
to an event without analysis being able to predict that event and its
timing. If a cryptocounter is incremented every second, for exam-
ple, an analyzer could simply increment it at a much faster rate. A
cryptocounter bounded by performance would have to be tuned to
the slowest machine that the malware might run on. And any cryp-
tocounter based on an additive homomorphism could have larger
values than 1 added to it making parallel search on multiple pro-
cessors possible. This takes us into the realm of time-lock puzzles
and time-released cryptography [38], which is an open issue with-
out an external trusted agent.

7. Related Work
In addition to work cited throughout the paper, there is other re-
lated work that may be of interest to the reader in the areas of vir-
tual machines, time perturbation, intrusion detection, and malware
analysis.

7.1 Virtual Machines

The topic of virtual machines (VMs) has seen renewed interest
recently [2, 19, 26, 39, 45, 51]. Although the major original moti-
vation for VM usage was to provide timesharing capabilities for
mainframes, today they are extremely suitable for system or appli-
cation isolation, platform replication, concurrent execution of dif-
ferent operating systems (OS’s), system migration, testing of new
application or OS features, or as a secure platform for web applica-
tions [8], among other uses [45].

7.2 Time Perturbation

Researchers have used time perturbation to study how I/O and other
types of performance scale [21,35], or to understand the behavior of
a system [20]. Natural skews in a system’s clock have been shown
to allow for various kinds of remote fingerprinting [29].

7.3 Intrusion Detection

ReVirt [14] allows for full-system, deterministic replay of a system
running on top of a user-mode kernel. This can be used to analyze
intrusions with a tool such as BackTracker [24, 27]. IntroVirt [22]
is a virtual-machine-based system for detecting known attacks by
executing vulnerability-specific predicates as the the system runs
or replays, to detect attacks in the period between vulnerability
disclosure and patch dissemination.

Livewire [18] is a prototype for an architecture using an in-
trusion detection system (IDS) running separately from the virtual
machine monitor (VMM). The host to be monitored (guest OS and
guest applications) runs in the VMM, and the IDS inspects the state
of the host being monitored. Terra [17] is an architecture for trusted
computing based on VMs. Sidiroglou et al. [43] propose an archi-
tecture for detecting unknown malware code inside e-mails by redi-
recting suspicious e-mails to a virtual machine.

Minos [9] is a security-enhanced microarchitecture that was im-
plemented on the Bochs VM. Minos stops remote control data at-
tacks and a VM implementation of Minos has been used for hon-
eypots [11]. DACODA [10] was built as an extension on top of the
Minos VM environment and analyzes attack predicates of worm
exploits. VMs have also been used to provide scalability for hon-
eynets by allowing several virtual honeypots executing on a single
server [12,30]. Vrable et al. [50] propose a honeyfarm architecture
with the goal of considerably improving honeypot scalability.

7.4 Malware Analysis

In academia, there is relatively little research in the literature on
host-based malware detection and analysis compared to the preva-
lence of this problem. There have been very interesting studies
that use binary analysis to detect obfuscated malware [3, 4], de-
obfuscate packed executables [31], or detect rootkits [32]. These
kinds of appearance-based analysis techniques are important, but
are only half of the picture. In terms of automated, behavior-based
analysis the only two studies that we know of are fairly recent
[1, 28]. Both are based on detecting spyware by its spyware-like
behavior.

8. Conclusions
We have demonstrated how to use a virtual machine to discover sys-
tem timers without making assumptions about the integrity of the
kernel, and presented promising results on real malware showing
that malware timebombs can be detected with symbolic execution.
We have also explored the problem domain of temporal search and
presented formalisms that account for the intricacies of the Grego-
rian calendar. We believe that the novel view of this paper, focused
on temporal search, of how virtual machine-based analysis can be
used to detect malware timebombs shows that behavior-based anal-
ysis of malware in virtual machines will be a promising area of
research in the coming years.

9. Acknowledgments
We would like to thank our shepherd, Steven Gribble, as well as
the anonymous reviewers for their helpful comments. We would
also like to thank Tim Sherwood for reading a draft of the paper,
Francis Hsu and Yanyan Yang for sharing malware samples with
us, Juan Lang for insightful discussions about detecting VMs, and
Vern Paxson for pointing out that our initial conclusion about Code
Red was incorrect.

References
[1] K. Borders, X. Zhao, and A. Prakash. Siren: Catching evasive

malware (short paper). In IEEE Symposium on Security and Privacy,
2006.

[2] P. M. Chen and B. D. Noble. When Virtual is Better than Real.
Workshop on Hot Topics in Operating Systems (HotOS), May 2001.

[3] M. Christodorescu and S. Jha. Static Analysis of Executables to
Detect Malicious Patterns. USENIX Security Symposium, pages
169–186, August 2003.

[4] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant.
Semantics-aware malware detection. In IEEE Symposium on Security
and Privacy, 2005.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

[6] F. Cohen. Computer viruses: Theory and experiments. In 7th
DoD/NBS Computer Security Conference Proceedings, pages 240–
263, September 1984.

[7] N. Copernicus. On the Revolutions of Heavenly Spheres. (Available
from Prometheus Books, Amherst, New York), 1543.

[8] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A safety-
oriented platform for web applications. In IEEE Symposium on
Security and Privacy, 2006.

[9] J. R. Crandall and F. T. Chong. Minos: Control data attack
prevention orthogonal to memory model. In Proceedings of the 37th
International Symposium on Microarchitecture (MICRO), December
2004.

[10] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong. On Deriving
Unknown Vulnerabilities from Zero-Day Polymorphic and Meta-
morphic Worm Exploits. 12th ACM Conference on Computer and
Communications Security (CCS), 2005.

[11] J. R. Crandall, S. F. Wu, and F. T. Chong. Experiences using Minos
as a tool for capturing and analyzing novel worms for unknown
vulnerabilities. In DIMVA, 2005.

[12] D. Dagon, X. Qin, G. Gu, W. Lee, J. B. Grizzard, J. G. Levine, and
H. L. Owen. Honeystat: Local worm detection using honeypots. In
RAID, pages 39–58, 2004.

[13] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[14] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Revirt: Enabling intrusion analysis through virtual-machine logging
and replay. SIGOPS Oper. Syst. Rev., 36(SI):211–224, 2002.

[15] eEye Digital Security. Advisories and Alerts: .ida Code Red Worm,
July 2001.

[16] J. Franklin, M. Luk, J. McCune, A. Seshadri, A. Perrig, and L. van
Doorn. Remote virtual machine monitor detection. Presented at the
ARO-DARPA-DHS Special Workshop on Botnets, June, 2006.

[17] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A Virtual Machine-Based Platform for Trusted Computing.
ACM Symposium on Operating Systems Principles, pages 193–206,
October 2003.

[18] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. Network and Distributed
System Security Symposium, 2003.

[19] T. Garfinkel and M. Rosenblum. When Virtual is Harder than
Real: Security Challenges in Virtual Machine Based Computing
Environments. Tenth Workshop on Hot Topics in Operating Systems
(HotOS), June 2005.

[20] H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and J. Schindler. Deconstructing commodity storage
clusters. In Proceedings of the 32nd annual International Symposium
on Computer Architecture, 2005.

[21] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M.
Voelker. To infinity and beyond: time warped network emulation. In
ACM Symposium on Operating Systems Principles, 2005.

[22] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting past
and present intrusions through vulnerability-specific predicates. ACM
Symposium on Operating Systems Principles, 2005.

[23] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[24] S. T. King and P. M. Chen. Backtracking intrusions. In ACM
Symposium on Operating Systems Principles, 2003.

[25] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and
J. R. Lorch. SubVirt: Implementing malware with virtual machines.
In IEEE Symposium on Security and Privacy, 2006.

[26] S. T. King, G. W. Dunlap, and P. M. Chen. Operating System Support
for Virtual Machines. In USENIX Security Symposium, 2003.

[27] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. Enriching
Intrusion Alerts through Multi-Host Causality. Network and
Distributed System Security Symposium, February 2005.

[28] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer.
Behavior-based spyware detection. In Usenix Security Symposium,
2006.

[29] T. Kohno, A. Broido, and kc claffy. Remote physical device
fingerprinting. In IEEE Symposium on Security and Privacy, 2005.

[30] C. Kreibich and J. Crowcroft. Honeycomb: Creating intrusion
detection signatures using honeypots. SIGCOMM Comput. Commun.
Rev., 34(1):51–56, 2004.

[31] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly
of obfuscated binaries. In USENIX Security Symposium, 2004.

[32] C. Kruegel, W. Robertson, and G. Vigna. Detecting Kernel-Level
Rootkits Through Binary Analysis. 20th Annual Computer Security
Applications Conference (ACSAC’04), pages 91–100, 2004.

[33] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, July 1978.

[34] LURHQ Threat Intelligence Group. Key Dates in Past and Present
Sober Variants. http://www.lurhq.com/soberdates.html.

[35] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson.
Effects of communication latency, overhead, and bandwidth in a
cluster architecture. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, 1997.

[36] D. Moore, C. Shannon, and J. Brown. Code-red: a case study on
the spread and victims of an internet worm. In Proceedings of the
Internet Measurement Workshop (IMW), 2002.

[37] M. Ringgaard. Sanos source, 2002.

[38] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and
timed-release crypto. Technical report, Cambridge, MA, USA, 1996.

[39] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors: Current
Technology and Future Trends. IEEE Computer Society, 38(5):39–47,
May 2005.

[40] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: Verifying integrity and guaranteeing execution of code
on legacy platforms. In ACM Symposium on Operating Systems
Principles, 2005.

[41] R. Sherwood, B. Bhattacharjee, and R. Braud. Misbehaving TCP
Receivers can Cause Internet-wide Congestion Collapse. 12th ACM
Conference on Computer and Communications Security (CCS), 2005.

[42] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In Proceedings of the 30th Annual International Symposium on
Computer Architecture, 2003.

[43] S. Sidiroglou, J. Ioannidis, A. D. Keromytis, and S. J. Stolfo. An
Email Worm Vaccine Architecture. ISPEC, 2005.

[44] H. A. Simon. The sciences of the artificial (3rd ed.). MIT Press,
Cambridge, MA, USA, 1996.

[45] J. E. Smith and R. Nair. Virtual Machines - Versatile Platforms for
Systems and Processes. Morgan Kaufmann, 2005.

[46] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed
of flash worms. In WORM ’04, pages 33–42, New York, NY, USA,
2004. ACM Press.

[47] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet
in Your Spare Time. In In Proceedings of the USENIX Security
Symposium, pages 149–167, 2002.

[48] P. Szor. The Art of Computer Virus Research and Defense. Symantec
Press, 2005.

[49] VMware. Timekeeping in VMware Virtual Machines.

[50] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,
G. M. Voelker, and S. Savage. Scalability, Fidelity, and Containment
in the Potemkin Virtual Honeyfarm. ACM Symposium on Operating
Systems Principles, 2005.

[51] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. Rethinking the
Design of Virtual Machine Monitors. IEEE Computer, 38(5):57–62,
May 2005.

[52] P. Wolper and B. Boigelot. An automata-theoretic approach to
presburger arithmetic constraints (extended abstract). In Static
Analysis Symposium, pages 21–32, 1995.

[53] A. Young and M. Yung. Malicious Cryptography: Exposing
Cryptovirology. Wiley Publishing, Inc., 2004.

[54] Commmon Malware Enumeration (CME) (Home Page). http:
//cme.mitre.org/.

[55] “Decompiled Source For Ms Rpc Dcom Blaster Worm”. http:
//www.governmentsecurity.org/archive/t4726.html.

[56] Scapy. http://www.secdev.org/projects/scapy/.

[57] Symantec Security Response - search for malware description.
http://securityresponse.symantec.com/.

