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Abstract. Subtype satisfiability is an important problem for designing advanced
subtype systems and subtype-based program analysis algorithms. Theproblem
is well understood if the atomic types form a lattice. However, little is known
about subtype satisfiability over posets. In this paper, we investigate algorithms
for and the complexity of subtype satisfiability over general posets. We present a
uniform treatment of different flavors of subtyping: simple versus recursive types
and structural versus non-structural subtype orders. Our results are established
through a new connection of subtype constraints and modal logic. As a conse-
quence, we settle a problem left open by Tiuryn and Wand in 1993.

1 Introduction
Many programming languages have some form of subtyping. Themost common use
is in the sub-classing mechanisms in object-oriented languages. Also common is the
notion of “coercion” [17], for example automatic conversion from integers to floating
point numbers.

Type checking and type inference for subtyping systems havebeen extensively stud-
ied since the original results of Mitchell [18]. The main motivations for investigating
these systems today are more advanced designs for typed languages and program anal-
ysis algorithms based on subtyping.

Subtyping systems invariably involvesubtype constraints, inequalities of the form
t1 ≤ t2, to capture that the typet1 is a subtypeof t2. For example, the constraint
int ≤ real means that at any place a floating point number is expected, aninteger can be
used instead. Besides of type constants, subtype constraints may contain type variables
and type constructors, such as the constraintint × x ≤ x × real that is equivalent to
int ≤ x ≤ real .

Type variables are typically interpreted as trees built from type constants and type
constructors. The trees can be infinite if recursive types are allowed. There are two
choices for the subtype relation. In a system withstructural subtypingonly types with
the same shape are related. In a system withnon-structural subtyping, there is a “least”
type⊥ and a “largest” type> that can be related to types of arbitrary shape.

Three logical problems for subtype constraints are investigated in the literature:
satisfiability [1, 5, 9, 13, 14, 18, 23, 26, 32, 33], entailment [7, 11, 12, 19, 20, 24, 25, 28,
34], and first-order validity [16, 31]. In this paper, we close a number of problems on
satisfiability.

If the type constants form a lattice then subtype satisfiability is well under-
stood [14, 18, 23]. For general partially-ordered sets (posets), however, there exist only



structural non-structural

finite types
PSPACE(Frey, 1997 [8])

PSPACE-hard (Tiuryn, 1992 [32])
PSPACE-complete (?)

recursive types
DEXPTIME(Tiuryn and Wand, 1993 [33])

DEXPTIME-hard (?)
DEXPTIME-complete (?)

Table 1.Summary of complexity results on subtype satisfiability over posets.

partial answers. Tiuryn and Wand show that recursive structural satisfiability is inDEX-
PTIME [33]. Tiuryn shows that finite structural satisfiability isPSPACE-hard [32], and
subsequently Frey shows that it is inPSPACEand thusPSPACE-complete [8]. Decid-
ability and complexity of non-structural subtype satisfiability are open, for both finite
and recursive types.

We summarize here the main contributions of this paper. We close the open ques-
tions on subtype satisfiability over posets. We consider allcombinations of finite versus
recursive types, and structural versus non-structural orders.

We base our results on a new approach, connecting subtype constraints and modal
logic. We introduceuniform subtype constraintsand show that their satisfiability
problem is polynomial time equivalent to that of a dialect ofpropositional dynamic
logic [2, 4, 6], which is subsumed by the monadic second-order logic SnS of the com-
plete infinite n-ary tree [27]. With this connection, we completely characterize the exact
complexity of subtype satisfiability over posets in all cases.

Table 1 summarizes complexity results regarding subtype satisfiability over posets.
New results of this paper are marked with “?”. In particular, we show in this paper,
that recursive structural satisfiability isDEXPTIME-hard, finite non-structural satisfia-
bility is PSPACE-complete, and recursive non-structural satisfiability isDEXPTIME-
complete. This settles a longstanding problem left open by Tiuryn and Wand in
1993 [33].

Due to space limitations, we omit some of the proofs. Interested readers can refer
to the full paper [21] for more details.

2 Subtyping

In this section, we formally define satisfiability problems of subtype constraints.

2.1 Types as Trees

Types can be viewed as trees over some ranked alphabetΣ, thesignatureof the given
type language. A signature consists of a finite set of function symbols (a.k.a.type con-
structors and constants). Each function symbolf has an associatedarity(f) ≥ 0,
indicating the number of arguments thatf expects. Symbols with arity zero aretype
constants. The signature fixes for all type constructorsf and all positions1 ≤ i ≤
arity(f) a polarity pol(f, i) ∈ {1,−1}. We call a positioni of symbolf covariant if
pol(f, i) = 1 andcontravariantotherwise.

We identifynodesπ of trees with relative addresses from the root of the tree,i.e.,
with words in(N − {0})∗. A word πi addresses thei-th child of nodeπ, andππ′ the
π′ descendant ofπ. The root is represented by the empty wordε. We define atree τ



overΣ as a partial function:τ : (N − {0})∗ → Σ. Tree domainsdom(τ) are prefixed
closed, non-empty, and arity consistent,i.e.: ∀π ∈ dom(τ)∀i ∈ N : πi ∈ dom(τ) ↔
1 ≤ i ≤ arity(τ(π)). A treeτ is finite if dom(τ) is a finite set, andinfinite otherwise.
We writetreeΣ for the set of possibly infinite trees overΣ.

Given a function symbolf with n = arity(f) and treesτ1, . . . , τn ∈ treeΣ

we define f(τ1, . . . , τn) as the unique treeτ with f(τ1, . . . , τn)(ε) = f and
f(τ1, . . . , τn)(iπ) = τi(π). We define thepolaritiesof nodes in trees as follows:

polτ (ε) =df 1
polf(τ1,...,τn)(iπ) =df pol(f, i) ∗ polτi

(π)

For partial orders≤, let≤1 denote the order≤ itself and≤−1 the reversed relation,≥.
Subtype orders≤ are partial orders on trees over some signatureΣ. Two subtype

orders arise naturally,structural subtypingandnon-structuralsubtyping.

2.2 Structural Subtyping

We investigate structural subtyping with signaturesΣ that provide the standard type
constructors× and→ and a poset(B,≤B) of type constants, i.e.,Σ = B ∪ {×,→}.
The product type constructor× is a binary function symbol that is covariant in both
positions (pol(×, 1) = pol(×, 2) = 1), while the function type constructor→ is
contravariant in its first and covariant in its second argument (pol(→, 1) = −1 and
pol(→, 2) = 1).

Structural subtype orders≤ are partial orders on trees over structural signaturesΣ.
They are obtained by lifting the ordering on constants(B,≤B) in Σ to trees. More
formally, ≤ is the smallest binary relation≤ on treeΣ such that for allb, b′ ∈ B and
typesτ1, τ2, τ ′

1, τ ′
2 in treeΣ :

– b ≤ b′ iff b ≤B b′;
– τ1 × τ2 ≤ τ ′

1 × τ ′
2 iff τ1 ≤ τ ′

1 andτ2 ≤ τ ′
2;

– τ1 → τ2 ≤ τ ′
1 → τ ′

2 iff τ ′
1 ≤ τ1 andτ2 ≤ τ ′

2.

Notice that× is monotonic in both of its arguments while→ is anti-monotonic in
its first argument and monotonic in its second. For more general signatures, monotonic
arguments are specified by covariant positions of function symbols, and anti-monotonic
arguments by contravariant positions.

For structural subtyping, two types are related only if theyhave exactly the same
shape,i.e., tree domain. Notice that structural subtype orders are indeed partial orders.
We do not restrict ourselves to lattices(B,≤B) in contrast to most previous work.

2.3 Non-Structural Subtyping

In thenon-structural subtype order, two distinguished constants are added to structural
type languages, asmallest type⊥ and alargest type>. The ordering is parametrized
by a poset(B,≤B) and has the signature:Σ = B ∪ {×,→} ∪ {⊥,>}. For the non-
structural subtype order, besides the three structural rules earlier, there is an additional
requirement:⊥ ≤ τ ≤ > for anyτ ∈ treeΣ .



2.4 Uniform Subtyping
We introduceuniform subtypingas an intermediate ordering for two reasons: (i) to cap-
ture both structural and non-structural subtyping effectsand (ii) to bridge from uniform
subtype constraints to modal logic.

We call a signatureΣ uniform if all symbols inΣ have the same non-zero arity
and the same polarities. All trees overΣ are complete infinite n-ary trees, wheren is
the arity common to all function symbols inΣ. Hence, all trees have the same shape.
Furthermore, the polarities of nodesπ ∈ {1, . . . , n}∗ in treesτ over uniform signatures
do not depend onτ . We therefore writepol(π) instead ofpolτ (π).

The signatures{×} and {→}, for instance, are both uniform, while{×,→} or
{⊥,>,×} are not. The idea to model the non-structural signature{⊥,>,×} uniformly
is to raise the arities of⊥ and> to 2 and to order them by⊥ ≤Σ × ≤Σ >.

A uniform subtype order≤ is defined over a partially-ordered uniform signature
(Σ,≤Σ). It satisfies for all treesτ1, τ2 ∈ treeΣ :

τ1 ≤ τ2 iff ∀π ∈ {1, . . . , n}∗ : τ1(π) ≤
pol(π)
Σ τ2(π)

wheren is the arity of the function symbols inΣ. For simplicity, we will often write
≤π

Σ instead of≤pol(π)
Σ .

2.5 Subtype Constraints and Satisfiability
In a subtype system,type variablesare used to denote unknown types. We assume that
there are a denumerable set of type variablesx, y, z ∈ V . We assume w.l.o.g. that
subtype constraints areflat, and subtype constraintsϕ over a signatureΣ satisfy:

ϕ ::= x=f(x1, . . . , xn) | x≤y | ϕ ∧ ϕ

wheren is the arity off ∈ Σ. We call atomic constraintsx=f(x1, . . . , xn) andx≤y the
literals. The type variables in a constraintϕ are called thefree variablesof ϕ, denoted
by V (ϕ).

We always consider two possible interpretations of subtypeconstraints, over possi-
bly infinite tree overΣ, and over finite trees overΣ respectively. A variable assignment
α is a function mapping type variables inV to trees overΣ. A constraintϕ is satisfiable
overΣ if there is a variable assignmentα such thatα(ϕ) holds inΣ.

We distinguish three subtype satisfiability problems, eachof which has two variants
depending on interpretation over finite or possibly infinitetrees.

Structural subtype satisfiability is the problem to decide whether a structural subtype
constraint is satisfiable. The arguments of this problem area posets(B,≤B) and a
constraintϕ over the signatureB ∪ {×,→}.

Non-structural subtype satisfiability is the problem to decide whether a non-
structural subtype constraint is satisfiable. The arguments are a poset(B,≤B) and
a constraintϕ over signatureB ∪ {×,→} ∪ {⊥,>}.

Uniform subtype satisfiability is the problem to decide whether a uniform subtype
constraint is satisfiable. The arguments are a partially-ordered uniform signature
(Σ,≤Σ) and a subtype constraintϕ over this signature.



R ::= i | R ∪ R′ | RR′ | R∗ where1 ≤ i ≤ n

A ::= p | ¬A | A ∧ A′ | [R]A

Fig. 1.Syntax ofPDLn.

3 Propositional Dynamic Logic over Trees

Propositional dynamic logic (PDL) is a modal logic that extends Boolean logic to di-
rected graphs of possible worlds. The same proposition may hold in some node of the
graph and be wrong in others. Nodes are connected by labeled edges, that can be talked
about modal operators.

In this paper, we consider the modal logicPDLn, thePDL language for the complete
infinite n-ary tree.PDLn is naturally subsumed by the monadic second-order logic SnS
of the complete n-ary tree [27].

3.1 Other PDL Dialects
Propositional dynamic logic (PDL) over directed edge-labeled graphs goes back to Fis-
cher and Ladner [6], who restricted Pratt’s dynamic logic tothe propositional fragment.
It is well known thatPDL has thetree property: every satisfiablePDL formula can be
satisfied in a rooted edge-labeled tree. DeterministicPDL [2,10,35] restricts the model
class to graphs whose edge labels are functional in that theydetermine successor nodes.
DeterministicPDL with edge labels{1, . . . , n} is the closest relative to our language
PDLn, due to the tree property.

Besides ofPDLn, a large variety of PDL dialects with tree models were proposed in
the literature. These differ in the classes of tree models, the permitted modal operators,
and the logical connectives. Three different dialects of PDL over finite, binary, or n-ary
trees were proposed in [4, 15, 22], see [3] for a comparison. PDL over finite unranked
ordered trees were proposed for computational linguisticsapplications [4] and found
recent interest for querying XML documents.

3.2 PDLn and its Fragments
For everyn ≥ 1 we define a logicPDLn as the PDL logic, for describing the complete
infinite n-ary tree.

The syntax ofPDLn expressions4 A is given in Figure 1. Starting from some in-
finite setP of propositional variablesp ∈ P , it extends the Boolean logic over these
variables by universal modalities[R]A, whereR is a regular expression over the alpha-
bet{1, . . . , n}.

We frequently use the modality[∗] as an abbreviation of[{1, . . . , n}∗], and some-
times [+] as a shorthand for[{1, . . . , n}+]. We freely use definable logical connec-
tive for implication→, equivalence↔, disjunction∨, exclusive disjunction∨

+

, and the
Boolean constantstrue and false. Furthermore, we can define existential modalities
〈R〉A by ¬[R]¬A.

We interpret formulas ofPDLn over the complete infiniten-ary trees. Tree nodes
are labeled by the set of propositions that are valid there. Formally, a modelM of a

4 We could allow for test?A in regular expressions, which frequently occur in PDL dialects but
we will not need them.



M, π |= p if M(p, π) = 1
M, π |= A1 ∧ A2 if M, π |= A1 andM, π |= A2

M, π |= ¬A if not M, π |= A

M, π |= [R]A if for all π′ ∈ L(R): M, ππ′ |= A

Table 2.Semantics ofPDLn.

B ::= p1 ∧ p2 | ¬p | [i]p where1 ≤ i ≤ n

C ::= p | [∗] (p ↔ B) | C1 ∧ C2

Fig. 2.Syntax of flat corePDLn.

formula inPDLn assigns Boolean values0, 1 to propositional variables in every node
in {1, . . . , n}∗, i.e., M : P × {1, . . . , n}∗ → {0, 1}. Table 2 defines when a formulaA
holds in some nodeπ of some modelM , in formulas:M,π |= A. A formula [R]A is
valid for some nodeπ of a treeM if A holds in allR descendants ofπ in M , i.e., in all
nodesππ′ whereπ′ belongs to the languageL(R) of R.

Let us recall some logical notations. A formulaA is valid in a modelM if it holds
in the root ofM : M |= A iff M, ε |= A. A formulaA is satisfiableif it is valid in some
model; it isvalid it is valid in all models:|= A iff ∀M.M |= A. Two formulasA, A′

are equivalent ifA ↔ A′ is valid: A |=| A′ iff |= A ↔ A′ . For instance,〈i〉A |=| [i]A
holds for all1 ≤ i ≤ n and allA, since all nodes of then-ary tree have uniquei
successors.

Note thatPDLn respects the substitution property: wheneverA1 |=| A2 then
A[A1/A2] |=| A. To see this note that ifA1 |=| A2 then the equivalenceA ↔ A′

is valid not only at the root of all models but also at all othernodes of all models. This
is because all subtrees of complete n-ary trees are again completen-ary trees.

Theorem 1. Satisfiability of PDLn formulas is in DEXPTIME.

A PDLn formula is satisfiable iff it can be satisfied by a deterministic rooted graph
with edge labels in{1, . . . , n}. The theorem thus follows from theDEXPTIMEupper
bound for deterministicPDL [2,10], which follows from the analogous result forPDL.

3.3 Flat CorePDLn

We next investigate lower complexity bounds forPDLn. It is known from Vardi and
Wolper [35] that satisfiability of deterministicPDL is DEXPTIME-complete. This result
clearly carries over toPDLn.

An analysis of Spaan’s proofs [30] reveals that nested[∗] modalities are not needed
for DEXPTIME-hardness. But we can even do better,i.e., restrict the language further.

We define the fragmentflat core PDLn in Figure 2. A formula of flat corePDLn is
a conjunction of propositional variables and expressions of the form[∗] (p ↔ B). Note
that [∗] modalities cannot be nested. Furthermore, all Boolean sub-formulasB are flat
in that Boolean connectives only apply to variables.

Theorem 2. Satisfiability of flat core PDLn formulas is DEXPTIME-complete.

A proof is given in the full paper [21]. It is based on a new idea, by reduction to the
emptiness of intersections of tree automata. This problem was shownDEXPTIME-hard
by Seidl [29].



[[x=f(x1, . . . , xn)]] =df px=f ∧
V

g∈Σ

V

1≤i≤n
[∗] (pxi=g ↔ [i]−px=g)

[[x≤y]] =df [∗]
W

f≤Σg
(px=f ∧ py=g)

[[ϕ1 ∧ ϕ2]] =df [[ϕ1]] ∧ [[ϕ2]]

Table 3.Expressing uniform covariant subtype constraints in invertedPDLn.

3.4 Inversion
We now consider a variant ofPDLn with inverted modalities[R]−,

which address all nodesπ′π reached by prefixing someπ′ ∈ L(R) to the
actual nodeπ.

[  ]π

π’

[R]
−

[  ]π
π π’

[R]

root

π π

M,π |= [R−]A if for all π′ ∈ L(R): M,π′π |= A

Inverted flat core PDLn is defined in analogy to flat corePDLn except that all modali-
ties are inverted.

B ::= p1 ∧ p2 | ¬p | [i]−p for 1 ≤ i ≤ n
C ::= p | [∗] (p ↔ B) | C1 ∧ C2

We will freely omit inversion for[∗] operators, as these are never nested below modali-
ties. We can translate flat corePDLn formulasC into formulasC− of the inverted flat
core, and vice versa, by replacing the operators[i] through[i]−. Models can be inverted
too:M−(p, π) = M(p, π−1) whereπ−1 is the inversion ofπ.

Lemma 1. M |= C iff M− |= C−.

4 Uniform Subtype Satisfiability

We next investigate the complexity of uniform subtype satisfiability. We first show how
to encode uniform subtype constraints into invertedPDLn. We then give a translation
from inverted flat core PDLn back to uniform subtype satisfiability. Both translations
are in polynomial time and preserve satisfiability (Propositions 2 and 3). The complex-
ity of PDLn (Theorem 2) thus carries over to uniform subtype satisfiability.

Theorem 3. Uniform subtype satisfiability over possibly infinite treesis DEXPTIME-
complete.

4.1 Uniform Subtype Constraints intoPDLn

We encode uniform subtype constraints interpreted over infinite n-ary trees into in-
vertedPDLn. The translation relies on ideas of Tiuryn and Wand [33], butit is simpler
with modal logics as the target language. We first present ourtranslation for covariant
uniform signatures and then sketch the contravariant case.

Let Σ be a uniform covariant signature andn > 1 the arity of its function symbols.
We fix a finite set of type variablesV and consider subtype constraintsϕ overΣ with
V (ϕ) ⊆ V . For allx ∈ V andf ∈ Σ we introduce propositional variablespx=f that
are true at all nodesπ ∈ {1, . . . , n}∗ where the label ofx is f .



Thewell-formedness formulawff V states that all nodes of tree values of allx ∈ V

carry a unique labelf : wff V =df

∧

x∈V [∗] (
∨+

f∈Σ px=f ) . A polynomial time encod-
ing of subtype constraints is presented in Table 3. Invertedmodalities[i]− are needed
to translatex=f(x1, . . . , xn) sinceα |= x=f(x1, . . . , xn) if and only if α(x)(ε) = f
andα(x)(iπ) = α(xi)(π) for all wordsiπ ∈ {1, . . . , n}∗.

Proposition 1. A uniform subtype constraintϕ over a covariant signatureΣ with
V (ϕ) ⊆ V is satisfiable if and only ifwff V ∧ [[ϕ]] is satisfiable.

Proof. A solution of ϕ is a functionα : V → treeΣ . Let n be the arity of function
symbols inΣ, so that all trees intreeΣ are complete n-ary trees with nodes labeled
in Σ, i.e., total functions of type{1, . . . , n}∗ → Σ. A variable assignmentα thus
defines aPDLn modelMα : P × {1, . . . , n}∗ → Σ that satisfies for allx ∈ V and
π ∈ {1, . . . , n}∗: Mα(px=f , π) ↔ α(x)(π) = f . We can now show by induction on
the structure ofϕ thatα |= ϕ iff Mα, ε |= wff V ∧ [[ϕ]].

Proposition 2. Uniform subtype satisfiability with covariant signatures over possibly
infinite trees is in DEXPTIME.

Proof. It remains to show that our reduction is in polynomial time. This might seem
obvious, but it needs some care. Exclusive disjunctions of the formp1∨

+

. . .∨
+

pn as used
in the well-formedness formula can be encoded in quadratic time through

∨n

i=1(pi ∧
∧

1≤j 6=i≤n ¬pj). Equivalencesp ↔ ¬p′ as used can be encoded in linear time by(p ∧
¬p′) ∨ (¬p ∧ p′).

Contravariance.Our approach smoothly extends to uniform subtyping with contravari-
ant signatures. The key idea is that we can express polarities in invertedflat corePDLn

by using a new propositional variableppol . For example, consider the uniform signature
Σ = {→}, where→ is the usual function type constructor. The variableppol is true in
nodes with polarity1 and false otherwise:

ppol ∧ [∗] (ppol ↔ [1]−¬ppol) ∧ [∗] (ppol ↔ [2]−ppol).

Limitation due to Inversion.Inversion is crucial to our translation and has a number
of consequences. Most importantly, we cannot express the formula [∗](p → [+]p′) in
invertedPDLn, which states that wheneverp holds at some node thenp′ holds in all
proper descendants.

As a consequence, we cannot directly translate subtype constraints over standard
signatures intoPDLn (which we consider in Sections 5). The difficulty is to encodetree
domains in the presence of leafs. Suppose we want to define that p holds for all nodes
outside the tree domain. We could do so by imposing[∗](pc → [+]p) for all constants
c, but this is impossible in invertedPDLn.

This is not a problem for uniform signatures where every treeis completely n-ary, so
that we do not need to express tree domains, as long as we are considering satisfiability.
Unfortunately, however, the same technique does not extendto entailment and other
fragments of first-order logic with negation.



all-c(x) =df x=c(x, . . . , x) for somec ∈ Σ(n)
all-bool(x) =df ∃y∃z. all-0(x) ∧ x≤y≤z ∧ all-1(z)

all-bool(x) =df ∃y∃z. all-1̄(x) ∧ x≤y≤z ∧ all-0̄(z)
upper(x, y) =df ∃z. x≤z ∧ y≤z

lower(x, y) =df ∃z. z≤x ∧ z≤y

y=x =df all-bool(x) ∧ all-bool(y) ∧ upper(x, y) ∧ lower(x, y)
all(p1 ∨ p2 ∨ ¬p3 ∨ ¬p4) =df ∃z.

V

1≤i≤4
all-bool(Xpi

)

∧lower(z, Xp1
) ∧ upper(z, Xp2

)

∧lower(z, Xp3
) ∧ upper(z, Xp4

)
all(p1 ∨ p2) =df ∃Xq. all(p1 ∨ p2 ∨ ¬q ∨ ¬q) ∧ all-1(Xq)

Table 4.Boolean operations expressed by subtype constraints.

4.2 Back Translation
To proveDEXPTIME-hardness of uniform subtype satisfiability, we show how to ex-
press inverted flat corePDLn by uniform subtype constraints, indeed only with covari-
ant signatures. Our encoding of Boolean logic is inspired byTiuryn [32], while the idea
to lift this encoding toPDLn is new.

Let C be a formula of inverted flat corePDLn. We aim to find a subtype constraints
[[C]]

−1 which preserves satisfiability. The critical point is how totranslatePDLn’s nega-
tion since it is absent in our target language of uniform subtype constraints.
We work around by constructing a uniform subtype constraints with func-
tion symbols ordered in a crown:Σ(n) = {0, 0̄, 1, 1̄}.
All function symbols have arityn and satisfyx ≤Σ(n) y for all x ∈ {0, 1̄},

1 0̄

0 1̄

y ∈ {1, 0̄}. The symbols 0 and 1 modelPDLn’s underlying boolean latticebool =
{0 , 1}; the additional two symbols are introduced to define negation byneg(c) = c for
c ∈ bool .

Next, Table 4 shows how to definenegby a subtype constraint. For every proposi-
tional variablep we introduce a new type variablesXp in the subtype constraint we are
constructing to.

The subtype constraintall-c(x) holds for the unique trees that is completely labeled
by somec ∈ Σ(n). The subtype constraintall-bool(x) holds for trees that are labeled in
bool . The constraintslower(x, y) andupper(x, y) require the existence of lower and up-
per bounds respectively for treesx andy. These bounds are used to define the diagonal
pairsy=x in the crown.

Lemma 2. y = x |=| ∀π. (x(π) = 0 ∧ y(π) = 0̄) ∨ (x(π) = 1 ∧ y(π) = 1̄).

Proof. Sincex is a tree labeled inbool , all nodesπ satisfyα(x)(π)=0 or α(x)(π)=1.
In the first case (the second is analogous) the constraintlower(x, y) entailsα(y)(π)6=1̄.
Sincey is abool tree,α(y)(π)=0̄.

Solutions of subtype constraints are variable assignmentsα : P → {1, . . . , n}∗ →
Σ(n). For variable assignmentsα into trees over Booleans, we define corresponding
PDLn-modelsMα : P × {1, . . . , n}∗ → bool by Mα(p, π) = α(Xp)(π).



[[p]]−1 =df ∃x1 . . . ∃xm. all-bool(Xp) ∧ Xp=1(x1, . . . , xm)

[[[∗] (p ↔ [i]−q)]]−1 =df all-bool(Xp) ∧ all-bool(Xq)
∧ ∃x1 . . . ∃xm.(0(x1, ..., xm)≤Xq≤1(x1, ..., xm) ∧ Xp=xi)

[[[∗] (p ↔ ¬q)]]−1 =df all(p ∨ q) ∧ all(¬p ∨ ¬q)

[[[∗] (p ↔ (q1 ∧ q2))]]
−1 =df all(¬p ∨ q1) ∧ all(¬p ∨ q2) ∧ all(p ∨ ¬q1 ∨ ¬q2)

[[C1 ∧ C2]]
−1 =df [[C1]]

−1 ∧ [[C2]]
−1

Table 5. Inverted core flatPDLn in subtype constraints.

Lemma 3. LetA be the Boolean formulap1 ∨p2 ∨¬p3 ∨¬p4. For all variable assign-
mentsα to trees overΣ(n), α |= all(A) if and only ifMα is defined andMα |= [∗]A.

The lemma relies on a non-trivial property of the crown poset. For all
p1, p2, p3, p4 ∈ bool :

p1 ∨ p2 ∨ ¬p3 ∨ ¬p4 |=| ∃z ∈ {0, 1, 0̄, 1̄}. lower(z, p1) ∧ upper(z, p2)∧
lower(z, p3) ∧ upper(z, p4)

We illustrate the claim forp3 = p4 = 1 where the left hand side is equivalent to
p1 ∨ p2. The conjunction of the last two literals becomeslower(z, 1̄) ∧ upper(z, 1)
which is equivalent toz ∈ {1, 1̄}. The first two literals withp1 = p2 = 0 yield:

lower(z, 0) ⇒ z 6= 1̄ and upper(z, 0) ⇒ z 6= 1

Thus, the complete conjunction is unsatisfiable withp1 = p2 = 0. Conversely, ifp1 = 1
then we can choosez = 1̄ sinceupper(1̄, p2) holds for allp2 ∈ bool . Similarly, if
p2 = 1 then we can choosez = 1 sincelower(1, p1) for all p1 ∈ bool .

The back translation[[C]]
−1 of inverted flat corePDLn into subtype constraints is

shown in Table 5. All Boolean formulas used there can be expressed byp1∧p2∧¬p3∧
¬p4 which we know how to encode.

Proposition 3. Let C be a flat core inverted PDLn formula. For all variable assign-
mentsα to trees overΣ(n), α |= [[C]]

−1 if and only ifMα is defined andMα |= C.

For n = 0, subtype constraints become ordering constraints for a poset, while
PDL0 satisfiability becomes a Boolean satisfiability problem that is well-known to be
NP-complete. We thus obtain a new NP-completeness proof forordering constraints
interpreted over posets [26].

5 Equivalence of Subtype Problems
We next show the equivalence of uniform subtype satisfiability with structural and non-
structural subtype satisfiabilities over possibly infinitetrees. Subtype satisfiability over
finite trees will be treated in Section 6.

Theorem 4. Structural, non-structural, and uniform subtype satisfiability over possibly
infinite trees are equivalent and DEXPTIME-complete.



The proof relies on constraints for subtype orders with a single nonconstants type
constructor that we call 1-subtype orders.

1-subtype satisfiability is the satisfiability problem of subtype constraints over 1-
subtype orders. This problem is parametric in the arities and polarities of the unique
type constructor, the partial order on constants(B,≤B), and whether or not{⊥,>}
is included in the signature.

We present the proof in four steps. We first show how to reduce structural subtype
satisfiability to 1-subtype satisfiability (Section 5.1) and then do the same for the non-
structural case (Section 5.2). Next, we reduce 1-subtype satisfiability to uniform subtype
satisfiability (Section 5.3). Finally, we translate uniform subtype satisfiability back to
both structural and non-structural subtype satisfiability(Section 5.4).

5.1 Structural to 1-Subtype Satisfiability
In this part, we show how to reduce structural to 1-subtype satisfiability. We first use a
standard technique to characterize the shapes of solutionsto a structural subtype con-
straints. Given a constraintϕ overΣ, we construct theshape constraintof ϕ, sh(ϕ), by
replacing each constant inϕ with an arbitrary, fixed constant? ∈ Σ, and each inequality
with an equality:

sh(x=f(x1, x2)) =df x=f(x1, x2), sh(x≤y) =df x=y,
sh(ϕ1∧ϕ2) =df sh(ϕ1)∧sh(ϕ2), sh(x=c) =df x=?

The constraintϕ is calledweakly unifiableiff sh(ϕ) is unifiable.
Next, we handle contravariance. Consider a signatureΣ = B ∪ {×,→}. We con-

struct a signatures(Σ) =df B ∪ {f, c}, wheref is function symbol of arity four and
c is a fresh constant. Our approach is to usef to capture both× and→, i.e., all the
non-constant function symbols inΣ. The first two arguments off are used to model
the two arguments of× and the next two to model the two arguments of→. Thus,f is
co-variant in all arguments except the third one.

Given a constraintϕ overΣ, we constructs(ϕ) overs(Σ):

s(x=y×z) =df x=f(y, z, c, c), s(x=y → z) =df x=f(c, c, y, z),
s(ϕ1∧ϕ2) =df s(ϕ1)∧s(ϕ2), s(x≤y) =df x≤y,

s(x=b) =df x=b ∀b∈B

Lemma 4. If ϕ is weakly unifiable, thenϕ is satisfiable overΣ iff s(ϕ) is satisfiable
overs(Σ).

The proof of the above lemma requires the following result. Let ϕ be a constraint
over a structural signatureΣ. We have the following result due to Frey [8] that relates
the shape of a solution ofϕ to that of a solution ofsh(ϕ).

Lemma 5 (Frey [8]). If ϕ is satisfiable, letα be a solution ofsh(ϕ). Thenϕ has
a solutionβ that is of the same shape asα, i.e., for all x ∈ V (ϕ) = V (sh(ϕ)),
sh(α(x) = β(x)) is unifiable.



5.2 Non-Structural to 1-Subtype Satisfiability
We handle non-structural signaturesΣ = B ∪ {⊥,>,×,→}, similarly. The new
signature is defined in exactly the same way as for the structural case bys(Σ) =
B ∪ {⊥,>, f, c}. Constraints are also transformed in the same way, except including
two extra rules for⊥ and>:

s(x=⊥) =df x=⊥, s(x=>) =df x=>

However, weak unifiability is not sufficient for the initial satisfiability check. To see
that, consider, for example,x≤y × z ∧ x≤u → v, which is satisfiable, but not weakly
unifiable. To address this problem, we introduce a notion ofweak satisfiability. It is
similar to weak unfiability, except subtype ordering is alsoretained.

Definition 1. Let ϕ be a constraint overΣ, andc be an arbitrary and fixed constant.
Define theweak satisfiability constraintws(ϕ) as:

ws(x=f(x1, x2)) =df x=f(x1, x2), ws(x≤y) =df x≤y, ws(x=⊥) =df x=⊥,
ws(ϕ1∧ϕ2) =df ws(ϕ1)∧ws(ϕ2), ws(x=b) =df x=c, ws(x=>) =df x=>

The constraintϕ is calledweakly satisfiableiff ws(ϕ) is satisfiable.

Lemma 6. If ϕ is weakly satisfiable, thenϕ is satisfiable overΣ iff s(ϕ) is satisfiable
overs(Σ).

The proof of this lemma requires the following result. Letϕ be a constraint over a
non-structural signatureΣ. If ws(ϕ) is satisfiable, thenws(ϕ) has a minimum shape
solutionα by a simple extension of a theorem of Palsberg, Wand and OKeefe on non-
structural subtype satisfiability over lattices [23]. We claim that ifϕ is satisfiable, then
ϕ also has a minimum shape solution that is of the same shape asα.

Lemma 7. If ϕ is satisfiable overΣ, let α be a minimum shape solution forws(ϕ),
and in addition,α is such a solution with the least number of leaves assigned?. Then
ϕ has a solutionβ that is of the same shape asα, i.e., for all x ∈ V (ϕ) = V (ws(ϕ)),
sh(α(x) = β(x)) is unifiable. Furthermore,β is a minimum shape solution ofϕ.

Lemma 5 and Lemma 7 together imply the following corollary, which is used next
in Section 6 to treat subtype satisfiability interpreted over finite trees.

Corollary 1. A subtype constraintϕ is satisfiable over finite trees if and only ifϕ is
satisfiable over finite trees of height bounded by|ϕ|. This holds for both structural and
non-structural signatures.

5.3 1-Subtype to Uniform Satisfiability
In this part, we give a reduction from 1-subtype to uniform subtype satisfiability. This
reduction is uniform for subtyping with and without⊥ and>.

Proposition 4. Over possibly infinite trees, 1-subtype satisfiability is linear time re-
ducible to uniform subtype satisfiability.



Proof. Let Σ be a 1-subtype signature. We define a uniform signatures(Σ ) by ex-
tending the arities of all function symbols to the maximal arity of Σ (i.e., the ar-
ity of the only non-trivial function symbol), such that: (1)s(Σ ) =df Σ ; (2) ∀f ∈
s(Σ).aritys(Σ)(f) =df max; and (3)≤s(Σ)=df≤Σ , wheremax is the maximal arity
of Σ.

We next translate a subtype constraintϕ overΣ to a constraints(ϕ) overs(Σ ):

s(x=f (x1 , . . . , xmax)) =df x=f (x1 , . . . , xmax), s(x=b) =df x=b(y1 , . . . , ymax),
s(ϕ1∧ϕ2 ) =df s(ϕ1 )∧s(ϕ2 ), s(x1≤x2 ) =df x1≤x2 ,
s(x=⊥) =df x=⊥(u1 , . . . , umax), s(x=>) =df x=>(v1 , . . . , vmax)

where theyi’s, ui’s, andvi’s are fresh variables, and the last two rules are additional
ones for a non-structural signature.

Lemma 8. A subtype constraintϕ over a standard signatureΣ is satisfiable if and only
if s(ϕ) is satisfiable over the uniform signatures(Σ ).

5.4 Uniform to (Non-)Structural Satisfiability
In this part, we prove the last step of the equivalence (Theorem 4), namely, how to
reduce uniform satisfiability to structural and non-structural satisfiabilities.

Proposition 5. Uniform subtype satisfiability is linear time reducible to structural and
non-structural subtype satisfiability over possibly infinite trees.

To simplify its proof we assume a uniform subtype problem where all function
symbols have arity three with their first two arguments beingcontravariant and the last
one covariant. This proof can be easily adapted to uniform signatures with other arities
and polarities.

We construct a reverse translation¯̄s of s (defined in Section 5.3) in two steps. LetΣ
be a uniform signature with symbols of arity three. We first define a standard signature
s̄(Σ) by including symbols inΣ as constants and adding→: (1) s̄(Σ) =df Σ ∪ {→};
(2) ∀g ∈ Σ.arity s̄(Σ)(g) =df 0; (3) arity s̄(Σ)(→) =df 2; and (4)≤s̄(Σ) =df ≤Σ .
We now translate a subtype constraintϕ overΣ to a constraint̄s(ϕ) over s̄(Σ):

s̄(x=g(x1, x2, x3)) =df x=(x3 → x2) → (x1 → g)
s̄(x1 ≤ x2) =df x1 ≤ x2

s̄(ϕ1 ∧ ϕ2) =df s̄(ϕ1) ∧ s̄(ϕ2)

where we use a non-flat constraint in the first line for a simpler presentation.
The argumentsx1, x2 are again contravariant andx3 is covariant in the constraint
s̄(x=g(x1, x2, x3)). Thus,s̄ preserves all polarities.

In our second step, we force every variable to be mapped to a fixed, infinite shape.
We extend̄s(Σ) to ¯̄s(Σ ) with four new constantsa1, a2, a3, anda4 with the following
ordering:a1 ≤ c ≤ a3 ∧ a2 ≤ c ≤ a4, for all constantsc ∈ s̄(Σ). We definē̄s(ϕ) as
the conjunction of̄s(Σ) and the following constraints:

(1) u1 ≤ x ∧ u2 ≤ x ∧ x ≤ u3 ∧ x ≤ u4, for each variablex ∈ V (s̄(Σ));
(2)

∧

i=1,2,3,4 ui=(ui → ui) → (ui → ai)



The constraints (1) and (2) in̄̄s(ϕ) determine the shape of any variablex ∈
V (s̄(ϕ)). We claim, in the following lemma, that any solution to¯̄s(ϕ) must be of a
particular shape and must also map variablesx ∈ V (s̄(ϕ)) to trees over̄s(Σ).

Lemma 9. If ¯̄s(ϕ) is interpreted over any (non-)structural signature¯̄s(Σ ) or ¯̄s(Σ ) ∪
{⊥,>}, any variable assignmentα |= ¯̄s(ϕ) satisfies for all pathsπ ∈ (1(1∪2) ∪ 21)∗:

α(x)(π′) = → if π′ is a prefix ofπ

α(x)(π22) =

{

ai if x = ui

c ∈ Σ otherwise.

Lemma 10. A subtype constraintϕ over a uniform signatureΣ is satisfiable if and only
if the constraint̄̄s(ϕ) over¯̄s(Σ ) is satisfiable. This statement also holds if we replace
the structural signaturē̄s(Σ ) by the non-structural signaturē̄s(Σ ) ∪ {⊥,>}.

Proof. We define a transformation ofmap : treeΣ → tree¯̄s(Σ) on trees for allg ∈ Σ:

map(g(τ1, τ2, τ3)) =df (map(τ3) → map(τ2))
→ (map(τ1) → g)

With that it can be easily verified that if there exists a solution α |= ϕ over an uniform
signatureΣ thenmap(α) |= ¯̄s(ϕ) holds over̄̄s(Σ ). For the other direction we assume
an assignmentα |= ¯̄s(ϕ). Then there also exists an assignmentβ = map−1(α) ac-
cording to the shape of any solution of¯̄s(ϕ) stated in Lemma 9. Again, it can be easily
verified thatβ |= Σ.

The proof also holds in the case where we add⊥ and> to ¯̄s(Σ ) since both symbols
cannot occur in any node of any solution of¯̄s(Σ ) (again Lemma 9).

6 Finite Subtype Satisfiability over Posets

Finite structural subtype satisfiability was shownPSPACE-complete by Tiuryn [32] and
Frey [8]. Here, we establish the same complexity for the non-structural case.

Proposition 6. Non-structural subtype satisfiability over finite trees is PSPACE-hard.

The analogous result for the structural case was shown by Tiuryn [32]). To lift this
result, we show how to reduce non-structural to structural subtype satisfiability.

Lemma 11. Structural subtype satisfiability is polynomial time reducible to non-
structural subtype satisfiability (both for finite and infinite trees).

Proof. Let Σ be a structural signature. We construct a non-structural signature:
s(Σ) =df Σ ∪ {⊥,>, a1, a2, a3, a4} with theai’s being four new constants. In addi-
tion,≤s(Σ) =df ≤Σ ∪{(a1, c), (a2, c), (c, a3), (c, a4) | c ∈ Σ0}.

Let ϕ be a constraint overΣ. We constructs(ϕ) over s(Σ). Considerϕ’s shape
constraintsh(ϕ) (see Section 5.1). Ifsh(ϕ) is not unifiable, we simply lets(ϕ) =df

>≤⊥. Otherwise, consider the most general unifier (m.g.u.)γ of sh(ϕ). We letsh(ϕ)′

be the same assh(ϕ) except each occurrence of? is replaced with a fresh variable.
We make two copies ofsh(ϕ)′, sh(ϕ)′L andsh(ϕ)′R (for left and right), where each



variablex is distinguished asxL andxR respectively. For each variablex ∈ V (ϕ), if
γ(x) is either? or belongs toV (ϕ), we sayx is atomic. For a variablex, let force(x)
denote the constraint:a1≤x∧a2≤x∧x≤a3∧x≤a4. Notice that Lemma 11 holds both
for finite and infinite trees.

We can now constructs(ϕ), which is the conjunction of the following components:
(1) ϕ itself; (2) sh(ϕ)′L; (3) sh(ϕ)′R; (4) For each atomicx ∈ V (ϕ), force(xL) and
force(xR); (5) For each fresh variablex in sh(ϕ)′L andsh(ϕ)′R, force(x); and (6) For
each variablex ∈ V (ϕ), xL≤x≤xR. One can show thatϕ is satisfiable overΣ iff s(ϕ)
is satisfiable overs(Σ).

By adapting the proof of Frey [8], we can show membership inPSPACE, and thus
we have the following theorem. For an alternative proof of using K-normal modal logic,
please refer to the full paper [21].

Theorem 5. Finite non-structural subtype satisfiability is PSPACE-complete.

7 Conclusions

We have given a complete characterization of the complexityof subtype satisfiability
over posets through a new connection of subtype satisfiability with modal logics, which
have well understood satisfiability problems. Our technique yields a uniform and sys-
tematic treatment of different choices of subtype orderings: finite versus recursive types,
structural versus non-structural subtyping, and considerations of symbols with co- and
contra-variant arguments.

Our technique, however, does not extend beyond satisfiability to other first-order
fragments that require negations, such as subtype entailment, whose decidability is a
longstanding open problem over non-structural signatures. Negations can certainly be
modeled by our modal logic, but only over uniform signatures. In fact, there must not
exist reductions from standard signatures to uniform ones that preserve subtype entail-
ment, for example. Otherwise, such a reduction would have implied that the first-order
theory of non-structural subtyping, which is undecidable [31], were a fragment of S2S,
which is decidable [27].
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