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Abstract Equality constraints (unification constraints) have widespread use in program analysis, most
notably in static polymorphic type systems. Conditional equality constraints extend equality constraints
with a weak form of subtyping to allow for more accurate analyses. We give a complete complexity
characterization of the various entailment problems for conditional equality constraints and for a natural
extension of conditional equality constraints.

1 Introduction

There are two decision problems associated with constraints: satisfiability and entailment. For
the commonly used constraint languages in type inference and program analysis applications, the
satisfiability problem is now well understood [1, 3, 10, 13, 18, 19, 26, 29, 31, 9, 8, 34]. For example, it
is well-known that satisfiability of equality constraints can be decided in almost linear time (linear
time if no infinite terms are allowed [27]). For entailment problems much less is known, and the
few existing results give intractable lower bounds for the constraint languages they study, except
for equality constraints where polynomial time algorithms exist [4, 5].

In this paper, we consider the entailment problem for conditional equality constraints. Condi-
tional equality constraints extend the usual equality constraints with an additional form α ⇒ τ ,
which holds if α = ⊥ or α = τ . Conditional equality constraints have been used in a number of
analyses, such as the tagging analysis of Henglein [16], and the pointer analysis proposed by Steens-
gaard [33], and a form of equality-based flow systems for higher order functional languages [25].
Besides conditional equality constraints, we also consider entailments for a natural extension of
conditional constraints.

Consider the equality constraints C1 = {α = β, β = γ, α = γ}. Since α = γ is implied by
the other two constraints, we can simplify the constraints to C2 = {α = β, β = γ}. We say that
“C1 entails C2”, written C1 � C2, which means that every solution of C1 is also a solution of C2.
In this case we also have C2 � C1, since the two systems have exactly the same solutions. In the
program analysis community, the primary motivation for studying entailment problems comes from
type systems with polymorphic constrained types. Such type systems combine polymorphism (as in
ML [20]) with subtyping (as in object-oriented languages such as Java [12]), giving polymorphic
types with associated subtyping constraints. A difficulty with constrained types is that there are
many equivalent representations of the same type, and the “natural” ones to compute tend to
be very large and unwieldy. For the type system to be practical, scalable, and understandable to
the user, it is important to simplify the constraints associated with a type. As the example above
illustrates, entailment of constraint systems is a decision problem closely related to constraint
simplification.
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Complexity
Constraints Simple Entailment Restricted Entailment

Conditional Equality P-complete P-complete

Extended Conditional Equality P-complete coNP-complete

Table 1. Summary of results.

Considerable effort has been directed at constraint simplification. One body of work considers
practical issues with regard to simplification of constraints [7, 9, 8, 34, 19], suggesting heuristics for
simplification and experimentally measuring the performance gain of simplifications. Another body
of work aims at a better understanding how difficult the simplification problems are for various
constraint logics [9, 14, 15]. Flanagan and Felleisen [9] consider the simplification problem for a
particular form of set constraints and show that a form of entailment is PSPACE-hard. Henglein and
Rehof [14,15] consider another simpler form of entailment problem for subtyping constraints. They
show that structural subtyping entailment for constraints over simple types is coNP-complete and
that for recursive types is PSPACE-complete, and that the nonstructual entailment for both simple
types and recursive types is PSPACE-hard. A complete complexity characterization of nonstructual
subtyping entailment remains open. In fact, it is an open problem whether nonstructual subtyping
entailment is decidable. Thus for these different forms of constraints, the problems are intractable or
may even be undecidable. In the constraint logic programming community, the entailment problems
over equality constraints have been considered by Colmerauer and shown to be polynomial time
decidable [4,5,17,32]. Previous work leaves open the question of whether there are other constraint
languages with efficiently decidable entailment problems besides equality constraints over trees
(finite or infinite).

1.1 Contributions

We consider two forms of the entailment problem: simple entailment and restricted entailment
(sometimes also referred to as existential entailment), which we introduce in Section 2. Restricted
entailment arises naturally in problems that compare polymorphic constrained types (see Section 2).
Table 1 contains a summary of the main results of this paper. In particular, we show there are
polynomial time algorithms for equality and conditional equality constraints for both versions of
entailment. We believe these algorithms will be of practical interest. In addition, we consider simple
entailment and restricted entailment for a simple and natural extension of conditional equality
constraints. We show that although simple entailment for the extension admits polynomial time
algorithms, restricted entailment for this extension turns out to be coNP-complete. The coNP-
completeness result is interesting because it provides a natural boundary between tractable and
intractable constraint languages.

2 Preliminaries

We work with simple types. The algorithms we present apply to type languages with other base
types and type constructors. Our type language is

τ ::= ⊥ | > | τ1 → τ2 | α.
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This simple language has two constants ⊥ and >, a binary constructor →, and variables α ranging
over a denumerable set V of type variables. Variable-free types are ground types. T and TG are
the set of types and the set of ground types respectively. An equality constraint is τ1 = τ2 and a
conditional equality constraint is α⇒ τ . A constraint system is a finite conjunction of equality and
conditional equality constraints. An equality constraint system has only equality constraints.

Let C be a constraint system and Var(C) the set of type variables appearing in C. A valuation
of C is a function mapping Var(C) to ground types TG . We extend a valuation ρ to work on type
expressions in the usual way:

– ρ(⊥) = ⊥;
– ρ(>) = >;
– ρ(τ1 → τ2) = ρ(τ1)→ ρ(τ2).

A valuation ρ satisfies constraint τ1 = τ2, written ρ � τ1 = τ2, if ρ(τ1) = ρ(τ2), and it satisfies a
constraint α ⇒ τ , written ρ � α ⇒ τ , if ρ(α) = ⊥ or ρ(α) = ρ(τ). We write ρ � C if ρ satisfies
every constraint in C.

Definition 1 (Terms). Let C be a set of constraints. Term(C) is the set of terms appearing in
C: Term(C) = {τ1, τ2 | (τ1 = τ2) ∈ C ∨ (τ1 ⇒ τ2) ∈ C}.

The satisfiability of equality constraints can be decided in almost linear time in the size of
the original constraints using a union-find data structure [35]. With a simple modification to this
algorithm for equality constraints, we can decide the satisfiability of a system of conditional equality
constraints in almost linear time (see Proposition 1 below). 1

Example 1. Here are example conditional constraints:

– α⇒ ⊥;
Solution: α must be ⊥

– α⇒ >;
Solution: α is either ⊥ or >.

– α⇒ β → γ
Solution: α is either ⊥ or a function type β → γ, where β and γ can be any type.

Proposition 1. Let C be any system of constraints with equality constraints and conditional
equality constraints. We can decide whether there is a satisfying valuation for C in almost linear
time.

Proof. [Sketch] The basic idea of the algorithm is to solve the equality constraints and to maintain
along with each variable a list of constraints conditionally depending on that variable. Once a
variable α is unified with a non-⊥ value, any constraints α⇒ τ on the list are no longer conditional
and are added as equality constraints α = τ . Note that a post-processing step is required to perform
the occurs check. The time complexity is still almost linear since each constraint is processed at
most twice. See, for example, [33] for more information. 2

In later discussions, we refer to this algorithm as CondResolve. The result of running the
algorithm on C is a term dag denoted by CondResolve(C) (see Definition 5) similar to unification
based on the union-find data structure. As is standard, for any term τ , we denote the equivalence
class to which τ belongs by ecr(τ).
1 Notice that using a linear unification algorithm such as [27] does not give a more efficient algorithm, because

equality constraints are added dynamically.
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In this paper, we consider two forms of entailment: simple entailment : C � c, and restricted
entailment : C1 �E C2, where C, C1, and C2 are systems of constraints, and c is a single constraint,
and E is a set of interface variables. In the literature, C1 �E C2 is sometimes written C1 � ∃E′.C2,
where E′ = Var(C2) \ E.

For the use of restricted entailment, consider the following situation. In a polymorphic analysis,
a function (or a module) is analyzed to generate a system of constraints [11, 9]. Only a few of the
variables, the interface variables, are visible outside the function. We would like to simplify the
constraints with respect to a set of interface variables. In practice, restricted entailment is more
commonly encountered than simple entailment.

Definition 2 (Simple Entailment). Let C be a system of constraints and c a constraint. We
say that C � c if for every valuation ρ with ρ � C, we have ρ � c also.

Definition 3 (Restricted Entailment). Let C1 and C2 be two constraint systems, and let E be
the set of variables Var(C1)∩Var(C2). We say that C1 �E C2 if for every valuation ρ1 with ρ1 � C1

there exists ρ2 with ρ2 � C2 and ρ1(α) = ρ2(α) for all α ∈ E.

Definition 4 (Interface and Internal Variables). In C1 �E C2, variables in E are interface
variables. Variables in (Var(C1) ∪Var(C2)) \ E, are internal variables.

Notations

– τ and τi denote type expressions.
– α, β, γ, αi, βi, and γi denote interface variables.
– µ, ν, σ, µi, νi, and σi denote internal variables.
– α denotes a generic variable, in places where we do not distinguish interface and internal vari-

ables.

For simple entailment C � c, it suffices to consider only the case where c is a constraint between
variables, i.e., c is of the form α = β or α ⇒ β. For simple entailment, C � τ1 = τ2 if and only if
C ∪ {α = τ1, β = τ2} � α = β, where α and β do not appear in C and c. The same also holds for
when c is of the form α⇒ τ .

Simple entailment also enjoys a distributive property, that is C1 � C2 if and only if C1 � c for
each c ∈ C2. Thus it suffices to only study C � c. This distributive property does not hold for
restricted entailment. Consider ∅ �{α,β} {α⇒ σ, β ⇒ σ}, where σ is a variable different from α and
β. This entailment does not hold (consider ρ1(α) = > and ρ1(β) = ⊥ → ⊥), but the entailments
∅ �{α,β} {α⇒ σ} and ∅ �{α,β} {β ⇒ σ} both hold.

Terms can be represented as directed trees with nodes labeled with constructors and variables.
Term graphs (or term DAGs) are a more compact representation to allow sharing of common
subterms.

Definition 5 (Term DAG). In a term DAG, a variable is represented as a node with out-degree
0. A function type is represented as a node → with out-degree 2, one for the domain and one for
the range. No two different nodes in a term DAG may represent the same term (sharing must be
maximal).

We also represent conditional constraints in the term graph. We represent α⇒ τ as a directed
edge from the node representing α to the node representing τ . We call such an edge a conditional
edge, in contrast to the two outgoing edges from a → node, which are called structural edges.

It is well-known that unification is P-complete [6]. Since unification can be trivially reduced in
log-space to the various entailments we consider, it suffices to give polynomial time algorithms to
show P-completeness of these problems.
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{τ1 = τ2, τ2 = τ3} ⊆ S ⇒ {τ1 = τ3} ⊆ S

{τ1 → τ2 = τ ′1 → τ ′2} ⊆ S ⇒ {τ1 = τ ′1, τ2 = τ ′2} ⊆ S

{⊥ = >} ⊆ S ⇒ not satisfiable

{⊥ = τ1 → τ2} ⊆ S ⇒ not satisfiable

{> = τ1 → τ2} ⊆ S ⇒ not satisfiable

Figure 1. Closure rules for equality constraints.

{τ1 = τ2, τ2 = τ3} ⊆ S ⇒ {τ1 = τ3} ⊆ S

{τ1 = τ ′1, τ2 = τ ′2} ⊆ S ⇒ {τ1 → τ2 = τ ′1 → τ ′2} ⊆ S

Figure 2. Congruence closure for equality constraints.

3 Entailment of Equality Constraints

In this section we consider the entailment problems for equality constraints. These results are useful
in later sections. Algorithms for entailment over equality constraints are known [17, 32, 4, 5]. We
include them for completeness since these results are used heavily in later sections for studying
entailment over conditional equality constraints.

3.1 Simple Entailment

We first consider the simple entailment problem for equality constraints. For C � c to hold, the
constraint c cannot put extra restrictions (beyond those in C) on the variables in C. We use this
idea to get an efficient algorithm for deciding whether C � c for equality constraints.

Recall that the basic algorithm for checking the satisfiability of an equality constraint system is
to put the constraint system into some closed form according to the rules in Figure 1 (Robinson’s
algorithm) [30].

An efficient implementation of Robinson’s algorithm is based on the union-find data structure.
The algorithm operates on a graph representation of the constraints and closes the graphs according
to structural decomposition. A union-find data structure maintains equivalence classes, with a
designated representative for each equivalence class. For any term τ , we denote the equivalence
class to which τ belongs by ecr(τ). If the algorithm succeeds, the resulting DAG forest represents
the most general unifier (m.g.u.) of the original constraint system. The algorithm fails if it discovers
a constructor mismatch (the last three rules in Figure 1).

The standard unification algorithm is not sufficient for deciding entailment because structural
equivalence is not explicit in the resulting DAG representation. That is, constraints of the form
τ1 → τ2 = τ ′1 → τ ′2 are decomposed into τ1 = τ ′1 and τ2 = τ ′2, but the equivalence of τ1 → τ2

and τ ′1 → τ ′2 is not represented explicitly. Moreover, besides constraint decomposition, there are
situations in which τ1 = τ ′1 and τ2 = τ ′2, but the equivalence τ1 → τ2 = τ ′1 → τ ′2 is not explicitly
represented. For entailment, we would like equivalence classes to mean both that all members of a
class X are equal in all solutions, but also that every other equivalence class Y is different from X
in at least one solution. Thus, equivalence classes should be as large as possible (maximal). This
property is guaranteed by congruence closure.
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1. Compute m.g.u. of C. If fail, output yes; else continue.
2. Compute the congruence closure on the m.g.u. of C. If α = β is in the closure, output yes; else output

no.

Figure 3. Simple entailment C � α = β over equality constraints.

For C � α = β to hold, it suffices to check whether α = β is implied by C with respect to the
congruence closure rules in Figure 2, i.e., whether α = β is a constraint in the congruence closure of
C. Congruence closure can be computed in O(n log n) [22]. Figure 3 gives an algorithm for simple
entailment over equality constraints 2.

Lemma 1. Let C be a constraint system. C and Cong(C), the congruence closure of C, have the
same solutions.

Proof. The rules in Figure 2 preserve solutions. 2

The algorithm clearly runs in O(n log n), where n = |C|.

Theorem 1 (Correctness). The algorithm in Figure 3 is correct.

Proof. If the algorithm outputs yes, the constraint α = β is contained in the congruence closure
of the m.g.u. of C. By Lemma 1, we know that C and the congruence closure of C’s m.g.u. have
the same solutions. Thus C � α = β.

If the algorithm outputs no, then the constraint α = β is not in the congruence closure of the
m.g.u. of C. One can show with an induction on the structure of the equivalence class representatives
of α and β, i.e., ecr(α) and ecr(β), that any two non-congruent classes admit a valuation ρ � C
which maps the two non-congruent classes to different ground types. Thus, C 2 α = β. 2

3.2 Restricted Entailment

In this subsection, we consider restricted entailment for equality constraints. This relation is more
involved, since for polymorphic analyses, there are some interface variables we are interested in,
and the other internal variables may be eliminated, which can result in a smaller constraint system.

The goal is to decide C1 �E C2 for two constraint systems C1 and C2 and E = Var(C1)∪Var(C2).
Recall that C1 �E C2 if and only if for every valuation ρ1 � C1 there exists a valuation ρ2 � C2

such that ρ1(α) = ρ2(α) for all α ∈ E.
We first consider an example to illustrate the issues. Consider the two constraint systems C1 =

{α = σ → σ} and C2 = {α = σ1 → σ2} with the interface variables E = {α}. For any valuation
ρ � C1, we know ρ(α) = τ → τ for some τ . Consider the valuation ρ′ of C2 with ρ′(α) = ρ(α) and
ρ′(σ1) = ρ′(σ2) = ρ(σ). It is easy to see that ρ′ � C2, and thus the relation C1 �E C2 holds. The
algorithm for simple entailment given in Figure 3 does not apply since for this example, it would
give the answer no. Note that if C1 � C2 (holds iff for all c ∈ C2 we have C1 � c) then C1 �E C2

for any E. The converse, however, is not true, as shown by the example.
We modify the simple entailment algorithm over equality constraints to get an algorithm for

restricted entailment over equality constraints. The intuition behind the algorithm is that we can
2 The congruence closure computation is unnecessary. We could simply add the constraint α = β to the m.g.u. of
C1 and continue with unification to check if any two distinct equivalence classes are merged. This results in an
almost linear time algorithm for a single query. Congruence closure gives a simpler explanation, and also gives an
algorithm that answers queries in constant time.
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1. Compute m.g.u. of C1. If fail, output yes; else continue.
2. Add each term of C2 to the m.g.u. of C1 if the term is not already present.
3. Compute the congruence closure on the term graph obtained in Step 2.
4. Unify the constraints of C2 in the result obtained in Step 3, and perform the following check. For

any two non-congruent classes that are unified, we require at least one of the representatives to be a
variable in Var(C2) \ E. If this requirement is not met, output no; else output yes.

Figure 4. Restricted entailment C1 �E C2 over equality constraints.



ρ(α) = ρ1(α) if α ∈ Var(C1)

ρ(α) =


ρ1(ecr(α)) if ecr(α) ∈ Var(C1)
⊥ if ecr(α) ∈ Var(C2) \ E
⊥ if ecr(α) = ⊥
> if ecr(α) = >
ρ(τ1)→ ρ(τ2) if ecr(α) = τ1 → τ2

 if α ∈ Var(C2) \ E

Figure 5. Constructed valuation ρ.

relax the requirement of simple entailment to allow internal variables of C2 to be added to equiva-
lence classes of the term DAG representation of the m.g.u. of C1, as long as no equivalence classes
of C1 are merged. The algorithm is given in Figure 4 3.

In Figure 4, the choice of representatives for equivalence classes is important. We pick represen-
tatives in the following order, which guarantees that if the representative is in Var(C2) \ E, then
there is no variable in Var(C1) or a constructor in the equivalence class:

1. ⊥, >, and → nodes;
2. variables in Var(C1);
3. variables in Var(C2) \ E.

Let n = |C1| and m = |C2|. It is easy to see that the algorithm takes time O((m+n) log(m+n)).

Theorem 2 (Correctness). The algorithm in Figure 4 is correct.

Proof. Suppose the algorithm outputs yes. If C1 is not satisfiable then clearly C1 �E C2. Let ρ1

be a satisfying valuation of C1. Consider the valuation ρ given in Figure 5.
The valuation ρ is clearly well-defined. Let ρ2 denote the valuation obtained by restricting ρ to

Var(C2), i.e., the variables in C2. We want to show that ρ2 � C2. Since the algorithm outputs yes,
when adding the constraints in C2, the only change to the graph is adding variables in Var(C2) \E
to some existing equivalence classes. By the construction of ρ, one can see that ρ satisfies all the
induced constraints in the term graph at step 4 of the algorithm. Thus, we have ρ � C1 ∪ C2, and
therefore ρ2 � C2. Hence, we have C1 �E C2.

Conversely, suppose the algorithm outputs no. Then there exist two equivalence classes to be
unified neither of whose ecr is a variable in Var(C2) \ E. There are two cases.

– In the first case, one ecr is a variable in Var(C1), say α. If the other representative is ⊥, then
any valuation ρ1 � C1 with ρ1(α) = > gives a witness for C1 2E C2. The case where the other
representative is > or a→ node is similar. If the other representative is a variable β ∈ Var(C1),
any valuation ρ1 � C1 with ρ1(α) = > and ρ1(β) = ⊥ is a witness for C1 2E C2.

3 The step of congruence closure is again not necessary here.
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Let C be a system of constraints. The following algorithm outputs a term graph representing the solutions
of C.

1. Let G be the term graph CondResolve(C).
2. For each variable α in Var(C), check whether it must be ⊥: If neither G ∪ {α = >} nor G ∪ {α =

σ1 → σ2} is satisfiable, add α = ⊥ to G.

Figure 6. Modified conditional unification algorithm.

– In the second case, both ecrs are constructors. If there is a constructor mismatch, then C1∪C2

is not satisfiable. Since C1 is satisfiable, then C1 2E C2 (Since if C1 �E C2, any satisfying
valuation for C1 can be extended to a satisfying valuation for C2.)
Note that if there is no constructor mismatch (where both representatives are → nodes), the
error is detected when trying to unify the terms represented by these two nodes. Thus it falls
into one of the above cases.

Thus it follows that C1 2E C2.

2

4 Conditional Equality Constraints

In this section, we consider the two entailment problems for constraint systems with conditional
equality constraints. Recall for α ⇒ τ to be satisfied by a valuation ρ, either ρ(α) = ⊥ or ρ(α) =
ρ(τ).

Lemma 2 (Transitivity of ⇒). Any valuation ρ satisfying α ⇒ β and β ⇒ γ, also satisfies
α⇒ γ.

Consider the constraints {α ⇒ >, α ⇒ ⊥ → ⊥}. The only solution is α = ⊥. The fact that α
must be ⊥ is not explicit. For entailment, we want to make the fact that α must be ⊥ explicit.

Assume that we have run CondResolve on the constraints to get a term graph G. For each
variable α, we check whether it must be ⊥. If both adding α = > to G and α = σ1 → σ2 to G (for
fresh variables σ1 and σ2) fail, α must be ⊥, in which case, we add α = ⊥ to G. We repeat this
process for each variable. Notice that this step can be done in polynomial time. We present this
modification to the conditional unification algorithm in Figure 6.

4.1 Simple Entailment

In this subsection, we present an algorithm for deciding C � α = β and C � α⇒ β where C1 and
C2 are constraint systems with conditional equality constraints. Note C � α = β holds if and only
if C � α ⇒ β and C � β ⇒ α both hold. We give the algorithm in Figure 7. The basic idea is
that to check C � α ⇒ β holds we have two cases: when α is > and when α is a function type.
In both cases, we require β = α. The problem then basically reduces to simple entailment over
equality constraints. As for entailment for equality constraints, congruence closure is required to
make explicit the implied equalities between terms involving →. Computing strong components is
used to make explicit, for example, α = β if both α ⇒ β and β ⇒ α. It is easy to see that the
algorithm runs in worst case polynomial time in the size of C.
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If both of the following cases return success, output yes; else output no.

1. (a) Run the conditional unification algorithm in Figure 6 on C ∪ {α = >}. If not satisfiable, then
success; else continue.

(b) Compute strongly connected components (SCC) on the conditional edges and merge the nodes
in every SCC. This step yields a modified term graph.

(c) Compute congruence closure on the term graph obtained in Step 1b. We do not consider the
conditional edges for computing congruence closure.

(d) If β = > is in the closure, success; else fail.
2. (a) Run the conditional unification algorithm in Figure 6 on C ∪ {α = σ1 → σ2}, where σ1 and σ2

are two fresh variables not in Var(C) ∪ {α, β}. If not satisfiable, then success; else continue.
(b) Compute strongly connected components (SCC) on the conditional edges and merge the nodes

in every SCC. This step yields a modified term graph.
(c) Compute congruence closure on the term graph obtained in Step 2b. Again, we do not consider

the conditional edges for computing congruence closure.
(d) If β = σ1 → σ2 is in the closure, success; else fail.

Figure 7. Simple entailment C � α⇒ β over conditional equality constraints.

Theorem 3. The simple entailment algorithm in Figure 7 is correct.

Proof. Suppose that the algorithm outputs yes. Let ρ be a satisfying valuation for C. We have
three cases.

– If ρ(α) = ⊥, then ρ � α⇒ β.
– If ρ(α) = >, then ρ � C ∪ {α = >}. Thus C ∪ {α = >} is satisfiable. We then have β = > is in

the closure of C ∪ {α = >}. Hence, ρ � β = >, which implies that ρ � α⇒ β.
– If ρ(α) = τ1 → τ2 where τ1 and τ2 are ground types, we have C ∪ {α = σ1 → σ2} is satisfiable.

We thus have β = σ1 → σ2 is in the closure of C ∪ {α = σ1 → σ2}. Hence ρ � β = σ1 → σ2,
and which implies that ρ � α⇒ β.

Combining the three cases, we conclude that C � α⇒ β.
Suppose the algorithm outputs no. Then at least one of the two cases returns fail. Assume

that the case with α = > returns fail. Then β = > is not in the congruence closure of C∪{α = >}.
By assigning all the remaining conditional variables to ⊥ (variables appearing as the antecedent
of the conditional constraints) in the graph, we can exhibit a witness valuation ρ that satisfies C
but does not satisfy α⇒ β (same as the case for simple entailment over equality constraints). The
other case where α = σ1 → σ2 is similar. Hence C 2 α⇒ β.

2

4.2 Restricted Entailment over Atomic Constraints

Before considering the problem C1 �E C2 over conditional equality constraints, we look at a simpler
case, in which all the constraints are between variables. With minor modifications, the presented
algorithm can handle constraints over atoms (variables, ⊥ and >).

We first characterize the solutions of a constraint system with respect to a set of variables. Let C
be a constraint system and E ⊆ Var(C). Recall that a conditional constraint α⇒ β is represented as
a directed edge from the node representing α to the node representing β. We compute the strongly
connected components (SCC) of the term graph representation of the conditional constraints. We
now perform the following transformations:
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– If a variable α /∈ E appears in a strong component with variables in E, then remove α and its
incident edges from the component.

– Remove any conditional edge if the antecedent component consists only of variables in Var(C)\
E.

– Remove any isolated component consisting only of variables in Var(C) \ E.

Compute the transitive closure relation on the resulting dag. The resulting graph is the normal
form nf(CE) of C with respect to E.

Example 2. Consider the constraints

{τ0 ⇒ α, α⇒ τ1, β ⇒ τ2, τ2 ⇒ τ3, τ3 ⇒ β, τ3 ⇒ τ1}

The graph representation of the constraints is:

τ0

��????? β // τ2

~~}}}}}

α

  AAAAA τ3

``AAAAA

}}{{{{

τ1

The graph nf(C{α,β}) is
α

��????? β

�������

τ1

The solutions w.r.t. {α, β} are the same, either α is ⊥, or β is ⊥, or α = β.
For a constraint system C, we denote by S(C) |E the set of satisfying valuations restricted to

E, i.e.
S(C) |E= {ρ′ | ρ � C and ρ′ = ρ |E},

where ρ |E denotes the valuation of ρ restricted to the variables E.

Lemma 3. S(C) |E= S(nf(CE)) |E .

Proof. By transitivity of ⇒ and the fact that we only add transitive constraints and remove other
constraints from C to get nf(CE), it is clear that S(C) |E⊆ S(nf(CE)) |E .

For the other direction, we need to show that each valuation in S(nf(CE)) |E is also in S(C) |E .
Let ρ be a valuation in S(nf(CE)) |E . It is extensible to a valuation ρ′ of nf(CE). We want to
show that ρ′ can be extended to a valuation ρ′′ that satisfies C. We define ρ′′ as follows

ρ′′(α) = ρ′(α) if α ∈ Var(nf(CE))
ρ′′(α) = ρ′(β) if scc(α) = scc(β) and β ∈ E
ρ′′(α) = ⊥ otherwise

where scc(α) = scc(β) means that α and β are in the same strong component.
One can verify that ρ′′ � C by observing that the only constraints that are removed from C are

of the forms τ ⇒ α, τ1 = τ2, or τ = β where τ , τ1, and τ2 are variables not in E and α and β are
in E. These constraints are satisfied by our construction of ρ′′.

2
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(a) Term graph for C1. (b) Term graph for C2.

Figure 8. Example.

After this transformation only interface variables in E can appear as the left-side of conditional
constraints.

We now consider the decision problem C1 �E C2. Before giving the algorithm, let us look at
another example. Consider the constraints

C1 = {α⇒ τ1, β ⇒ τ1, α⇒ τ2, γ ⇒ τ2, β ⇒ τ3, γ ⇒ τ3}

and
C2 = {α⇒ τ, β ⇒ τ, γ ⇒ τ}

We want to determine that C1 ≡E C2 where E = {α, β, γ}. The term graph representations for C1

and C2 are given in Figure 8. These are also their normal forms. Notice that the constraints α⇒ τ1

and β ⇒ τ1 force α = β when α 6= ⊥ and β 6= ⊥. Thus we can easily characterize C1’s solutions
restricted to E as

– All of α, β, and γ are ⊥;
– One of them is not ⊥ and can be any (non-⊥) value;
– Two of them are not ⊥ and have the same (non-⊥) value ;
– All three have the same (non-⊥) value.

Similarly, we get the same characterization for C2, thus C1 ≡E C2.
We now give our algorithm for deciding C1 �E C2. The algorithm is in Figure 9. Case 2c handles

the tricky case illustrated by Figure 8.
We first analyze the running time of the algorithm. The time to compute nf(CE1 ) and nf(CE2 )

is O(m2 + n2) where m = |C1| and n = |C2|. The time to perform the checks can be done in time
O(mn). Thus the running time of the algorithm is O(m2 + n2 +mn).

Theorem 4. The algorithm in Figure 9 is correct.

Proof. Let preC(α) be {β | β ⇒ α} in constraints C. Define TCρ (α) = ⊥ if the valuation ρ maps
all variables in preC(α) to ⊥, otherwise, TCρ (α) = ρ(β) for any β ∈ preC(α) with ρ(β) 6= ⊥.

Assume the algorithm outputs yes. We show that for each valuation ρ � nf(CE1 ), the valuation
ρ |E can be extended to a valuation ρ′ that satisfies nf(CE2 ). We define ρ′ as follows{

ρ′(α) = ρ(α) if α ∈ E
ρ′(α) = T

nf(CE2 )
ρ (α) if α ∈ Var(nf(CE2 )) \ E

We first show that ρ′ is well-defined. We argue that all variables in prenf(CE2 )(α) must be mapped
to the same value. Let α1 and α2 be in prenf(CE2 )(α) and ρ(α1) 6= ⊥ and ρ(α2) 6= ⊥. Since α1 ⇒ α
and α2 ⇒ α are constraints in nf(CE2 ), we have either (α1 = α2) ∈ nf(CE1 ) or {α1 ⇒ α′, α2 ⇒

11



1. Compute nf(CE1 ) and nf(CE2 );
2. Perform the following checks (where α ∈ E and β ∈ E, and τ /∈ E and τ ′ /∈ E)

(a) if (α = β) ∈ nf(CE2 ), check (α = β) ∈ nf(CE1 );
(b) if (α⇒ β) ∈ nf(CE2 ), check (α = β) ∈ nf(CE1 ) or (α⇒ β) ∈ nf(CE1 );
(c) if {α⇒ τ, β ⇒ τ} ⊆ nf(CE2 ), check (α = β) ∈ nf(CE1 ) or {α⇒ τ ′, β ⇒ τ ′} ⊆ nf(CE1 );

3. if any of these tests fail, output no; else output yes.

Figure 9. Algorithm for restricted entailment over atomic constraints.

α′} ⊆ nf(CE1 ). Then we have ρ(α1) = ρ(α2). Thus ρ′ is well-defined. To see that ρ′ � nf(CE2 ),
notice that ρ′ satisfies each constraint in nf(CE2 ), i.e., ρ′ � α = β, ρ′ � α ⇒ β, and ρ′ � α ⇒ τ .
Thus S(nf(CE1 )) |E⊆ S(nf(CE2 )) |E . By Lemma 3, we have C1 �E C2.

If the algorithm outputs no, at least one of the checks fails in step 2 of the algorithm. We
consider the three cases separately.

Case 1. Suppose α = β ∈ nf(CE2 ) but α = β /∈ nf(CE1 ). Either {α 7→ >, β 7→ ⊥} or {α 7→
⊥, β 7→ >} can be extended to a valuation ρ � nf(CE1 ). However, clearly ρ |E cannot be extended
to a ρ′ � nf(CE2 ). Thus C1 �E C2 does not hold.

Case 2. Suppose α ⇒ β ∈ nf(CE2 ), and α = β /∈ nf(CE1 ) and α ⇒ β /∈ nf(CE1 ). One can show
that {α 7→ >, β 7→ ⊥} can be extended to a valuation ρ � nf(CE1 ). Thus, C1 �E C2 does not hold.

Case 3. Suppose {α ⇒ τ, β ⇒ τ} ⊆ nf(CE2 ), and (α = β) /∈ nf(CE1 ) and {α ⇒ τ ′, β ⇒ τ ′} *
nf(CE1 ) for any τ ′ /∈ E. The partial valuation {α 7→ >, β 7→ ⊥ → ⊥} can be extended to a valuation
ρ that satisfies C1. In particular, we construct ρ as follows

ρ(α) = >
ρ(β) = ⊥ → ⊥
ρ(γ) = ρ(α) if scc(γ) = scc(α)
ρ(γ) = ρ(α) if scc(α)⇒ scc(γ)
ρ(γ) = ρ(β) if scc(β) = scc(γ)
ρ(γ) = ρ(β) if scc(β)⇒ scc(γ)
ρ(γ) = ⊥ otherwise

where scc is defined as the representative of a SCC component. In choosing a scc for a SCC, the
variables in E have precedence over the internal variables.

One can show that the constructed valuation ρ satisfies C1. However {α 7→ >, β 7→ ⊥ → ⊥}
cannot be extended to a valuation that satisfies C2 since this would require unifying > with ⊥ → ⊥.

2

5 Restricted Entailment over Conditional Equality Constraints

In this section, we give a polynomial time algorithm for restricted entailment over conditional
constraints.

Consider the following example term graph for the constraints

{α1 ⇒ ⊥, α1 ⇒ σ1, α2 ⇒ σ1, α2 ⇒ σ2, α3 ⇒ σ2, α3 ⇒ >}.

Example 3.
α1

��



��5555 α2

��				
��5555 α3

��				
��444

⊥ σ1 σ2 >
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S({α1 ⇒ ⊥, α2 ⇒ σ1}) = {〈v1, v2, v3〉 | v1 = ⊥}
S({α2 ⇒ σ1, α2 ⇒ σ2}) = S∗

S({α3 ⇒ σ2, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v3 = ⊥) ∨ (v3 = >)}
S({α1 ⇒ ⊥, α2 ⇒ σ1}) = {〈v1, v2, v3〉 | v1 = ⊥}
S({α1 ⇒ ⊥, α2 ⇒ σ2}) = {〈v1, v2, v3〉 | v1 = ⊥}
S({α1 ⇒ ⊥, α3 ⇒ σ2}) = {〈v1, v2, v3〉 | v1 = ⊥}
S({α1 ⇒ ⊥, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v1 = ⊥ ∧ v3 = ⊥) ∨ (v1 = ⊥ ∧ v3 = >)}
S({α1 ⇒ σ1, α2 ⇒ σ1}) = {〈v1, v2, v3〉 | (v1 = ⊥) ∨ (v2 = ⊥) ∨ (v2 = v3)}
S({α1 ⇒ σ1, α2 ⇒ σ2}) = S∗

S({α1 ⇒ σ1, α3 ⇒ σ2}) = S∗

S({α1 ⇒ σ1, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v3 = ⊥) ∨ (v3 = >)}
S({α2 ⇒ σ1, α3 ⇒ σ2}) = S∗

S({α2 ⇒ σ1, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v3 = ⊥) ∨ (v3 = >)}
S({α2 ⇒ σ2, α3 ⇒ σ2}) = {〈v1, v2, v3〉 | (v2 = ⊥) ∨ (v3 = ⊥) ∨ (v2 = v3)}
S({α2 ⇒ σ2, α3 ⇒ >}) = {〈v1, v2, v3〉 | (v3 = ⊥) ∨ (v3 = >)}

Figure 10. Solutions for all subsets of two constraints.

Notice that the solutions of the constraints in Example 3 with respect to {α1, α2, α3} are all
tuples 〈v1, v2, v3〉 that satisfy

(v1 = ⊥ ∧ v3 = ⊥) ∨ (v1 = ⊥ ∧ v2 = ⊥ ∧ v3 = >) ∨ (v1 = ⊥ ∧ v2 = > ∧ v3 = >)

Now suppose we do the following: we take pairs of constraints, find their solutions with respect
to {α1, α2, α3}, and take the intersection of the solutions. Let S∗ denote the set of all valuations.
Figure 10 shows the solutions for all the subsets of two constraints with respect to {α1, α2, α3}. One
can show that the intersection of these solutions is the same as the solution for all the constraints.
Intuitively, the solutions of a system of conditional constraints can be characterized by considering
all pairs of constraints independently. We can make this intuition formal by putting some additional
requirements on the constraints.

For simplicity, in later discussions, we consider the language without >. With some extra checks,
the presented algorithm can be adapted to include > in the language.

Here is the route we take to develop a polynomial time algorithm for restricted entailment over
conditional constraints.

Section 5.1
We introduce a notion of a closed system and show that closed systems have the property that
it is sufficient to consider pairs of conditional constraints in determining the solutions of the
complete system with respect to the interface variables.

Section 5.2
We show that restricted entailment with a pair of conditional constraints can be decided in
polynomial time, i.e., C �E C=∪{c1, c2} can be decided in polynomial time, where C= consists
of equality constraints, and c1 and c2 are conditional constraints.

Section 5.3
We show how to reduce restricted entailment to restricted entailment in terms of closed systems.
In particular, we show how to reduce C1 �E C2 to C ′1 �E′ C

′
2 where C ′2 is closed.
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Combining the results, we arrive at a polynomial time algorithm for restricted entailment over
conditional constraints.

5.1 Closed Systems

We define the notion of a closed system and show the essential properties of closed systems for
entailment. Before presenting the definitions, we first demonstrate the idea with the example in
Figure 11a. Let C denote the constraints in this example, with α and β the interface variables, and
σ, σ1, and σ2 the internal variables. The intersection of the solutions of all the pairs of constraints
is: α is either ⊥ or τ → ⊥, and β is either ⊥ or τ ′ → ⊥ for some τ and τ ′. However, the solutions
of C require that if α = τ → ⊥ and β = τ ′ → ⊥, and both τ and τ ′ are non-⊥, then τ = τ ′, i.e.,
α = β. Thus the intersection of solutions of pairs of constraints contains more valuations than the
solution set of the entire system. The reason is that when we consider the set {σ1 ⇒ σ, σ2 ⇒ σ},
the solutions w.r.t. {α, β} are all valuations. We lose the information that α and β need to be the
same in their domain.

We would like to consider σ1 and σ2 as interface variables if σ1 6= ⊥ 6= σ2. We introduce some
constraints and new interface variables into the system to close it. The modified constraint system
is shown in Figure 11b. To make explicit the relationship between α and β, two variables α1 and
β1 (interface variables corresponding to σ1 and σ2, respectively) are created with the constraints
α1 ⇒ σ and β1 ⇒ σ. With this modification, the intersection of solutions of pairs of constraints w.r.t.
{α, β, α1, β1} is the same as the solution of the modified system. Restricting this intersection w.r.t.
{α, β} we get the solution of the original constraint system. We next show how to systematically
close a constraint system.

Definition 6 (TR). Consider a constraint α ⇒ τ with the variable σ a proper subexpression of
τ . We define a transformation tr on α⇒ τ over the structure of τ

– tr(σ, α⇒ σ → τ ′) = {α⇒ α1 → σ1};
– tr(σ, α⇒ τ ′ → σ) = {α⇒ σ2 → α2};
– tr(σ, α⇒ τ1 → τ2) ={
{α⇒ α1 → σ1} ∪ tr(σ, α1 ⇒ τ1) if σ ∈ Var(τ1)
{α⇒ σ2 → α2} ∪ tr(σ, α2 ⇒ τ2) otherwise

Note if σ appears in both τ1 and τ2, tr is applied only to the occurrence of σ in τ1.
– tr(σ, α = τ) = tr(σ, α⇒ τ).

The variables αi’s and σi’s are fresh. The newly created αi’s are called auxiliary variables. The
variables αi in the first two cases are called the matching variable for σ. The variable α is called
the root of αi, and is denoted by root(αi).

For each auxiliary variable αi, we denote by Ctr(αi) the tr constraints accumulated till αi is
created.

Putting this definition to use on the constraint system in Figure 11a, tr(σ1, α ⇒ σ1 → ⊥)
yields the constraint α⇒ α1 → σ3 (shown in Figure 11b).

To understand the definition of Ctr(αi), consider tr(σ, α ⇒ ((σ → ⊥) → ⊥)) = {α ⇒ α1 →
σ1, α1 ⇒ α2 → σ2}, where α1 and α2 are the auxiliary variables. We have Ctr(α1) = {α⇒ α1 →
σ1} and Ctr(α2) = {α⇒ α1 → σ1, α1 ⇒ α2 → σ2}.

Definition 7 (Closed Systems). A system of conditional constraints C ′ is closed w.r.t. a set of
variables E in C after the following steps:

14
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Figure 11. An example constraint system and its closed system.

1. Let C ′ = CondResolve(C).
2. Set W to E.
3. For each variable α ∈ W , if α ⇒ τ is in C ′, where σ ∈ Var(τ), and σ ⇒ τ ′ ∈ C ′, add

tr(σ, α⇒ τ) to C ′. Let α′ be the matching variable for σ and add α′ ⇒ τ ′ to C ′.
4. Set W to the set of auxiliary variables created in Step 3 and repeat Step 3 until W is empty.

Step 3 of this definition warrants explanation. In the example tr(σ1, α ⇒ σ1) we add the
constraint α⇒ α1 → σ3 with α1 as the matching variable for σ1. We want to ensure that α1 and σ1

are actually the same, so we add the constraint α1 ⇒ σ. This process must be repeated to expose
all such internal variables (such as σ1 and σ2).

Next we give the definition of a forced variable. Given a valuation ρ for the interface variables, if
an internal variable σ is determined already by ρ, then σ is forced by ρ. For example, in Figure 11a,
if α is non-⊥, then the value of σ1 is forced by α.

Definition 8 (Forced Variables). We say that an internal variable σ is forced by a valuation ρ
if any one of the following holds (A is the set of auxiliary variables)

– ecr(σ) = ⊥;
– ecr(σ) = α, where α ∈ E ∪A;
– ecr(σ) = τ1 → τ2;
– ρ(α) 6= ⊥ and α⇒ τ is a constraint where σ ∈ Var(τ) and α ∈ E ∪A;
– σ′ is forced by ρ to a non-⊥ value and σ′ ⇒ τ is a constraint where σ ∈ Var(τ).

Theorem 5. Let C be a closed system of constraints w.r.t. a set of interface variables E, and let
A be the set of auxiliary variables of C. Let C= and C⇒ be the systems of equality constraints and
conditional constraints respectively. Then

S(C) |E∪A =
⋂

ci,cj∈C⇒

S(C= ∪ {ci, cj}) |E∪A .

In other words, it suffices to consider pairs of conditional constraints in determining the solutions
of a closed constraint system.

Proof. Since C contains all the constraints in C= ∪ {ci, cj} for all i and j, thus it follows that

S(C) |E∪A ⊆
⋂

ci,cj∈C⇒

S(C= ∪ {ci, cj}) |E∪A .

It remains to show
S(C) |E∪A ⊇

⋂
ci,cj∈C⇒

S(C= ∪ {ci, cj}) |E∪A .
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Let ρ be a valuation in
⋂
ci,cj∈C⇒ S(C=∪{ci, cj}) |E∪A. It suffices to show that ρ can be extended

to a satisfying valuation ρ′ for C. To show this, it suffices to find an extension ρ′ of ρ for C such
that ρ′ � C= ∪ {ci, cj} for all i and j.

Consider the valuation ρ′ obtained from ρ by mapping all the internal variables not forced by
ρ (in C) to ⊥. The valuation ρ′ can be uniquely extended to satisfy C if for any ci and cj , c′i and
c′j , if σ is forced by ρ in both C= ∪ {ci, cj} and C= ∪ {c′i, c′j}, then it is forced to the same value in
both systems. The value that σ is forced to by ρ is denoted by ρ!(σ).

We prove by cases (cf. Definition 8) that if σ is forced by ρ, it is forced to the same value in
pairs of constraints. Let Ci,j denote C= ∪ {ci, cj} and Ci′,j′ denote C= ∪ {c′i, c′j}.

– If ecr(σ) = ⊥, then σ is forced to the same value, i.e., ⊥, because σ = ⊥ ∈ C=.
– If ecr(σ) = α, with α ∈ E ∪A, then σ is forced to ρ(α) in both systems, because σ = α ∈ C=.
– If ecr(σ) = τ1 → τ2, one can show that ρ forces σ to the same value with an induction over

the structure of ecr(σ) (with the two cases above as base cases).
– Assume σ is forced in Ci,j because α ⇒ τ1 ∈ Ci,j with ρ(α) 6= ⊥ and forced in Ci′,j′ because
β ⇒ τ2 ∈ Ci′,j′ with ρ(β) 6= ⊥. For each extension ρ1 of ρ with ρ1 � Ci,j , and for each extension
ρ2 of ρ with ρ2 � Ci′,j′ , we have

ρ(α) = ρ1(α) = ρ1(τ1)
ρ(β) = ρ2(β) = ρ2(τ2)

Consider the constraint system C= ∪ {α⇒ τ1, β ⇒ τ2}. The valuation ρ can be extended to ρ3

with ρ3 � C= ∪ {α⇒ τ1, β ⇒ τ2}. Thus we have

ρ(α) = ρ3(α) = ρ3(τ1)
ρ(β) = ρ3(β) = ρ3(τ2)

Therefore, ρ1(τ1) = ρ3(τ1) and ρ2(τ2) = ρ3(τ2). Hence, ρ1(σ) = ρ3(σ) and ρ2(σ) = ρ3(σ), which
imply ρ1(σ) = ρ2(σ). Thus σ is forced to the same value.

– Assume σ is forced in Ci,j because σ1 is forced to a non-⊥ value and σ1 ⇒ τ1 ∈ Ci,j and is
forced in Ci′,j′ because σ2 is forced to a non-⊥ value and σ2 ⇒ τ2 ∈ Ci′,j′ . Because C is a closed
system, we must have two interface variables or auxiliary variables α and β with both α ⇒ τ1

and β ⇒ τ2 appearing in C. Since σ1 and σ2 are forced, then we must have ρ(α) = ρ!(σ1) and
ρ(β) = ρ!(σ2), thus σ must be forced to the same value by the previous case.

– Assume σ is forced in Ci,j because ρ(α) 6= ⊥ and α⇒ τ1 ∈ Ci,j and forced in Ci′,j′ because σ2

is forced to a non-⊥ value and σ2 ⇒ τ2 ∈ Ci′,j′ . This case is similar to the previous case.
– The remaining case, where σ is forced in Ci,j because σ1 is forced to a non-⊥ value and σ1 ⇒
τ1 ∈ Ci,j and is forced in Ci′,j′ because ρ(α) 6= ⊥ and α⇒ τ2 ∈ Ci′,j′ , is symmetric to the above
case.

2

5.2 Entailment of Pair Constraints

In the previous subsection, we saw that a closed system can be decomposed into pairs of conditional
constraints. In this section, we show how to efficiently determine entailment if the right-hand side
consists of a pair of conditional constraints.

We first state a lemma (Lemma 4) which is important in finding a polynomial algorithm for
entailment of pair constraints.
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Lemma 4. Let C1 be a system of conditional constraints and C2 be a system of equality constraints
with E = Var(C1) ∩Var(C2). The decision problem C1 �E C2 is solvable in polynomial time.

Proof. Consider the following algorithm. We first solve C1 using CondResolve, and add the
terms appearing in C2 to the resulting term graph for C1. Then for any two terms appearing in
the term graph, we decide, using the simple entailment algorithm in Figure 7, whether the two
terms are the same. For terms which are equivalent we merge their equivalence classes. Next, for
each of the constraints in C2, we merge the left and right sides. For any two non-congruent classes
that are unified, we require at least one of the representatives be a variable in Var(C2) \ E. If this
requirement is not met, the entailment does not hold. Otherwise, the entailment holds.

If the requirement is met, then it is routine to verify that the entailment holds. Suppose the
requirement is not met, i.e., there exist two non-congruent classes which are unified and none of
whose ecrs is a variables in Var(C2) \E. Since the two classes are non-congruent, we can choose a
satisfying valuation for C1 which maps the two classes to different values (This is possible because,
otherwise, we would have proven that they are the same with the simple entailment algorithm
for conditional constraints.) The valuation ρ |E cannot be extended to a satisfying valuation for
C2 because, otherwise, this contradicts the fact that C1 ∪ C2 entails the equivalence of the two
non-congruent terms.

2

Theorem 6. Let C1 be a system of conditional constraints. Let C= be a system of equality con-
straints. The following three decision problems can be solved in polynomial time:

1. C1 �E C= ∪ {α⇒ τ1, β ⇒ τ2}, where α, β ∈ E.
2. C1 �E C= ∪ {α⇒ τ1, µ⇒ τ2}, where α ∈ E and µ /∈ E.
3. C1 �E C= ∪ {µ1 ⇒ τ1, µ2 ⇒ τ2}, where µ1, µ2 /∈ E.

Proof.

1. For the case C1 �E C= ∪ {α ⇒ τ1, β ⇒ τ2}, notice that C1 �E C= ∪ {α ⇒ τ1, β ⇒ τ2} iff the
following entailments hold
– C1 ∪ {α = ⊥, β = ⊥} �E C=

– C1 ∪ {α = ⊥, β = ν1 → ν2} �E C= ∪ {β = τ2}
– C1 ∪ {α = σ1 → σ2, β = ⊥} �E C= ∪ {α = τ1}
– C1 ∪ {α = σ1 → σ2, β = ν1 → ν2} �E C= ∪ {α = τ1, β = τ2}

where σ1, σ2, ν1, and ν2 are fresh variables not in Var(C1) ∪Var(C2).
Notice that each of the above entailments reduces to entailment of equality constraints, which
can be decided in polynomial time by Lemma 4.

2. For the case C1 �E C= ∪ {α⇒ τ1, µ⇒ τ2}, we consider two cases:
– C1 ∪ {α = ⊥} �E C= ∪ {µ⇒ τ2};
– C1 ∪ {α = σ1 → σ2} �E C= ∪ {α = τ1, µ⇒ τ2}

where σ1 and σ2 are fresh variables not in Var(C1) ∪Var(C2).
We have a few cases.
– ecr(µ) = ⊥
– ecr(µ) = τ1 → τ2

– ecr(µ) ∈ E
– ecr(µ) /∈ E
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Figure 12. Example entailment.

Notice that the only interesting case is the last case (ecr(µ) /∈ E) when there is a constraint
β = τ in C= and µ appears in τ . For this case, we consider all the O(n) resulted entailments
by setting β to some appropriate value according to the structure of τ , i.e., we consider all the
possible values for β. For example, if τ = (µ→ ⊥)→ µ, we consider the following cases:
– β = ⊥;
– β = ⊥ → ν1;
– β = (⊥ → ν2)→ ν1;
– β = ((ν3 → ν4)→ ν2)→ ν1

where ν1,ν2,ν3, and ν4 are fresh variables.
Each of the entailments will have only equality constraints on the right-hand side. Thus, these
can all be decided in polynomial time. Together, the entailment can be decided in polynomial
time.

3. For the case C1 �E C= ∪ {µ1 ⇒ τ1, µ2 ⇒ τ2}, the same idea as in the second case applies as
well. The sub-case which is slightly different is when, for example, µ2 appears in τ1 only. In this
case, for some β and τ , β = τ is in C= where µ1 occurs in τ . Let τ ′ = τ [τ1/µ1], where τ [τ1/µ1]
denotes the type obtained from τ by replacing each occurrence of µ1 by τ1. Again, we consider
O(n) entailments with right-side an equality constraint system by assigning β appropriate values
according to the structure of τ ′. Thus this form of entailment can also be decided in polynomial
time.

2

5.3 Reduction of Entailment to Closed Systems

We now reduce an entailment C1 �E C2 to entailment of closed systems, thus completing the
construction of a polynomial time algorithm for restricted entailment over conditional constraints.

Unfortunately we cannot directly use the closed systems for C1 and C2 as demonstrated by the
example in Figure 12. Figures 12a and 12c show two constraint systems C1 and C2. Suppose we
want to decide C1 �{α,β} C2. One can verify that the entailment does hold. Figures 12b and 12d
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show the closed systems for C1 and C2, which we name C ′1 and C ′2. Note that we include the tr

constraints of C2 in C ′1. One can verify that the entailment C ′1 �{α,β,α1,β1} C
′
2 does not hold (take

α = β = ⊥, α1 = ⊥ → ⊥, and β1 = ⊥ → >, for example). The reason is that there is some
information about α1 and β1 missing from C ′1. In particular, when both α1 and β1 are forced, we
should have α1 ⇒ σ′ and β1 ⇒ σ′ (actually in this case they satisfy the stronger relation that
α1 = β1). By replacing α ⇒ α1 → σ3 and β ⇒ β1 → σ4 with α = α1 → σ3 and β = β1 → σ4

(because that is when both are forced), we can decide that α1 = β1. The following definition of a
completion does exactly what we have described.

Definition 9 (Completion). Let C be a closed constraint system of C0 w.r.t. E. Let A be the set
of auxiliary variables. For each pair of variables αi and βj in A, let C(αi, βj) = Ctr(αi)∪Ctr(βj)
(see Definition 6) and C=(αi, βj) be the equality constraints obtained by replacing ⇒ with =
in C(αi, βj). Decide whether C ∪ C=(αi, βj) �{αi,βj} {αi ⇒ σ, βj ⇒ σ} (cf. Theorem 6). If the
entailment holds, add the constraints αi ⇒ σ(αi,βj) and βj ⇒ σ(αi,βj) to C, where σ(αi,βj) is a fresh
variable unique for αi and βj . The resulting constraint system is called the completion of C.

Theorem 7. Let C1 and C2 be two conditional constraint systems. Let C ′2 be the closed system
of C2 w.r.t. to E = Var(C1) ∩ Var(C2) with A the set of auxiliary variables. Construct the closed
system for C1 w.r.t. E with A′ the auxiliary variables, and add the tr constraints of closing C2 to
C1 after closing C1. Let C ′1 be the completion of modified C1. We have C1 �E C2 iff C ′1 �E∪A∪A′ C

′
2.

Proof.
(⇐): Assume C ′1 �E∪A∪A′ C

′
2. Let ρ � C1. We can extend ρ to ρ′ which satisfies C ′1. Since C ′1 �E∪A∪A′

C ′2, then there exists ρ′′ such that ρ′′ � C ′2 with ρ′ |E∪A∪A′= ρ′′ |E∪A∪A′ . Since ρ′′ � C ′2, we have
ρ′′ � C2. Also ρ |E= ρ′ |E= ρ′′ |E . Therefore, C1 �E C2.
(⇒): Assume C1 �E C2. Let ρ � C ′1. Then ρ � C1. Thus there exists ρ′ � C2 with ρ |E= ρ′ |E . We
extend ρ′ |E to ρ′′ with ρ′′(α) = ρ′(α) if α ∈ E and ρ′′(α) = ρ(α) if α ∈ (A∪A′). It suffices to show
that ρ′′ can be extended with mappings for variables in Var(C ′2)\ (E ∪A∪A′) = Var(C ′2)\ (E ∪A),
because ρ′′ |E∪A∪A′= ρ |E∪A∪A′ .

Notice that all the tr constraints in C ′2 are satisfied by some extension of ρ′′, because they also
appear in C ′1. Also the constraints C2 are satisfied by some extension of ρ′′. It remains to show
that the internal variables of C ′2 are forced by ρ′′ to the same value if they are forced by ρ′′ in
either the tr constraints or C2. Suppose there is an internal variable σ forced to different values by
ρ′′. W.L.O.G., assume that σ is forced by ρ′′ because ρ′′(αi) 6= ⊥ and αi ⇒ σ and forced because
ρ′′(βj) 6= ⊥ and βj ⇒ σ for some interface or auxiliary variables αi and βj . Consider the interface
variables root(αi) and root(βj) (see Definition 6). Since the completion of C1 does not include
constraints {αi ⇒ σ′, βj ⇒ σ′}, thus we can assign root(αi) and root(βj) appropriate values to
force αi and βj to different non-⊥ values. However, C2 requires αi and βj to have the same non-⊥
value. Thus, if there is an internal variable σ forced to different values by ρ′′, we can construct a
valuation which satisfies C1, but the valuation restricted to E cannot be extended to a satisfying
valuation for C2. This contradicts the assumption that C1 �E C2. To finish the construction of a
desired extension of ρ′′ that satisfies C ′2, we set the variables which are not forced to ⊥.

One can easily verify that this valuation must satisfy C ′2. Hence C ′1 �E∪A∪A′ C
′
2.

2

5.4 Putting Everything Together

Theorem 8. The restricted entailment for conditional constraints can be decided in polynomial
time.
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Proof. Consider the problem C1 �E C2. By Theorem 7, it is equivalent to testing C ′1 �E∪A∪A′ C
′
2

(see Theorem 7 for the appropriate definitions of C ′1, C ′2, A, and A′). Notice that C ′1 and C ′2 are
constructed in polynomial time in sizes of C1 and C2. Now by Theorem 5, this is equivalent to
checking O(n2) entailment problems of the form C ′1 �E∪A∪A′ C2′= ∪ {ci, cj}, where C2′= denote the
equality constraints of C ′2 and ci and cj are two conditional constraints of C ′2. And by Theorem 6,
we can decide each of these entailments in polynomial time. Putting everything together, we have
a polynomial time algorithm for restricted entailment over conditional constraints.

2

6 Extended Conditional Constraints

In this section, we consider a natural extension of the standard conditional constraint language. This
section is helpful for a comparison between this constraint language with the standard conditional
constraint language, which we consider in Section 4. The results in this section provides a clear
boundary between tractable and intractable constraint languages in terms of entailments.

We extend the language with the following construct extending the conditional constraints used
in previous sections. The new construct is

α⇒ (τ1 = τ2),

which holds iff either α = ⊥ or τ1 = τ2. We call this form of constraints extended conditional
equality constraints.

To see that this construct indeed extends α⇒ τ , notice that α⇒ τ can be encoded in the new
constraint language as

α⇒ (α = τ).

This extension is interesting because many equality based program analyses can be naturally
expressed with this form of constraints. An example analysis that uses this form of constraints is
the equality based flow analysis for higher order functional languages [25]. Additionally it can be
used as a boundary for separating tractable and intractable constraint languages.

Note that satisfiability for this extension can still be decided in almost linear time with ba-
sically the same algorithm outlined for conditional equality constraints. We consider both simple
entailment and restricted entailment for this extended language.

6.1 Simple Entailment

The algorithm is given in Figure 13. We give the basic idea of the algorithm. We consider the
following cases:

1. α = ⊥, β = >;
2. α = ⊥, β = β1 → β2;
3. α = >, β = ⊥;
4. α = >, β = β1 → β2;
5. α = α1 → α2, β = ⊥;
6. α = α1 → α2, β = >;
7. α = α1 → α2, β = β1 → β2.
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se(C,α = β) = yes iff C � α = β.

1. Solve C. If ecr(α) = ecr(β), return yes, else continue.
2. If C ∪ {α = ⊥, β = >} is satisfiable, return no, else continue.
3. If C ∪ {α = ⊥, β = β1 → β2} is satisfiable, return no, else continue.
4. If C ∪ {α = >, β = ⊥} is satisfiable, return no, else continue.
5. If C ∪ {α = >, β = β1 → β2} is satisfiable, return no, else continue.
6. If C ∪ {α = α1 → α2, β = β1 → β2} is unsatisfiable, return yes, else continue.
7. If se(C ∪ {α = α1 → α2, β = β1 → β2}, α1 = β1) returns no, then return no, else continue.
8. If se(C ∪ {α = α1 → α2, β = β1 → β2, α1 = β1}, α2 = β2) returns no, then return no, else return

yes.

Figure 13. Algorithm for simple entailment over extended conditional equality constraints.

For the first six cases, if adding any of the corresponding constraints to C makes the constraint
system satisfiable, then C 2 α = β. For the last case where α = α1 → α2 and β1 → β2, if the
constraints make C unsatisfiable, then C � α = β. If the constraints make C satisfiable, then we
recurse with C ∪ {α = α1 → α2, β = β1 → β2} � α1 = β1 and C ∪ {α = α1 → α2, β = β1 → β2} �
α2 = β2. This naive algorithm may run in exponential time, we show, in the algorithm, how to use
precomputed information to reduce the algorithm to polynomial time. The detailed algorithm is
given in Figure 7. Step 8 of the algorithm is the key to reduce the running time from exponential
to polynomial. The idea is if in Step 7, we know that α1 = β1, then this information can be used
in showing that α2 = β2.
Proof. [Sketch]

The algorithm is obviously correct. We need to verify that the algorithm runs in polynomial time
in the size of C. We briefly describe the justification for the polynomial running time. First notice
that the depth that the algorithm recurses is at most O(|C|) times, since each time two conditional
constraints are changed to equality constraints and there are at most O(|C|) number of conditional
constraints. However the total number of recursive calls may be exponential. However, the second
argument of each recursive call are two terms from the original term graph for C (except maybe the
last call in which case the algorithm outputs no). There are O(|C|2) such term pairs. Consider the
call se(C∪{α = α1 → α2, β = β1 → β2}, α1 = β1), where ecr(α1) and ecr(β1) are two terms from
C. If it returns yes, then se(C ∪ {α = α1 → α2, β = β1 → β2, α1 = β1}, α2 = β2) can return yes

immediately without repeating the computation if ecr(α2) = ecr(α1) and ecr(β2) = ecr(β1).
With this observation, we conclude that the running time of the algorithm is polynomial in |C|.

2

6.2 Restricted Entailment

In this subsection, we consider the restricted entailment for extended conditional constraints. We
show that the decision problem C1 �E C2 for extended conditional constraints is coNP-complete.

We define the decision problem NENT as the problem of deciding whether C1 2E C2, where
C1 and C2 are systems of extended conditional equality constraints and E = Var(C1) ∩Var(C2).

Theorem 9. The decision problem NENT for extended conditional constraints is in NP.

Proof.
Let C1 and C2 be two extended constraint systems. Let E = Var(C1) ∩Var(C2).
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Figure 14. Graph representations of constraints.

For each variable α in Var(C1), we guess whether α is ⊥, >, or α1 → α2 for some fresh variables
α1 and α2. We add these constraints to C1 to obtain C ′1. For each α in E, we add to C2 the
constraints α = ⊥, α = >, or α = α1 → α2 depending on what we guessed for C1. Notice now that
C ′1 is a system of equality constraints. C ′2, however, may still have some conditional constraints.
This means that our guess for the variables E needs to be refined to get rid of these conditional
constraints in C ′2. In C ′2, for each conditional constraint with a fresh variable αi (the generated
variables) as antecedent, we guess the value of αi and add the corresponding constraints to both
C ′1 and C ′2. This process is repeated until there are no more conditional constraints in C ′2 with any
fresh variables as antecedents. Since there are at most O(|C2|) number of conditional constraints in
C2, thus we make at most O(|C2|) number of guesses. Finally, conditional constraints with variables
in Var(C2) \ E as antecedents are discarded since these constraints do not affect the solutions of
the constraints w.r.t. E.

Let C ′′1 and C ′′2 be the resulting constraint systems. Notice they are equality constraints. Thus
at the end, we turn the problem into entailment over equality constraints, which we can decide in
polynomial time. The guessing step takes time polynomial in |C1| and |C2|. Thus NENT is in NP.

2

Next we show that the problem NENT is hard for NP, and thus an efficient algorithm is unlikely
to exist for the problem. The reduction actually shows that with extended conditional constraints,
even atomic restricted entailment 4 is coNP-hard.

Theorem 10. The decision problem NENT is NP-hard.

Proof. [Sketch] We reduce 3-CNFSAT to NENT. As mentioned, the reduction shows that even
atomic restricted entailment over extended conditional constraints is coNP-complete.

Let ψ be a boolean formula in 3-CNF form and let {x1, x2, . . . , xn} and {c1, c2, . . . , cm} be the
boolean variables and clauses in ψ respectively. For each boolean variable xi in ψ, we create two
term variables αxi and αxi , which we use to decide the truth value of xi. The value ⊥ is treated as
the boolean value false and any non-⊥ value is treated as the boolean value true.

Note, in a graph, a constraint of the form α⇒ (τ1 = τ2) is represented as Figure 14a.

4 Only variables, ⊥, and > are in the constraint system.
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Figure 15. Constructed constraint system C2.

First we need to ensure that a boolean variable takes on at most one truth value. We associate
with each xi constraints Cxi , graphically represented as Figure 14b, where τxi is some internal
variable. These constraints guarantee that at least one of αxi and αxi is ⊥. These constraints still
allow both αxi and αxi to be ⊥, which we deal with below.

In the following, let αx = αx. For each clause ci = c1
i ∨ c2

i ∨ c3
i of ψ, we create constraints

Cci that ensure every clause is satisfied by a truth assignment. A clause is satisfied if at least one
of the literals is true, which is the same as saying that the negations of the literals cannot all be
true simultaneously. The constraints are in Figure 14c, where µci1 and µci2 are internal variables
associated with ci. As an example consider ci = x2∨x4∨x7. The constraints Cci are in Figure 14d.

We let C1 be the union of all the constraints Cxi and Ccj for 1 ≤ i ≤ n and 1 ≤ j ≤ m, i.e.,

C1 = (
n⋃
i=1

Cxi) ∪ (
m⋃
j=1

Ccj )

There is one additional requirement that we want to enforce: not both αxi and αxi are ⊥. This
cannot be enforced directly in C1. We construct constraints for C2 to enforce this requirement. The
idea is that if for any xi, the term variables αxi and αxi are both ⊥, then the entailment holds.

We now proceed to construct C2. The constraints C2 represented graphically are shown in
Figure 15. In the constraints, all the variables except αxi and αxi are internal variables. These
constraints can be used to enforce the requirement that for all xi at least one of αxi and αxi is
non-⊥. The intuition is that if αxi and αxi are both ⊥, the internal variable νi can be ⊥, which
breaks the chain of conditional dependencies along the bottom of Figure 15, allowing µ1, . . . , µi−1

to be set to ⊥ and µi, . . . , µn−1 to be set to >.
We let the set of interface variables E = {αxi , αxi | 1 ≤ i ≤ n}. One can show that ψ is

satisfiable iff C1 2E C2. To prove the NP-hardness result, observe that the described reduction
is a polynomial-time reduction. Thus, the decision problem NENT is NP-hard. We let the set of
interface variables E = {αxi , αxi | 1 ≤ i ≤ n}. One can show that ψ is satisfiable iff C1 2E C2. To
prove the NP-hardness result, observe that the described reduction is a polynomial-time reduction.
Thus, the decision problem NENT is NP-hard.

We let the set of interface variables E = {αxi , αxi | 1 ≤ i ≤ n}. We claim that ψ is satisfiable
iff C1 2E C2.

Claim. ψ is satisfiable iff C1 2E C2.

Proof.
Assume that ψ is satisfiable. Let f : {xi | 1 ≤ i ≤ n} → {0, 1} be a satisfying assignment for ψ.

We construct from f a valuation ρ for the variables E such that ρ can be extended to a satisfying
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valuation for C1 while it cannot be extended to a satisfying valuation for C2. The existence of such
a ρ is sufficient to conclude that C1 2E C2. We construct ρ as follows{

ρ(αxi) = ⊥ ∧ ρ(αxi) = > if f(xi) = 0
ρ(αxi) = > ∧ ρ(αxi) = ⊥ if f(xi) = 1

The valuation ρ can be extended to a satisfying valuation ρ1 for C1. For each boolean variable
xi, there is a unique way to extend ρ to satisfy the constraints in Cxi , namely ρ1(τxi) = ⊥ if
ρ(αxi) = > and ρ1(τxi) = > otherwise. For each clause ci = c1

i ∨ c2
i ∨ c3

i , at least one of f(c1
i ),

f(c2
i ), and f(c3

i ) is 1. Thus, at least one of ρ(α
c1i

), ρ(α
c2i

), and ρ(α
c3i

) is ⊥. Assume ρ(α
cji

) is ⊥ for

some j with 1 ≤ j ≤ 3. We map ρ′(µcik ) = ⊥ for all 1 ≤ k < j and ρ′(µcik ) = > for all j ≤ k < 3.
The extension clearly satisfies the constraints Cci for all ci. Thus ρ can be extended to a satisfying
valuation for C1.

As for C2, ρ cannot be extended to a satisfying assignment. Notice that it requires νi to be
mapped to > for all i. This would result in requiring mapping µ1 to ⊥ and µn−1 to > and mapping
µi = µj for all 1 ≤ i, j ≤ n− 1, which is impossible. Thus all extensions of ρ do not satisfy C2. And
therefore, we have C1 2E C2.

For the other direction, assume that C1 2E C2. Then there exists a ρ1 � C1 and there does not
exist a ρ2 � C2 with ρ1(α) = ρ2(α) for all α ∈ E. Since C1 is satisfiable, this is equivalent to saying
that there exists a ρ on the variables E such that ρ can be extended to a satisfying valuation for
C1 and no extensions of ρ satisfies C2.

We construct from ρ a satisfying assignment for the boolean formula ψ. First notice that for
each boolean variable xi, ρ must map exactly one of the two type variables αxi and αxi to ⊥ and
exact one to a non-⊥ value. To see this notice ρ(αxi) and ρ(αxi) cannot both be non-⊥, or the
constraints Cxi would then require ⊥ and > to be unified. If ρ(αxi) and ρ(αxi) are both ⊥, then ρ
can be extended to a satisfying valuation for C2. In particular, ρ′(νi) = ⊥ if both ρ(αxi) and ρ(αxi)
are ⊥. For the µj ’s, we let ρ′(µj) = ⊥ if j < i and ρ(µj) = > if j ≥ i. It is easy to see that ρ′ � C2.
Thus we have shown for each variable xi exactly one of ρ(αxi) and ρ(αxi) is ⊥ and exactly one is
a non-⊥ value.

Now we can show how to construct from ρ a satisfying assignment f of ψ. We let{
f(xi) = 0 ∧ f(xi) = 1 if ρ(αxi) = ⊥
f(xi) = 1 ∧ f(xi) = 0 otherwise

We show that f satisfies each clause of ψ. Let ci = c1
i ∨ c2

i ∨ c3
i be a clause of ψ. Consider the

constraints Cci . At least one of ρ(α
c1i

), ρ(α
c2i

), and ρ(α
c3i

) must be ⊥. W.L.O.G., assume that ρ(α
c1i

)

is ⊥. Then ρ(αc1i ) is non-⊥. Thus, f(c1
i ) is 1. Therefore, f satisfies the clause ci. Hence, f satisfies

every clause of ψ, and f satisfies ψ itself.

2

To prove the NP-hardness result, observe that the described reduction is a polynomial-time
reduction. Thus, the decision problem NENT is NP-hard.

2

We thus have shown that the entailment problem over extended conditional constraints is coNP-
complete. The result holds even if all the constraints are restricted to be atomic.

Theorem 11. The decision problem C1 �E C2 over extended conditional constraints is coNP-
complete.
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7 Related Work

To our knowledge, we present the first results on entailment for conditional equality constraints. In
this section, we survey in more detail the related work on constraint simplification and entailment
mentioned in Section 1.

7.1 Complexity Issues

There are two major results on constraint simplification. Henglein and Rehof consider the problem
of subtyping constraint entailment of the form C � α ≤ β, where C is a constraint set with
subtyping constraints and α and β are type variables [14,15]. Intuitively, the relation holds iff every
solution of C also satisfies α ≤ β. The types are constructed from a finite lattice of base elements
with the function (→) and product (×) constructors. They consider four cases for this problem.

– structural subtyping over finite (simple) types
The entailment problem C � α ≤ β is shown to be coNP-complete [14].

– structural subtyping over recursive types
The problem is shown to be PSPACE-complete [15].

– nonstructual subtyping over finite (simple) types
The problem is shown to be PSPACE-hard [15].

– nonstructual subtyping over recursive types
The problem is shown to be PSPACE-hard [15].

The other result is by Flanagan and Felleisen [9]. They consider the problem of simplifying a
restricted class of set constraints. They considered the problem in the context of the program anal-
ysis tool for Scheme MrSpidy, a tool for inferring runtime values of variables for static debugging.
They study restricted entailment C1 �E C2, where C1 and C2 are two constraint sets and E is a set
of variables appearing in C1 and C2. They show that the restricted entailment problem is decidable
(in exponential time and space) by reducing the problem to an extended version of regular tree
grammar containment. They show the problem is PSPACE-hard by a polynomial time reduction
from nondeterministic finite state automata containment (which is PSPACE-complete) to the set
constraint entailment problem. An exact characterization of the complexity of the problem remains
open.

A recent result has shown that the atomic set constraint entailment problem of the form C �
α ⊆ β is PSPACE-complete [23]. Atomic set constraints are a restricted class of set constraints
without union and intersections and interpreted over the Herbrand universe.

A few researchers consider the semantic notions for subtyping constraint simplification. The
most powerful one is the notion of observational equivalence defined in [36]. Intuitively it says that
from the analysis point of view replacing one constraint set with an equivalent one does not change
the observable behavior of the constraint system. A similar notion is used in [28] for simplifying
subtyping constraints.

Aiken, Wimmers, and Palsberg [2] consider the problem of representing polymorphic types.
They identify a simple algorithm and show it sound and complete for a few simple type languages.
The optimal type of a polymorphic type is defined as a type which is equivalent and contains least
number of type variables. The goal of this work, as put by the authors, is to understand why it
seems difficult to get a practical system combining polymorphism and subtyping. They leave open
the problem of optimal representation for polymorphically constrained types.

In constraint logic programming community, extensive research have been directed at constraint
solving and entailment. Colmerauer consider similar problems for equality constraints over finite
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and infinite trees [4, 5]. Smolka and Treinen consider decision problems for CFT, a generalization
of rational trees considered by Colmerauer. Intractability results [21] have been shown for ordering
constraints over feature trees [24].

7.2 Practical Simplifications

Some researchers have considered practical simplifications of constraints.
Fahndrich and Aiken identify a few simple techniques for simplifying polymorphically con-

strained types and demonstrate better scalability [7]. Pottier provides a sound but incomplete
algorithm for simplifying polymorphically constrained types and shows some improvement [28].
Marlow and Wadler designed and implemented a subtyping system for Erlang [19]. They give a
sound approximate algorithm for deciding entailment and claim the algorithm to be complete. They
have implemented a prototype system which shows some promise of being practical.

Flanagan and Felleisen identify a few practical techniques for simplifying a form of set con-
straints [9]. They show promising reduction in both constraint size and analysis time.

Recent work demonstrates very promising performance improvement using the idea of elimi-
nating constraint cycles (chains of inclusion X ⊆ Y ⊆ Z · · · ⊆ X) [8]. The simplification technique
is demonstrated using a cubic time pointer analysis for C [3]. Adding another technique projection
merging (to merge constructed upper bounds of a variable), the same analysis can be used to an-
alyze gimp (> 440, 000 uncommented source lines) [34]. Experiments have also shown that cycle
elimination and projection merging helps dramatically with the scaling of a version of polymorphic
pointer analysis based on inclusion constraints [11].

8 Conclusions and Future Work

We have given a complete characterization of the complexities of deciding entailment for condi-
tional equality constraints and extended conditional constraints. We believe the polynomial time
algorithms in the paper are of practical use. There are a few related problems to be considered:

– What happens if we allow recursive types (i.e., regular trees)?
– What is the relationship with strict constructors (i.e., if c(⊥) = ⊥)?
– What is the relationship with a type system equivalent to the equality-based flow systems [25]?

In this type system, the only subtype relation is given by ⊥ ≤ t1 → t2 ≤ >, and there is no
non-trivial subtyping between function types.

We believe the same or similar techniques can be used to address the above mentioned problems,
and many of the results should carry over to these problem domains.
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