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ABSTRACT

Studies show that programs contain much similar code, camhymo
known asclones One of the main reasons for introducing clones
is programmers’ tendency to copy and paste code to quickly du
plicate functionality. We commonly believe that clones caake
programs difficult to maintain and introduce subtle bugghéligh
much research has proposed techniques for detecting arm/+em
ing clones to improve software maintainability, little Famsidered
how to detect latent bugs introduced by clones. In this paper
introduce a general notion ebntext-based inconsistenci@snong
clones and develop an efficient algorithm to detect suchnisise
tencies for locating bugs. We have implemented our algoriimd
evaluated it on large open source projects including thestater-
sions of the Linux kernel and Eclipse. We have discoveredyman
previously unknown bugs and programming style issues i bot
projects (with57 for the Linux kernel an@8 for Eclipse). We have
also categorized the bugs and style issues and noticechthaex-
hibit diverse characteristics and are difficult to detedtweiny sin-
gle existing bug detection technique. We believe that opragrh
complements well these existing techniques.

Categories and Subject DescriptorsD.2.5 [Software Engineer-
ing]: Testing and Debugging-€eede inspections and walk-throughs,
debugging aids

General Terms: Experimentation, Reliability

Keywords: context-based bug detection, code clone-related bugs,
inconsistencies, code clone detection

1. INTRODUCTION

Software projects contain much similar code( code clones),
which may be introduced by many commonly adopted software de
velopment practices, such as reusing a generic framewaltknf-
ing a specific programming pattern, and directly copying past-
ing code. These practices can improve the productivity tifvsre
development by quickly replicating similar functionadisi. How-
ever, such practices, especially copying and pasting, smre-
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duce program maintainability and introduce subtle progreng
errors. For example, when enhancements or bug fixes are done
on a piece of duplicated code, it is often necessary to make si
ilar modifications to the other instances of the code. Asiprey
work [24] indicates, it is easy for developers to miss sons¢ainces

of the duplicated code and thus to introduce subtle bugsiriktl

have fixed the bug. Why is it still happening?” and “Why does th
function work well in that way, but not in this way?” may be exa

ple questions that software maintainers ask and which nmiaglel

to clone-related bugs.

Finding similar code automatically is an important step ko a
leviate the aforementioned issues. Much work [7, 17, 18 h2f]
been done on clone detection. Also, many techniques [16&28]
been proposed for eliminating similar code to help redudevsoe
maintenance cost. On the other hand, various studies [[ZBPii-
dicate that similarity in software is inherent, and clonéfigation
and removal may not always be desired. The reasons inclyde (1
limited expressiveness of programming languagésne instances
may have evolved over a substantial period of time with madg
pendent changes so that they cannot be easily unified or emnov
(2) performance concernsunified code may have worse perfor-
mance; and (3%oftware development practicesome experimen-
tal code may not be appropriate to be unified. Thus, code slone
would always exist, and clone-related bugs may also lurkirzdio
in mature code. Therefore, we need automatic techniquestézd
and eliminate such errors.

In this paper, we propose a novel technique to discover elone
related bugs. In particular, we introduce a general notfaroatext-
based inconsistenciemmong clones (to capture the intuition that
similar code should be used “consistently”) and develop féin e
cient algorithm for detecting such inconsistencies (txalier la-
tent clone-related bugs). Our approach is based on theatedutr
servation that many bugs are caused by copying and pastd& co
and making minor modifications to the pasted code and its sur-
rounding codei(e., the “context”). If the changes are not consistent
with the context of the duplicated code, or if the code is@adstith-
out appropriate changes for use in the new contaggnsistencies
occur and may strongly indicate bugs in the code.

Figure 1 shows several inconsistencies detected by ouoapipr
among similar code. In the first pair (# 1) of code snippetsdi
408-419 and lines 323—-334 are detected as similar code. \i¢owe
the enclosing. f statements of the two pieces of code are different:
one usesstrncmp Which takes three arguments, while the other
usesstrcmp Which takes only two arguments in their respective
conditions forif. This turns out to be a logic error in “Code 2.”

For the second pair (# 2) of code snippets, lines 4861-4864 an
lines 2386—2391 are detected as similar code. Their mafardif
ence is that two more statements (lines 2389-2390) in “Cdde 2
are enclosed in theor statement. One can see thagbuf [0] in
“Code 2" is alwaysNULL (i.e., ‘\0”), and thus nothing imsgbuf



[ # ] Codel [ Code 2 (Similar to Code 1 but buggy) |
1: | File: linux-2.6.19/drivers/scsi/arm/eesox.c File: linux-2.6.19/drivers/scsi/arm/cumaac
407: if (length >= 9 && strncmp (buffer, "EESOXSCSI", 9) == 0) { | 322: if (length >= 11 && strcmp (buffer, "CUMANASCSI2") == 0) {
408: buffer += 9; 323: buffer += 11;
409: length -= 9; 324: length -= 11;
410: 325:
411: if (length >= 5 && strncmp(buffer, "term=", 5) == 0) { 326: if (length >= 5 && strncmp(buffer, "term=", 5) == 0) {
418: } else 333: } else
419: ret = -EINVAL; 334: ret = -EINVAL;
420: } else 335: } else
421: ret = -EINVAL; 336: ret = -EINVAL;
2: | File: linux-2.6.19/drivers/cdrom/sbpcd.c File: linux-2.6.19/drivers/cdrom/sbpcd.c
4859: if (cmd_type==READ_M2) 2386: for (i=0;i<response_count;i++)
4860: { 2387: {
4861 for (xa_count=0;xa_count<CD_XA_HEAD;xa_count++) :
4862 sprintf (&msgbuf [xa_count*3], " %02X", ...); 2388: sprintf (&msgbuf [i*3], " %02X", ...);
4863: msgbuf [xa_count*3]=0; 2389: msgbuf [i*3]=0;
4864: msg(DBG_XA1,"xa head:%s\n", msgbuf); 2390: msg(DBG_SQ1, "cc_ReadSubQ:%s\n", msgbuf);
4865: } 2391: }
3: | File: gcc-4.0.1/gcc/fortran/dependency.c File: gcc-4.0.1/gcc/fortran/dependency.c
414: if (l_stride !'= NULL) 422: if (l_stride != NULL)
415: mpz_cdiv_q (X1, X1, |.stride ->value.integer); 423: mpz_cdiv_q (X2, X2, r_stride ->value.integer);

Figure 1: Sample context-based inconsistencies among slaricode.

would be output. Although the difference does not signifilyan
impact the functionality of the code, it is still a bug and wWbu
manifest in debugging code.
As another example, the third pair (# 3) of code snhippets have
difference in variable naming, which is a local inconsistewithin
the clones themselves. In particular, the condition performs a
NULL check onl_stride, butr_stride is used within theif
statement in “Code 2.” This is suspicious and indeed, it @b
confirmed by the GCC developers as a bug and fixed quickly.
Although such bugs may be discovered by thorough testing, d
signing “enough” test cases is often difficult and time conisy.
In addition, even if a program exhibits abnormal behaviomay
still require much time to locate the actual bug locationsicts
bugs may also be difficult to detect using standard prograatyan
sis techniques: (1) These techniques usually requireingstap-
erty specificationsg.g, null-pointers cannot be dereferenced, array
accesses must be within bound, and certain temporal safgtep
ties should hold), but clone-related bugs are diverse dffidudt to
specify €f. Section 3); and (2) Most of these techniques still have
limited scalability, especially for code bases with mifigof lines
of code, such as the Linux kernel and Eclipse.

Approach Overview. Figure 2 shows the architecture and main
steps of our bug detection algorithm. First, it uses a clatedation
tool* to detect code clones in programs (Steps 1 and 2). Then, it
computes inconsistencies in the contexts of clones basedise
trees (Steps 3 and 4). Next, it classifies the inconsiststesed on
their potential relations with actual bugs and filters ounterest-
ing inconsistencies (Step 5). Finally, it generates bugntsgo be
inspected by developers (Step 6). We describe these stejpsaiih

in Section 2, and present our implementation and empirizalle
ation of the approach in Section 3. Related work will be syede

in Section 4, followed by the conclusion in Section 5.
Contributions. This paper makes the following contributions:

e It introduces a general notion of context-based inconsiste
cies among similar code and presents an efficient algorithm
to detect such inconsistencies for locating clone-relbteys;

e It presents a series of classification and filtering hewsstd
rank inconsistencies based on their potential relatiorih wi

LWe use a tree-based clone detection tool, Deckard [17],imgailementation. How-
ever, any other clone detection tool may be used for thisqaep
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Figure 2: Overview of our bug detection approach.

actual bugs;

It presents a detailed empirical evaluation of the appraarch
large open source projects, including the Linux kernel and
Eclipse. Our approach has revealed many previously un-
known bugs and programming style issues; many reported
bugs have been confirmed and fixed by the developers; and
It presents a thorough categorization of the discovered bug
and programming style issues, confirming the hypothests tha
code cloning may introduce subtle errors and revealing the
diverse characteristics of the bugs. Such a categorization
may help developers avoid similar errors in the future.

2. ALGORITHM DESCRIPTION

In this section, we describe the details of our approachwg)
first give a few basic definitions related to clonekne clone pair,
clone group andcontexts(Section 2.1); (2) we then define three
types ofcontext-based inconsistencasong clones (Section 2.2);
and (3) we next classify these inconsistencies based anpibigin-
tial relations with actual bugs (Section 2.3) and presentibgcs
for pruning uninteresting ones (Section 2.4). The remajmiones
with un-filtered inconsistencies may indicate bugs and epented
to developers for inspection.

2.1 Basic Definitions

For the definitions below, we assume there is a generic clene d
tection algorithmA such thatA (F1, F>) = trueifand only if code



fragmentsF; and F» are similar code w.r.t. a suitable definition of
similarity (e.g, in terms of tree editing distance [17]).

Definition 2.1 (Clones). A pair of code fragmenté’ and F» is
called aclone pairif they are similar,i.e, A(F1, F2) holds. A
group of code fragment§Fy, . .., Fi} is called aclone groupif
A(F;, Fy) holds for all1 < 4,5 < k. Each code fragmertf; in a
clone pair or a clone group is callectckbne instance

Definition 2.2 (Context). The contextof a code fragment is
the innermost language construct that enclages/Ne further re-
strict contexts to control-flow constructs. For exampleCinif,
switch, for, while statements, and function definitions are such
constructs. In Java, class definitions can also be suchrootst

We use the contexts for clones as the basis for inconsistamty
bug detection to capture our intuition that similar codewdtdger-
form similar functionalities and should be used under simglon-
texts. Thus clones with different contexts indicate likbligs. Ad-
mittedly, the actual code surrounding clones may vary, atcah
differences in the surrounding code are equally indicatifvbugs.
Thus, in this paper, we confine the context to be the smalfest e
closing construct that may impact the control flows of a cltme
ignore context differences that may be too far away from thee

We use an example to illustrate our definitions here: in ttst fir
pair of code snippets in Figure 1, the lines 408-419 and 328-3
are a clone pair, and the tvid statements beginning with lines 407
and 322 are the respective contexts for the two clones.

Although the definition of a context is language-dependi¢is,
still straightforward to provide a generic algorithm to fitige con-
text of a given clone. Algorithm 1 gives the high-level dégton
how we find the context of a clone. Given the parse tree of the pr
gram file which contains the clone, we perform a bottom-upctea
in the tree to find the smallest enclosing tree node of theectbat
is a contextual node.e., a control-flow construct.

2.2 Context-Based Inconsistencies

We observe that bugs are often introduced when a developer du
plicates a piece of code and makes inappropriate changesget$
to make certain necessary changes. We next formalize datifex
ferences of clones as indications of such bugs. In particula
define three types of context inconsistencies of clones.

Definition 2.3  (Type-1 Inconsistency).Given a pair of clones
Fy and F> and their corresponding context$, and C», Fi and
F have atype-1 inconsistendy the kinds ofC, andC» (denoted
by KIND (C'1) andkIND (C?)), in terms of language constructs, are
different. We denote such an inconsistencylbF:, F>) such that
I, (F1, F») = 1if KIND(C1) # KIND(C2), andli(F1, Fz) = 0
otherwise.

We lift this definition to a clone group. Given a clone groGp
there exists a unique equivalence partition/s = {g1, g2, ..., gr }
of G such that (LVi (VC,C’ € g; L(C,C") = 0), and (2)
Vi # j (VC € g VC" € g; ©L(C,C") = 1). We say that
G hastype-1 inconsistendy k£ > 1 and let/;(G) = k denote the
type-1 inconsistency afr.

As an example, Figure 3 shows a clone pair which has type-1
inconsistency. The lines 3559-3567 and 2707-2715 aretezpas
a clone pair, and the context for “Code 1" is a function deiomif
while the context for “Code 2" is anf statement. In fact, the
inconsistency was confirmed as a bug on line 3558: the deswdop
omitted the necessary checks to make suredigh valid subscript
anditem is notnull.

Calculating type-1 inconsistencies is as straightforwasdind-
ing contexts: we simply compare the kinds of the nodes retlily
Algorithm 1. Despite their simplicity, type-1 inconsistaées have
interesting potentials for finding many bugs, especiallgddue to
missing checksdf. Table 4).

Algorithm 1 Find the context of a given clone
1: function CONTEXT(T : tree, F' : clone): node

2: Find the smallest subtréEg in T', s.t., T properly containsF
3: Let R be the root ofl'

4 Find the youngestontextual ancestor nod€p, of R

5: ReturnC'r

6: end function

Definition 2.4  (Type-2 Inconsistency).Given a pair of clones
Fy and F> and the conditional predicatdd and P in their con-
texts, F1 and F; have atype-2 inconsistenciy P, does not match
P» in terms of parse tree matching. We denote such an inconsis-
tency byIz(F1, F2) such thatlz(F1, F2) = 1if P, and P, do not
match, andl>(F1, F>) = 0 otherwise. IfFy or F> has no corre-
sponding predicates, we |&f(F1, ) = 0.

We lift this definition to a clone group. Given a clone group
G, there exists a unique partitiah/I> = {go, g1, g2, .., gk} Of
G such that (1)go contains exactly those clones with no context
predicates, (2¥i # 0 (VC,C" € g; I(C,C") = 0), and (3)
Vi#£j#0 (VC €g; VC" € g; I(C,C")=1). We say that
G hastype-2 inconsistendy k£ > 1 and let/>(G) = k denote the
type-2 inconsistency afr.

This definition is also language-dependent because difféan-
guages may have different definitions of conditional prattis. As
an example, the first pair of code snippets in Figure 1 has pe-ty
1 inconsistency because both of them afestatements. However,
they have a type-2 inconsistency because thiegonditions invoke
two different functions with different numbers of paranrste

Clones with type-2 inconsistencies may be executed aloiRg di
ferent control flow paths (which are controlled by the coiothis)
and thus behave differently. Such inconsistencies viaateas-
sumption that similar code should perform similarly undienikar
situations, and thus may indicate bugs.

A simple way to compare two conditional predicaf@sand P
is to compare every node in the parse trees fprand P; in a
pre-order traversal. Although such a strict comparison fatsely
report inconsistencies on semantically equivalent butastitally
different expressions, such a§i] and*(p+i) in C, it may pro-
vide a reasonable upper-bound estimation on the total nuntbe
type-2 inconsistencies in clone groups. One can also aifate t
as long as the purpose of duplicating code is to improve soéw
productivity (instead of plagiarism), code clones with Haene se-
mantics should often have the same syntactic structure fzre t
is usually no reason to modify the code to have different asstict
structures. In practice, some code may become similar doth&y
reasons besides direct copying and pastag,(applying a same
programming pattern). Thus semantically equivalent buatasgti-
cally different expressions do exist, and in Section 2.4ewloy
certain heuristics to reduce false alarms on type-2 instescies.

Definition 2.5 (Type-3 Inconsistency).Given a pair of clones
Fy and F», Fy and F> have atype-3 inconsistencf Fi and F5
contain different numbers afmiqueidentifiers. We denote such an
inconsistency bys(Fi, F») such thatls(F1, F») = 1if F1 andF»
have different numbers of unique identifiers, ahdF:, F») = 0
otherwise.

We lift this definition to a clone group. Given a clone groGp
there exists a unique equivalence partiti®n/s = {g1, g2, ..., gr }
of G such that (L\i (VC,C’ € g; I3(C,C") = 0), and (2)
Vi # j (VC € g; VC" € g; I5(C,C") = 1). We say that
G hastype-3 inconsistendy k£ > 1 and let/5(G) = k denote the
type-3 inconsistency af.

The type-3 inconsistencies capture another kind of diffees
in code clones that may be introduced by modifying idensfier
(including names of variables, functions, types, etc.)icwhs a
common practice during copying and pasting code. Oftenatot



Code 1 (missing necessary checks in the shaded part) Code 2
File: org.eclipse.debug.ui/ui/org/eclipse/debug/ File: org.eclipse.debug.ui/ui/org/eclipse/debug/
ui/memory/AbstractTableRendering.java internal/ui/memory/provisional/AbstractAsyncTableRlering.java
3557: int colCnt = fTableViewer.getTable().getColumnCount() ; 2697: TableItem item = null;
3558: Tableltem item = fTableViewer.getTable().getitem(0); 2698: for.t(lnt 1=0; i<fTableViewer.getTable().getItemCount(); i++)
item = ......
3559: for (int i=0; i<colCnt; i++) -
3560: { 2705: if (item != null)
3561: Point start = new Point(item.getBounds(i).x, ...... 2706: {
3562: start = fTableViewer.getTable(). toDlsplay(start) 2707: for (int i=0; i<colCnt; i++)
...... 2708: {
3565: if (start.x < point.x && end.x > point.x) 2709: Point start = new Point(item.getBounds(i).x, s
3566: return i; 2710: start = fTableViewer.getTable(). toDlsplay(start)
3567: F
2713: if (start.x < point.x && end.x > point.x)
2714: return ij;
2715: }
2716: }

Figure 3: Sample type-1 inconsistency and bug.

identifiers in clones are modified; occasionally some idiens that many inconsistencies in the clone group. In such casesntios
should be changed are left unchanged, and some that shduld no sistencies may be intended by developers, and may no lomger b
changed are changed. These cases may lead to different rmumbe indications of anomalies or bugs. On the other hand, thelemal

of unique identifiers in the clones and thus indicate likelgs I;(G) is (except for one), the more likely the inconsistencies are
For example, in the third pair of code in Figure 1, “Code 2" is not intended and are indications of bugs. Based on such an int
similar to “Code 1,” but it has seven unique identifiers (exithg ition, we choose to include only those clone grodpsvith small
keywords and punctuations), while “Code 1” only has six. datf values ofl;(G) during the ordering of clone groups.
it was confirmed by the GCC developers that the “extra” identi In addition, based on our experience, type-1 inconsisésnoiay
(r_stride) should have been_stride instead. be further classified into several subtypes, and differebtypes
Compared with type-1 and type-2 inconsistencies, types8rin have different likelihoods to be bugs. Such a type-refingrman
sistencies are local to code clones themselves. We caictiiat further help the classification of clone groups and redutsefpos-
type-3 inconsistencies by traversing the parse trees ofesl@and itives (Section 2.4).

counting all identifiers that we visit. Alternatively, a gter lex-

ical scanner can be used to count the numbers. We currently do
not distinguish identifiers for types from identifiers foriables or
functions. Based on the parse trees, we can incorporatediffeh
ences to improve the accuracy of type-3 inconsistencies.

Definition 2.7  (Inconsistency Subtypes)Given a clone paif}
and F» and their contexts”; and Cs, the kinds ofCy and C»
(in terms of language constructs) can be oneswftch if, loop,
function-definition(or fundej, andprogram(or prog). The subtype
of F1 and F, written Is(F1, F»), is defined based on the kinds of

2.3 Classification of Inconsistencies C1 andCe: _

Itis obvious that not all context inconsistencies are ddiugs. Subtype-  Is(Fi,F2)= 1, if i:ggg%% = gﬂﬂgg;i B[ggg A
In facp propably most of such inconsistencies are not bugsnw Subtype2 Is(Fi,Fs) = 2, if KIND(C1) — (fundef| prog) A
code is copied and pasted with caution. To better invest alanu KIND(C3) = loop
efforts when examining the inconsistencies for bugs, wizata Subtype-3  Ig(Fi, F2) = 4, if KIND(Cp) = loop A
series of classification heuristics to rank the inconsistnso that _ KIND(C2) = (switch] if)
we can examine most likely buggy inconsistencies first, tarfout Subtype-4  Ig(Fy, Fh) = 8 if  KIND(C1) = KIND(C?2) = loop
unlikely buggy clones to reduce false positives. Subtype-5  Is(F1, F2) = if E:Eggglg = E:mgm :R A

) . . ) =
First, the clone groups can be sorted based on their types of i Subtype-8 Is(Fy,Fa) =32, if KIND(C1) = (switch|if) A

consistencies so that developers can have an order to dehide KIND(C2) = (fundef| prog)

clones to inspect first for most likely bugs. Given a clone grou, the subtype of7 is the bit-wiseOR of

Definition 2.6  (Inconsistency Rank).Given a clone group, all possible subtype inconsistencies among the clonés ire.,
the inconsistency ranlof the group, denoted bRANK(G), is a T<(G) = ORp. . Is(Fs, F5).
4-tuple (|G|, I1(G), I>(G), Is(G)), where|G| is the number of s(6) rorea Is(F, I)

The subtypes capture our intuitions on the relations betwee-
text inconsistencies and latent bugs: (1) Subtype-6 maygatel a
missing conditional check or a redundant check; (2) Subg/pad
subtype-4 are actually type-1 consistent, but their coomtd pred-
icates within different contexts may help refine possibjeet in-
consistenciesi.g., different conditional predicates); (3) Subtype-3

clones inG.

Given two clone group$s; and G2 and their associated ranks
RANK(G:) = (|G|, [1(Gs), I2(Gi), Is(Gy)) for i € {1,2}, the
order betweerG; and G2 is given by the lexicographical order
betweerRANK(G1) andRANK(G2), i.e

G1=Gy <<= |Gi|=|Ga| A\ Vi€ {1,2,3};(G1) = I;(Gz) and subtype-2 may indicate that a substantial semantiogehisn
|G1| > |Ga| V intended among the clones and the code may be less likely;a bug
}gl} - }gﬂ ﬁ ?Eglg > ?gg% \ and (4) Subtype-1 may indicate that the clones and theiretst
Gi1>Gy ! A (G > (G V have too few differences to introduce a bug.
|G1] = |G2| A Vi€ {1,2} [;(G1) = I;(G2) Also, one can utilize more language-dependent featuresfitzer
N1s(G1) > Is(Gz2) the above subtypes. For example, the kinds of contexts mmay
Recall that fori € {1,2,3}, I;(G) > 1 indicates the existence  also includesynchronizeéndtry-catch-finally If a clone in a clone
of type< inconsistencies in the clone grodp The largerl;(G) pair misses such a context, it may indicate lock-based cogrocy
is, the more inconsistencies the group has. However; @) that errors or un-handled exceptions.

is too high €.g, > 5) and too close to the total number of clones The inconsistency ranks and subtypes form the basis of the fo
in the group €.g, > 50% of |G|) may mean that there are too lowing filtering heuristics for bug detection.



2.4 Filtering Heuristics

Many reasons, such as different programming styles, may in-
troduce context inconsistencies that may not be actual. bEgs
example, preferences tthile loops overfor loops may intro-
duce context differences; device driver code for differaodels of
a printer may be similar but have different conditional dtsetor
different features of the printers. For bug detection, sindon-
sistencies are usually false positives and should be prbatate
manual inspection. We next present a set of heuristics based
inconsistency ranks and subtypes to prune clone groupsateat
unlikely bugs.

The first heuristic is to prune certain type-1 inconsistesddy
considering some contexts as the same:

for = while: we treatfor andwhile as the same context.

switch-case = if-else. we treat aswitch-case Statement
and a sequence aff-else statements as the same context.

fundef = classdef = file: we treat function definitions, class
definitions, and file scopes as the same context.

The second heuristic is to prune type-2 inconsistenciesbyg-
nizing some small semantically equivalent expressions:

el<e2 = e2>el: we treat conditional expressions of the form
el<e2the same as2>e1, whereel, e2 are two expressions.

ce = ce!=0: we treat a conditional expressies the same as the
expressiorce ! =0 (using C's syntax).

lce = ce==0: we treat a conditional expressiore the same as
the expressiore==0 (using C’s syntax).

el+e2 = e2+el: We treatel+e2 the same as2+el because ad-
dition is commutative (similarly for other commutative ope
ators, such as, | |, and&&).

>: we treat different field access operators, such assd->,

code is small w.r.t. the sizes of the original programs. Kaneple,
we manually examined less thak000 lines of code in the Linux
kernel, which are collectively abo@t2% of the total5.6 million
lines, to find57 bugs and programming style issueé Section 3).
Considering that the maintenance of duplicated code iswtistly
manual and little work has been done on finding clone-relatess,
the code inspection burden of our approach is light and wdile,
especially when compared to manual audits of the entire bade.

We note that itis possible that our filters may prune certagdy
inconsistencies. This is a common trade-off one needs teemak
less code inspection burden versus finding more bugs. $e8tio
will present results to show that the filters perform wellénms of
reducing false positives with few false negatives.

3. EMPIRICAL EVALUATION

3.1 Implementation

Our bug detection algorithm works on top of a clone detection
tool. In our implementation, we use Deckard—a scalableyyage-
independent, tree-based clone detection tool [17]—toctiemde
clones as input to our bug detection algorithm.

Deckard is based on a novel characterization of subtreds wit
numerical vectors in the Euclidean spak& and a probabilistic
clustering algorithm to efficiently cluster these vectorstwthe Eu-
clidean distance. Given a program in a certain languageké&dc
(1) generates a parser from a formal syntax grammar for the la
guage, (2) uses the parser to translate sources files irde paes,
(3) produces a set of vectors that capture syntactic infoomaf
the trees, (4) clusters the vectors based on the localityihee
hashing algorithm [9], and (5) post-processes the vectmtets to
generate reports of code clones. Deckard’s language-@mitmce

the same, and ignore address-of and dereference operatorsand its scalability and accuracy for clone detection makegbod

such asz andx.

In addition, we also propose several filtering heuristicprime
clone groups. These heuristics are based on the obsentaabn
some types of inconsistencies do not strongly indicate bagause
of either too minor changes or too significant changes ambag t
clones. Given a clone grou@, we have the following filters:

Filter 1: If subtype-1 is set ifs(G), prune the group since such
cases may imply that the clones have no real differences.

Filter 2: If subtype-2 is set ifs(G), prune the group since such
cases may imply that the clones are intended to have signifi-
cant semantic differences because adding or removing loops
is unlikely accidental.

Filter 3: If subtype-3 is setids(G) and theif or switchcontext is
not enclosed in anothéoop context, prune the group since
such cases may imply that the clones may be intended to b
semantically different because of loops.

Filter 4: Instead of using the exact tree matching algorithm (Sec-
tion 2.2) to compute type-2 inconsistencies, use more ap-
proximate measures, such as tree editing distances or Eu
clidean distances [17], to allow small differences in cante
tual conditions to further prune type-2 inconsistencies.

Filter 5: If G has type-3 inconsistencies and the difference among
the numbers of unique variables in the clonegsins large
(e.g, > 2), prune the group since such cases may imply that
the clones have gone through many modifications and possi-
bly have different semantics.

Filter 6: If the clones inG are very close to each othez.§, less
than 10 lines apart), prune the group since such cases may
imply that the clones were written by the same programmer
during a short period of time and thus may be less likely to
contain inconsistencies.

After filtering, the remaining clone groups can be inspedted
actual bugs. We will show that the estimated amount of inggec

e

choice for our purpose. It is also worth mentioning that oug b
detection algorithm is general and can be applied with othmre
detection techniques [2,3,6,7,18,21, 23, 25]. Althougiséhtech-
niques have algorithmic and parametric differences fromkaed,
we do not anticipate any difficulty in using them in our algjon.
On the other hand, quality and quantity of detected cloresrisl
impact the effectiveness of our approach. Deckard has thege
parameters that may affect the number and quality of itsctiede
clones [17]. The first one is themilarity between two pieces of
code for them to be considered clones. It ranges féobnto 1.0;
the larger the similarity is, the less difference is tolechmong
clones? and less clones may be reported. The second parameter is
theminimum token numbédor a piece of code to be included. The
larger the minimum token number is, the less clones may be re-
ported. The third parametestride, mainly controls the minimum
spatial distance (in terms of tokens in source files) betwaen
clones. The smaller its value is, the more clones may be tegor
Smaller strides may also produce more overlapping clomebtte
post-processing phase in Deckard may take more time to prune
overlapping segments. If stride is setdo, only non-overlapping
and syntactically complete pieces of codey( a completeif state-
ment or a completéor statement) are considered for clones.

3.2 Experimental Setup

We now describe the setup for our empirical evaluation. tFirs
for most of our evaluation, we set Deckard'’s similaritylt®, min-
imum token number t60, and stride taxo. These correspond to
standard choices in other clone detection tools, and we todot
cus on evaluating the bug detection aspects of our approakh.
note that the numbers of false positives and negatives magy va
with different parameter settings. In Section 3.4, we wiale-

2Certain language elements, such as identifier names, atedras the same syntactic
element although they may be different lexically.



Prog. Version # Files #LoC # Clone # LoC Time Filter # Inconsistencies # #Sus- | #Style [ Est. of # False
‘ H ‘ ‘ H Groups ‘ (Clones) | (sec) | || Type-1 | Type-2 | Type-3 | Total | Bugs | pects | Issues | LoC | Positives |
= All. 115 350 69 396 33 69 9 11258 285
[ Linux [ 2.6.19 [ 8733 5639833 7852 | 358331 289 | T 77 57 I 53 3 [ 164% 55
[ Eclipse || CVS01/08/07| 8320 | 1832332 2246 | 70455] 160 | 2 133 | 485 | 383 | 837 | 39 82 T6 | 36396 700
. X 3 159 506 388 859 40 84 16 37061 719
Table 1: Characteristics of subject programs. 4 17| 445 ] 388 ] 807 [ 38 80 14 [ 35214 1]
5 176 524 356 849 41 85 16 34151 707
) . 5 , 6 165 474 324 767 38 80 13 34265 636
ate the impact of different choices of Deckard’s parameterthe None. 77 527 | 388 | el | a1 85 16 | 37430 739
effectiveness of our approach for bug detection. Table 3: Effects of filters on false positives and negative&€ach

Second, we choose well-known large open source projeath, su
as the Linux kernel and Eclipse, as the subjects in our etiahua
These projects are written in different programming largps C
and Java, which can help us evaluate the generality and daegu
independence of our approach. Table 1 shows some basgtistati
on the projects, including their lines of code and numbesoaice
files. Table 1 also shows clone-related metrics. For eacjeqto
it lists the number of clone groups detected by Deckard, dke t
number of lines of cloned code, and Deckard’s time on clone de
tection. Thus, th&58331 lines of clones in th&852 clone groups
in the Linux kernel and th&0455 lines of clones in th&246 clone

row corresponds to different filters (Section 2.4). “None” neans
no filter was enabled; “All” means all filters were enabled.
They are the same data for Table 2.

We were able to find3 bugs and) programming style issues in
the Linux kernel and 5 bugs andl3 style issues in Eclipse when
all filters were enabled. When fewer filters were enabled, \weew
able to find more bugs and style issues (Row “Linux w/o filtenst
“Eclipse w/o filters” in Table 2). Table 3 also shows the inpafc
different filters €f. Section 2.4) on bug detection for the Linux ker-
nel. With no filter enabled or all filters enabled, more tHanf false

groups in Eclipse form the main code base where we search for POSitives were pruned with5 false negatives. This is a trade-off

bugs in our following experiments.
Finally, our experiments are mainly performed on a machine
with a 3GHz Intel Xeon CPU, 8GB of memory, and Fedora Core 5.

3.3 Detection of Inconsistencies and Bugs

Our approach found many context inconsistencies in ouestibj
programs. Many of these inconsistencies revealed intagestrors
and programming style issues.

Table 2 shows how many inconsistencies and bugs we found in
the subject programs. For each clone group reported by Decka
its inconsistency rank and subtype were calculaté®ection 2.2),
and we counted the number of clone groups of each type of in-
consistencies (Columns “# Tygeic.”) and the total number of
groups reported as potential bugs (Column “Total # Inc.”e Wge
the number of lines of code (Column “Est. of LoC for Inspcriaill
the groups, including their contexts, to estimate the arhoficode

that we need to inspect for actual bugs. Such numbers may help

readers to understand better the amount of manual effonseict
the inconsistent clone groups. The amount of code ranges fro
0.2% to 0.7% of the original programs, or from.2% to 16.2%

of the clones. We believe the manual effort can be justifiethisy
large number of detected bugs.

The numbers of actual bugs revealed by each type of inconsis-
tencies are shown in Columns “# TypeBugs.” The total num-
bers of bugs, programming style issues, and suspiciougslare
also shown in Columns “Total # Bugs,” “# Style Issues,” and “#
Suspects” respectively. For each remaining clone growgy ifter-
ing, we manually inspected it to check whether it points tea r

bug. We made such decisions based on our knowledge of the code

(1) if we have high confidence that an inconsistency causgs in
propriate behavior in any clone of the group, we classifieakita
bug; (2) if we have high confidence that an inconsistency leas n
effect on the intended behavior of the clones, we classified &
false positive; (3) if we believe the clones are behavigratirrect
but the code has redundancies or is unnecessarily conmgicat
confusing, we classified it as a programming style issue; (dhd

if we are uncertain about an inconsistency or it takes usdaog |
(more than30 minutes) to understand the code, we classified it as
a suspect. During the examination of a clone group, we may als
perform simple data-flow analysis to help understand the cbdr
most clone groups, the code was fairly easy to understandhand
manual inspection took only several minutes each.

3We also have preliminary experimental data for GCC 4.0.1adke 2.2.0, and JDK
1.5.0, and have found many previously unknown bugs in thesjegis. However, due
to space constraints and the fact that we have not yet irepeditof the bug reports
for these projects, we do not report the data here.

one has to make between low false positive and negative rHbes
bugs exhibit diverse characteristics (Section 3.3.1),thag would
be difficult for existing bug detection tools to discover.rSaering
the relatively light code inspection that is needed, wedveliour
approach is worthwhile for improving quality of the progranio
date we have received confirmation from developers for twgsbu
in the Linux kernel and two bugs in Eclipse (and additiona¢®n
for GCC and Apache) for the bugs that we have reported. We are
continuing analyzing and submitting additional bug report

Table 2 also shows the running time of our algorithm (Column
“Detection Time"), excluding the time for clone detectiamanan-
ual inspection. Most of the time was spent on (re-)parsirgafes,
the most expensive operation in our approach. As an impleanen
tion improvement, we could store parse trees from Deckaagtoid
re-parsing, trading space for time.

3.3.1 Breakdown of Bugs and Style Issues

In this section, we categorize the detected bugs and pragiagn
style issues in the Linux kernel and Eclipse (Table 4 andrbotial,
there are41 bugs andl6 style issues in the Linux kernel, arxd
bugs andl7 style issues in Eclipse. We also noticed that the bugs
and style issues have diverse characteristics, confirnhiaignhany
different kinds of bugs can be introduced when developepy co
and paste code.

Table 4 lists the main reasons that caused these bugs. Wlissin
necessary conditional checks before using certain datastebe
the most common kind of bugs (Row “ID 1”). Figure 3 shows such
an example. Figure 4 shows another error caused by “Wrong fun
tion calls.” Lines 2674—-2721 and lines 2724-2773 are cloaed
they have different numbers of unique identifiers. It did take
us long to realize that the call tgci_bus_write_config_word
on line 2682 should have begri_bus_write_config_byte.
Becauseci_bus_write_config_word takes parameters of type
void *, the type checker did not catch the mismatch between the
type of temp_byte and the expected type by the function. At a
coarser granularity, most bugs caused by “Wrong functidista
“Wrong variables,” “Wrong data fields,” and “Wrong macrosagn
be classified as “Wrong identifiers.” The fact that many buaibk f
into this category confirms that copying and pasting coderofe-
quires identifier renaming, which can be error-prone.

Table 5 shows the kinds of style issues found by our approach.
Although some code with style issues may be deliberate, asch
for debugging, for code obfuscation, for an experimentahona-
ture feature, or as dummy code, we believe that code withtjfe s
issues listed in Table 5 is generally confusing, resultes lopti-
mized code, and reduces program readability and maintiiyab
and it should be avoided as much as possible.



Program Detection | # Clone # Type-1 # Type-2 # Type-3 Total # # Sus- | # Style #False | Est. of LoC
Time (sec) | Groups | Inc. | Bugs | Inc. | Bugs | Inc. | Bugs | Inc. | Bugs | pects| Issues| Positives for Inspc.

[ Linuxw/ all bug filters ]| 387 7852 115] 10350 25] 69| 12]396] 33| 69 | 9] 285 | 11258 |
[ Cinux w/o filters i 355 | 7852 177 | 11| 527 29| 388| 15| 881] 41| 85 | 16 | 739 | 37430 |
[ Eclipse w7 all bug filters]| 127 2246 146 2| 249 13| 26 ] 2] 265] 15 42| 13 | 195 6096 |
| Eclipse w/o filters I 125 2246 | 224 ] 4130 ] 17 91] 41461 21 ] 50 | 17 ] 373 ] 11536 |

Table 2: Numbers of inconsistencies and bugs reported wherlar no filters (Section 2.4) were enabled.

Code 1 (wrong function call) Code 2
File: Tinux-2.6.19/drivers/pci/hotplug/cpqphgirl.c File: Tinux-2.6.19/drivers/pci/hotplug/cpqphgirl.c
2673: if (hold_IO_node && temp_resources.io_head) { 2724: if (hold_mem_node && temp_resources.mem_head) {
2681: {:éx;l}.J;izyte = (hold_IO_node->base) >> 8; 2732: {:éx;l}.J;‘:ford = (hold_mem_node->base) >> 16;
2682: rc = pci_bus.write _configword (..., temp_byte ); 2733: rc = pci_bus_write _configword (..., temp.word );
2700: éér;l}.);l.)yte = (io_node->base - 1) >> 8; 2751: éér;l}.);b.lord = (mem_node->base - 1) >> 16;
2701: rc = pci_bus_write_config_byte(..., temp_byte); 2752: rc = pci_bus_write_config_word(..., temp_word);
2721: ¥ 2773: ¥
Figure 4: Bug example: a wrong function call.
[ 1D ] Category [ #Bugs (Linux) [ # Bugs (Eclipse)] [ # [ Reasons for False Positives |

0 || Total 41 21 1 | Different features in devices cause some divergencesin(thestly similar)

1 || Missed conditional checks 9 8 driver code.

2 || Negated conditions 1 0 2 | Similar functions accept parameters of different types aedd twists for

3 || Inappropriate conditions 1 3 different types.

4 || Off-by-one 2 1 3 | Names of types, functions, variables, etc. clash.

5 || Tnappropriate scoping 2 0 4 | Some code of similar and simple syntactic structures maypaoeal clones.

6 || Missed or inappropriate qualifiers 2 0 . . . . ..

71 Wrong varables 3 7 Table 6: Category of inconsistencies that cause false pasgs.

8 || Missed or inappropriate Tocks 4 0 .

9 [ Tnappropriate fogic for Comer casds 3 > opers to understand better possible reasons that causerelated
10 || Unhandled cases or exceptions 2 3 errors and consciously prevent them from happening agaihen
11 || Wrong function calls 3 0 future; (2) Automated tools may be implemented to check code
12 ]| wrong data fields 5 0 clones against each of such categories for code validation.

13 [| Wrong macros 4 0
Table 4: Categories of detected bugs. 3.3.2 Breakdown of False Positives
‘ D H Category # Style Issues Admittedly, our approach reported many false positivesalgh
Linux | Eclipse it found many actual bugs. False positive rates, in termshef t

0 || Total _ 16 1 number of bugs and style issues over the number of identified i
1 || Redundant conditional checks 1 5 ist . b 80%. On the other hand b
> RedUNdant 1ocks > o consistencies, may be up 20%. On the other hand, many bugs
3 [ Dead code 0 0 discovered by our approach may be difficult to find with otlesht
4 ]| Unnecessary obscured code 2 1 nigues, and the reported inconsistencies account for esky than
5 || Less optimized code _ 2 2 1% of the total number of lines of code in the original programs.
6 || Redundant macro checking code 1 0 We beli th | effort i lved i Ivi :
7 || Unhandled application features 2 5 e be 'e}’e e.manua.l erort involve .ln .a.pp ying our apjotoés
8 | Unused variables 3 0 worthwhile for improving program reliability. Next, we alyae
9 || Redundant operations 1 0 possible reasons for the false positives so that we can ecttheen
19 | Recundantype casts__ L L further in the future.
11 || Unnecessary name/data aliases 1 1 . .
o T Thconsistencies between code and commans—0 T Tgple 6 lists severa_l reasons tha_tt are respons_lble for ratss f
13 || Redundant error checking code 0 T positives in our experiments. Basically, many differenaasong

Table 5: Categories of detected style issues.

Here, we only give an example for “Less optimized code” in
Figure 5. “Code 1” and “Code 2" were reported as clones, butha
different context conditions. One can see thatWidth in “Code
1" is calculated more times than necessary (line 592), wkitede
2" is optimized to calculateidth only once (line 680). Compilers
may not be able to perform the optimization automaticallyaaese
getClientArea() is fairly complicated and the compiler may not
be able to infer thatewWidth is a constant.

clones legitimately exist because they are intended toveetid-
ferently, such as drivers for devices with slightly diffatdéeatures,
and exception handling code for different types of exceygicAny
such intended behavioral differences may cause a falsévgoisi
our approach because (1) our current definitions for costexrt
inconsistencies do not consider program behavior; (2) wlfi>-
ters are mainly syntax-based; and (3) Deckard, the clorectien
tool used in our approach, is also syntax-based and maytregor
mantically different but syntactically similar code asmés. All
of the reasons listed in Table 6 concern program semargigs (

Some of the bugs and style issues can be detected by existingtypes, data and control dependencies) and their intendeal/ .

techniques. For example, missingjiL.L check €.g, Figure 3) can

It would be interesting to extend the idea of context-basedrisis-

be revealed by data flow analyses. However, many bugs may in-tency and bug detection to semantic-based clones and wreoep

volve programming logic errors, such as inappropriate ¢t s

(e.g, # 1 in Figure 1) and inappropriate scopirgd, # 2 in Fig-

ure 1), and are difficult to discover without specificatiorSec-
tion 3.4.2 discusses further how our approach and exisgnb-t
niques may complement each other.

We also believe that the categories of clone-related buds an

style issues can be useful in two aspects: (1) They can hekd-de

semantic information into the definitions of contexts anebimsis-
tencies and the filters to detect bugs more accurately (skscl
further in Sections 3.4.3 and 3.4.4).

3.3.3 Comparison with CP-Miner

CP-Miner [25] is a token-based clone detection tool for Colip
knowledge, itis the only existing tool that looks for bugeedtly in



Code 1 (less optimized)

Code 2

File: eclipse-cvs/org.eclipse.swt/Eclipse SWT/gtk/org
eclipse/swt/widgets/ExpandBar.java

590: for (int i = 0; i < itemCount; i++) {

591: ExpandItem item = items [il]; 6
592:  int newWidth = Math.max (0,getClientArea().width — spacing*2); 6
593: if (item.width != newWidth) { 2
594: item.setBounds (0, O,newWidth, item.height, false, true);
595: } 6
596: }

File: eclipse-cvs/org.eclipse.swt/Eclipse SWT/gtk/org

eclipse/swt/widgets/ExpandBar.java

80:

81:
82:
83:

int width = Math.max (0, getClientArea().width — spacing*2);
for (int i = 0; i < itemCount; i++) {
ExpandItem item = items [i];
if (item.width != width)
item.setBounds(0, O, width, item.height, false, true);

84: }

Figure 5: An example of programming style issues: less optiired code.

cloned code. In this section, we compare CP-Miner’s effeciss
with ours on the Linux kernel. Section 4 will discuss othdated ‘

bug detection techniques.

CP-Miner also assumes that inconsistencies among clodes inCP-Miner |

TotalRun | #Cloned| #Po-| #Sus-| #True Pos.| Set Diff. of

Time (s) LoC | sitives | pects| (Bug+Style) True Pos.
[ Ourtool T 676 [ 358331 396 | 69 | 42 ] 42 ]
582 | 534202] 251 | 55 13 ] 13 ]

cate bugs. However, its definition of inconsistenciel®isl to the
clones, similar to our type-3 inconsistencies. Differemni our

type-3 inconsistencies, it is based wientifier mappingsamong |

Table 7: Comparison with CP-Miner (Linux kernel 2.6.19).
Time (sec) | # Clone #LoC Est. of LoC | # Inconsistencies

|| Clone | Detection Groups | (clones) forinspc | Type-1 | Type-2 | Type-3 | Total |

Sim

clones: Given a clone paf; and F», every instance of all identi- |

ilarity (Minimal Token Number 50, Stridec) ]

fiers in Fy is mapped to an identifier in the same positiod and [ 12

289 387 7852 358331 11258 115 350 69 396

0.999

288 360 7854 367272 9481 110 280 64 330

for each unique identifielD, anUnchangedRati(ID) is defined as

0.99
0.95

290 402 8462 403545 13945 122 322 155 441
311 837 15738 599866 63684 788 1919 2089 2637

the following:

Minimal

Token Number (Similarityl . 0, Stridecc) ]

, #of Unchange(ID) in F» '

50

UnchangedRati(ID) = I

289 ] 387 | 7852 | 358331 11258 | 115 350 [ 69 39
[

128

277 | 108 | 1324 | 161079 840 2 3] 61 18]

Total # of ID) in F} |

64

294 370 7805 294931 6393 55 147 83 220

For example, in the third clone pair in Figure 1, let Code Fhe =

330 1042 23780 495037 23990 389 1040 427 1327

16

372 3602 63763 867991 182957 3552 8311 6514 11485

and Code 2 bé?, thenUnchangedRatitk1) = 2 = 0 because

Stride (S

imilarity1 .0, Minimal Token Number 50)

both instances af1 have been changed 2. Similarly, we have

=)

289 387 7852 358331 11258 115 350 69 396

16

345 507 10828 433778 15044 159 390 154 499

2
UnchangedRatifl_stride) = 1 andUnchangedRatitvalue) = [

370 694 15536 520857 22649 218 500 286 705

1. Similar to our type-3 inconsistenciednchangedRatidgs used [2

419 1184 26532 675863 34235 439 782 569 1174

2

517 2199 49235 916752 50862 723 1399 1136 2199

to measure whether programmers change identifiers consist
when they copy and paste code. A non-zero or non-one value for
UnchangedRatianay indicate inconsistent changes of the identi-
fiers and reveal a potential bugnchangedRatids a finer-grained
metric than our type-3 inconsistencies, and if a clone pasrtiipe-

3 inconsistency, it must have some identifier with a non-zetae

for its UnchangedRatipivhich means CP-Miner may generate more
reports than ours and we may miss certain bugs. On the other ha
our type-3 inconsistencies are more efficient to calculateraport
fewer false positives.

Table 7 shows our experiments on the Linux kernel 2.6.19, us-
ing 50 as the minimum token number atnd) as the similarity for
both CP-Miner and Deckard. We also set the stride parameter i
Deckard toco. Deckard reported fewer clones (Column “# Cloned
LoC") in slightly longer time (Column “Total Run Time”), thathe
initial code base for reporting bugs is smaller for our aptd
However, our approach still found more bugs and style is§0ebk
umn “# True Pos.) because we look for inconsistencies not only
within clones, but also in the contexts which are beyond thees.

We also achieved a much lower false positive rate. All rep@Zol-
umn “# Positives”) generated by CP-Miner and our approactewe
manually inspected by us. Among t@&1 reports from CP-Miner,
55 cases were classified as suspects.

It is also interesting to note that the intersection betwten
problems found by CP-Miner and the problems found by our ap-
proach is empty (Column “Set Diff. of True Pos.”). Among the
13 cases from CP-Miner, five (three were duplicated reportspwe
pruned by our filters, and the other eight were not in the done
reported by Deckard with our parameter setting. After exang
these eight reports, we see no reason why they could not legre b
detected by our type-3 inconsistencies if they had beentegas
clones by Deckard with different parameter settings. Thuguld

“4These results do not imply Deckard performs worse than CReMn general. With
different parameter settings, Deckard can detect moreesléhan CP-Miner in the
same amount of time [17].

SCP-Miner does not report cases wHénchangedRatia> 0.4 by default. It is also
a trade-off between false positives and negatives chos€&PbMiner.

Table 8: Potential effects of different clone detection paame-
ters on false positives and negatives with all filters enabte

also be interesting to investigate further whether the fgrained
identifier mapping-based approach in CP-Miner can actugtgct
more bugs than our simpler type-3 inconsistencies.

3.4 Discussion
We now discuss issues related to our approach’s effecthgene

3.4.1 Which clones to choose from?

Our approach works on code clones detected by Deckard [17], a
tree-based clone detection tool. The set of clones may vagnw
we use different parameters for Deckard, and the bug refrors
our approach may also vary. Table 8 shows such effects byneary
Deckard’s parameters.

Recall from Section 3.1 that the main parameters for Decaeed
similarity, minimum token numbgandstride  We experimented
with different similarities (the first segment of Table 8, &gtting
the minimum token number t80 and the stride tax), different
minimum token numbers (the second segment of Table 8, hipgett
the similarity to1.0 and the stride tac), and different strides (the
third segment of Table 8, by setting the similarity t® and the
minimum token number t60) on the Linux kernel 2.6.19.

As a summary, smaller similarities, smaller minimum tokema
bers, and smaller strides will lead to more clones, and opragch
will also produce more bug reports. It would be interestiogt-
tually calculate the false positive and negative rates &oheof the
parameters and give a more quantitative guide on choosipgpap
priate parameters for different applications. Accordiog@tir expe-
rience, the similarityl.0, the minimum token numbei0, and the
strideco had a good balance between false positives and negatives.

3.4.2 Why notjust existing bug detection techniques?

Many static and dynamic analysis techniques, such as ESC/-
Java [13] and Valgrind [27], exist for bug detection. Statialyses



are usually sound—they do not miss bugs with the property tha
they are looking for. Dynamic analyses are usually accurdey
do not report false positives. However, such techniquesllysu

we believe that the basic idea that inconsistencies amamgsl!
are indications of bugs can be directly applied to semapdied
code clones [21, 23], which are most robust against code finodi

need to analyze all code in a program for bugs because they docations, such as re-ordered statements, non-contiguales eod

not know in generalvhereto analyze, and thus may not be able to
scale to programs with millions of lines of code. Also, theyally
require certain property specifications so that they camkwbat
kinds of bugs to target at, and thus their bug finding cap#slare
limited by available specifications.

Compared with those techniques, our approach has mainly two

advantages: (1) it effectively reduces the amount of codiehvh
requires analysis for bugs; (2) it can hint at possible pridee of
latent bugs for more specific analyses through the discdviere
consistencies. For example, when the type-3 inconsistentye
third pair of code snippets in Figure 1 was discovered, a Emp
difference analysis of the data and control dependencigsedivo
snippets revealed that there is a missing data dependetwgdre
r_stride and theif condition. Then we knew that the latent bug
could either be a missingULL check onr_stride or a wrong use
of r_stride. Such advantages can help guide the existing tech-
niques onwhereandwhatto analyze and make them more scal-
able. In fact, many bugs we found are difficult to be discoddng
any single existing technique. We believe that our appraach-
plements well the existing techniques. Conversely, ino@fing
existing analysis techniques into our approach can prosésean-
tic information to help reduce more false positives and ionprthe
usability of our approach. The following section elabosate this.

3.4.3 How to reduce false positives further?

Currently, when a clone group is reported as a possible bag, w
inspect it in the following way: (1) locate the clones in thigmal
source code and find the actual differences among clones base
their inconsistency ranks and subtypes; (2) inspect theesl@and
their contexts to look for any hints, such as comments aral dist
pendencies, which can explain the differences; (3) perimanual
data-flow analysis to help understand the code whenevessaige

redundant code, than syntax-based clones. Such clonethéog
with syntax-based clones, may naturally exclude syntakkyisim-
ilar but semantically different code and thus introducedefalse
positives in the first place.

3.4.4 Applicability

A basic assumption that we have made in this paper is that sim-
ilar code should perform similar functionalities under 8ancon-
texts and thus context inconsistencies among code clomebeca
strong indications of bugs. However, in practice, much Eindode
does not satisfy such an assumption. Many inconsistengiesg
clones are likely intended and should not be treated asatidits
of bugs. If such inconsistencies commonly occur in a progi@m
approach would report too many false positives to be useful.

One such situation is when we use smaller similarities to- gen
erate clones (Section 3.4.1). When a smaller similaritysedy
code with more differences may still be treated as cloned tlauns
inconsistencies can become more commonly intended. Inour e
periments, we mainly restricted similarity to0 to avoid clones
with too many differences. Although such a restriction magsnm
certain bugs, we believe that it currently is a reasonalaldetroff
between low false positive and negative rates. In the futurein-
consistency classification and filtering heuristics canrbproved
to tolerate inconsistencies which are introduced by smaitailar-
ities so that false positive rates can be kept low.

Another situation is when clones evolve independently and i
tentionally deviate from each other in certain aspects.example,
drivers for several different models of a display card frorsaane
manufacturer have much code in common, but also have many dif
ferences that handle different features in the differendef® Such
inconsistencies among clones may only be indications ¢éraifit
features instead of bugs. For such cases, simple filterrategies

Many steps in the inspection process can be automated and maymay not always be enough for reducing false positives bectnes

help to prune false positives without human interventiom dde
hand, we often asked ourselves common questions, such as¢'wh
the variable is defined,” “whether the return value of thiadtion
can be null,” and “whether this conditional predicate caardwe
false,” during code inspection. Most of such semanticteel@ues-
tions can be easily answered by many program analyses aod the
rem proving techniques, and help to decide whether an ingons
tency is legitimate. As for the purpose of filtering, suchhteiques

inconsistencies caused by diverse code features may ncadhe e
ily described by any specific filtering patterns. Certainonsis-
tency specificationBom developers, indicating what kinds of dif-
ferences are intended, can be helpful for reducing falséipes.
Alternatively, we may apply specification mining technigusuch
as [1, 22], to infer such inconsistency specifications fast then
apply our approach to find unintended inconsistencies only.

do not need to be accurate as long as they can answer the ques4- RELATED WORK

tions with low false negative rates. On the other hand, tkerin
sistencies among clones can provide hints at what questicask.
As a simple example, there is a missiNGLL check for variable
item in “Code 1” in Figure 3. Based on the difference, it was ob-
vious to ask whethettem could ever belULL to decide whether
the missed check is an actual bug. Generalizing such guestio
generation schemes and integrating them with other teaksigill

be like integrating query generators with answer machiagasd, it
will be interesting to investigate how many more false posg

In this section, we discuss closely related work and rougly
vide them into two categories: (1) studies on clones, and(#)
detection in clones.

4.1 Studies on Clones

Many algorithms and tools exist for code clone detectiorsdgla
on different characterizations of programs, such techesgqean be
(1) string-based (usually lines in source files) [2, 3], (@ken-
based [18,25], (3) tree-based [6,7,17,29], or (4) semdoatsed [21,

may be pruned by an automated code inspection mechanism pro-23]. Because our approach defines inconsistencies baseaon p

vided by such an integration.

As another aspect, our current definitions of contexts aodrin
sistencies are mainlgyntaxbased and only consider the smallest
enclosing control-flow construct of a clone. They have nobipo-
rated any semantics of the clones, and neither do the fikepstin-
ing bug reports. It will be interesting to extend our defimits to

gram syntax and does not reply on a particular clone detectio
technique, clones detected by any of these techniques caselde
directly in our approach.

Also, many studies [1,5,11, 22, 26] aim at findipgpgramming
rules structural clones or specificationswhich are higher-level
similarities in programs than code fragments. For examfaa,

semantiebased representations of programs, such as program de-allocatora must be followed by a deallocatét is an example of

pendency graphs [12], so that semantic information, sudiipes,
data and control dependencies, can be considered to hedptdet
more bugs while pruning more intended inconsistenciestheyr

such high-level similarities. Our approach currently ooperates
at the code level. It would be interesting to extend our motd
inconsistencies to such higher-level similarities for lingling.



There are also studies that address the questions of clare co [3]
erage and evolution and clone removal, other than bug detect
The goal for clone coverage is to determine what fraction of a
program is duplicated code. It was confirmed that a significan [41
amount of duplicated code exists in large code bases. Fon-exa
ple, CCFinder [18] reporte@9% cloned code in JDK, and CP- 5]
Miner [25] reported22.7% cloned code in the Linux kernel 2.6.6.

The goal of clone evolution is to understand how clones are in  [6]
troduced or removed across different versions of a softwaagué
et al.[24] examined six versions of a telecommunication software []
system and found that a significant number of clones werevetho i8]
due to refactoring, but the overall number of clones incedague
to the faster rate of clone introduction. Kiet al.[20] described a
study of clone genealogies and found that: (1) many codesslare [9]
short-lived, so performing aggressive refactoring mayb®oivorth-
while; and (2) long-lived clones pose great challenges facter- (10]

ing because they evolve independently and can deviatdisaymtly
from the original copy.

The goal of clone removal is to reduce duplicated code and im- 11
prove code readability and maintainability. Baxétml.[6] extract
and refactor code clones so that programs can be rewrittetome

generic forms. Jarzabedt al. [15, 16] applied a generative tech-  [12]
nique based oromposition with adaptatioto eliminate redun-
dancies in programs, and aimed at unifying and maintainioiges [13]
at meta-levels. However, Rajapaketsal. [28] suggested that uni-
fying clones may not be always desirable because of its itmgrac
system qualities, such as performance. [14]

4.2 Bug Detection in Clones

Studies have also proposed bug detection techniques based 0[15]

the general observation as ours that inconsistencies cardioa- [16]
tions of bugs. CP-Miner [25] and our approach operate at tlole ¢
level. Engleret al.[11] and PR-Miner [26] aimed at detecting vi-  [17]
olations of programming rules. Ammoms al. [1] and Kremenek
et al.[22] considered the problem in the context of program specifi  [18]
cations. Also related is Xiet al's work [31] on using redundancies
in programs, such as idempotent operations, unused valees, [19]
code, un-taken conditional branches, and redundant heltics, to
flag possible errors. Dilligt al.[10] used semantic inconsistencies
among uses of the same pointer to find null-pointer dereteren [20]
rors. In a broader sense, our work is also related to the lzodg of
work on bug detection techniques, such as [4,8, 13, 14, 30Hi# (21]
cussed in Section 3.4, we believe that our approach complisme [22]
well these existing techniques.

[23]

5. CONCLUSIONS

In this paper, we have proposed a general notion of inconsis- [24]
tencies for code clones and presented an approach to Idoags ¢
related errors by detecting such inconsistencies. We Haweepar-

formed an extensive evaluation of our approach on large sperce (25]
projects, including the Linux kernel and Eclipse. We werkedb
discover many previously unknown bugs and programming@ssyl 126]
sues in these projects, confirming the hypothesis that cloténg
can be error-prone. We also found that, due to the diversecha
teristics of the clone-related bugs, they cannot be eastoslered [27]
with any single existing program analysis technique, ang iur
proposed approach complements well these existing tegbsifpr (28]
bug detection.
[29]
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