
Detecting and Analyzing Insecure Component Usage∗

Taeho Kwon Zhendong Su
University of California, Davis

{kwon,su}@cs.ucdavis.edu

ABSTRACT
Software is commonly built from reusable components that provide
desired functionalities. Although component reuse significantly
improves software productivity, insecure component usage can lead
to security vulnerabilities in client applications. For example, we
noticed that widely-used IE-based browsers, such as IE Tab, do not
enable important security features that IE enables by default, even
though they all use the same browser components. This insecure
usage renders these IE-based browsers vulnerable to the attacks
blocked by IE. To our knowledge, this important security aspect of
component reuse has largely been unexplored.

This paper presents the first practical framework for detecting and
analyzing vulnerabilities of insecure component usage. Its goal is to
enforce and support secure component reuse. Our core approach is
based on differential testing and works as follows. Suppose that com-
ponent C maintains a security policy configuration to block certain
malicious behavior. If two clients of component C, say a reference
and a test subject, handle the malicious behavior inconsistently, the
test subject uses C insecurely. In particular, we model component
usage related to a policy based on 1) accesses to the configuration
state inside the component and 2) the conditional jumps affected by
the data read from the state. We utilize this model to detect inconsis-
tent policy evaluations, which can lead to insecure component usage.
We have implemented our technique for Windows applications and
used it to detect and analyze insecure usage of popular software
components. Our evaluation results show that 1) insecure compo-
nent usage is a general concern and frequently occurs in widely-used
software, and 2) our detection framework is practical and effective
at detecting and analyzing insecure component usage. In particular,
it detected several serious, new vulnerabilities and helped perform
detailed analysis of insecure component usage. We have reported
these to the affected software vendors, some of whom have already
acknowledged our findings and are actively addressing them.

∗This research was supported in part by NSF CAREER Grant No.
0546844, NSF CyberTrust Grant No. 0627749, NSF CCF Grant No.
0702622, NSF TC Grant No. 0917392, and the US Air Force under
grant FA9550-07-1-0532. The information presented here does not
necessarily reflect the position or the policy of the Government and
no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT/FSE’12 November 10 – 18 2012, Cary, NC, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools

General Terms
Reliability, Security

Keywords
Insecure Component Usage, Differential Testing, Testing and Anal-
ysis of Real-world Software

1. INTRODUCTION
Component-based development has been a major paradigm for

engineering software. In particular, a client application can perform
desired functionalities by invoking interface calls of a component.
This paradigm allows better code reuse and makes software develop-
ment more productive. For example, Trident [47], a browser layout
engine developed by Microsoft, has been used in IE and many other
Windows applications.

Although component reuse has significant benefits, it may lead
to security vulnerabilities if a component is not used properly in its
client software. The following example, which we first discovered
through a manual examination, inspired this research. IE 9 enables
an XSS filter by default [23]. However, IE-based browsers, such
as IE Tab, use the same browser components as IE, but do not
enable the XSS filter. This insecure component usage makes these
IE-based browsers vulnerable to XSS attacks. As this example
shows, insecure component usage can cause serious vulnerabilities
in component-based software. However, this problem has not been
much explored. Previous work on component security has focused
on designing and developing frameworks for secure component
usage [5, 18, 19, 34, 45, 50], detection of insecure components [3,
13, 20, 41], and surveys on component security issues [12, 16].

In this paper, we present a differential analysis framework [38] to
detect and analyze insecure component usage in component-based
software. Here is the key idea behind our framework. Suppose that
two applications, a reference A (which we assume to be correct and
secure w.r.t. component usage) and a test subject B, reuse compo-
nents that check security policies to block malicious activities. If A
and B configure or evaluate the policies inconsistently, B may have
unprotected runtime execution. In the XSS filter example earlier,
IE acts as the reference, and IE Tab uses URLMON.dll insecurely
because it neither configures the built-in security policies for XSS
filter nor utilizes them to block XSS attacks.

To realize our framework, there are two main technical challenges:
1) how to extract the configurations of security policies maintained
by a component, and 2) how to detect potential insecure component
usage of a client software.

Extracting Policy Configurations. We monitor the writes to com-
ponent memory space that potentially stores security policy configu-

1

rations. These memory writes provide several pieces of important
information: 1) instructions that configure relevant security policies,
2) locations of the buffers to store the policies, and 3) concrete
configuration data. For example, URLMON.dll maintains a memory
buffer in its global data region to store the URL action policies. IE
configures the policies via memory writes.

To check a security policy, an application retrieves its configu-
ration data from the relevant memory buffer and uses the data for
comparison. In this case, if a reference and a test subject configure
the same security policy in an inconsistent manner, the comparison
results are different, making them take different execution paths.
Based on this idea, we define missing and incorrect configurations
that can lead to insecure component usage.

A missing configuration corresponds to the case where the refer-
ence only configures and checks a particular set of security policies.
Thus, the test subject is vulnerable to attacks that can be blocked by
these policies. The earlier XSS filter example belongs to this cate-
gory. An incorrect configuration corresponds to the case where both
the reference and the test subject configure and check a particular
set of security policies but their different configuration data cause
inconsistent subsequent execution paths. For example, while IE
enables FEATURE_HTTP_USERNAME_PASSWORD_DISABLE, IE Tab
does not. The configuration of this security policy is checked by
both IE and IE Tab at runtime, but the inconsistent configuration
data lead them to behave differently. Specifically, IE Tab allows
user names and passwords in a URL address, leading to potential
attack vectors for phishing [29]. We provide a detailed analysis of
this issue in Section 2.

Detecting Inconsistent Policy Configurations. As we discussed
earlier, the inconsistent configuration of a security policy leads
to inconsistent subsequent execution patterns. For detection, we
capture control flows triggered by the configuration data from the
reference and the test subject at runtime and compare them. To
capture control flow information, we determine conditional branches
whose evaluations are potentially affected by the configuration data
via static binary analysis and capture information regarding whether
or not each conditional branch has been taken at runtime.

From these observations, we design our differential analysis
framework as a three-phase analysis: (P1) detecting potential pol-
icy evaluation, (P2) extracting policy-related execution, and (P3)
detecting inconsistent policy configurations.

P1: Detecting Potential Policy Evaluation. This phase detects
information related to policy evaluation from dynamic execution of
the reference and static properties of a target component. To this
end, we detect instructions that read data from component memory
space at runtime. Afterward, we perform static forward data slicing
to detect conditional jumps that can be affected by the data. If such
conditional jumps exist, the data can control the subsequent exe-
cution paths at runtime. Thus, the detected instructions potentially
read the configuration data and evaluate relevant security policies.
We use this information to perform subsequent analyses scalably.

P2: Extracting Security Policy-related Execution. This phase
extracts software execution related to the policy configuration and
evaluation performed by the reference and the test subject. To cap-
ture the policy configuration, we detect memory writes to component
memory space at runtime. Regarding policy evaluation, we log the
memory reads and the comparison results on the conditional jumps
detected in the previous phase.

P3: Detecting Inconsistent Policy Configurations. This phase
analyzes inconsistent policy-controlled executions between the ref-
erence and the test subject to detect missing and incorrect configu-
rations. In particular, we determine whether the conditional jumps
relevant to a particular security policy are evaluated consistently.

For evaluation, we implemented our framework for Windows

Reading

Configuration Data

Configuring

Security Policy

Evaluating

Security Policy

Configuration

State

matched /

unmatched

data

Operand

Figure 1: Security policy configuration and evaluation.

applications and applied it to detect inconsistent policy configura-
tions in reusing popular software components. Our results show
that inconsistent policy configurations happen frequently and lead to
security vulnerabilities. In particular, we detected several insecure
usages of the browser components that disable default protection
mechanisms of IE 9. Our framework can also precisely locate root
causes of the detected insecure usages, which can help developers fix
any detected vulnerabilities and securely reuse software components.
The results also show that our framework is scalable. It took less
than 15 minutes total to detect inconsistent policy configurations in
reusing URLMON.dll across all six analyzed browsers.

This paper makes the following main contributions:

• We introduce and formalize insecure component usage in
terms of inconsistent policy configurations and evaluations.

• We develop the first practical framework based on differential
analysis to detect inconsistent policy configurations. Our
framework works directly on software binaries.

• We implement our framework as a practical tool and evaluate
its effectiveness by detecting and analyzing insecure usage of
widely-used components in real-world software.

2. DETECTION FRAMEWORK

2.1 Background and Definitions
Security Policy-related Execution. A security policy configura-
tion serves as a key part of software protection because it determines
whether or not certain malicious behavior is to be blocked (e.g., IE
XSS filter). Figure 1 depicts the runtime process of configuring
and evaluating security policies: 1) software maintains its global
state and updates the global state to configure a security policy;
and 2) when evaluating the policy, the software reads data from
the global state and checks whether or not the data match a speci-
fied operand. Based on the above description, we formally define
security policy-related execution.

DEFINITION 2.1 (CONFIGURATION STATE). A configuration
state, denoted by M = [〈k1, v1〉, . . . , 〈kn, vn〉], is an associative
array whose key and value pair 〈ki, vi〉 corresponds to a configured
security policy identifier and its configuration data, respectively.

We define the configuration and evaluation of a security policy in
terms of accesses to a configuration state M .

2

DEFINITION 2.2 (SECURITY POLICY CONFIGURATION). For
a given configuration state M , a security policy configuration func-
tion conf updates M based on a new policy configuration 〈k, v〉
where k and v correspond to a policy identifier and its configuration
data, respectively: conf (M,k, v) = M ′ such that

M ′(k′) =

{
v if k′ = k
M(k′) otherwise

DEFINITION 2.3 (SECURITY POLICY EVALUATION). Given
a configuration state M , a security policy evaluation function eval
takes k (a policy identifier) and p (a given operand):

eval(M,k, p) =

{
matched if M [k] = p
unmatched otherwise

We next define security policy-related execution.

DEFINITION 2.4 (SECURITY POLICY-RELATED EXECUTION).
A security policy-related execution for software S under workload
w, denoted by π(S,w), is a sequence of policy configurations or
evaluations π(S,w) = 〈s1, . . . , sm〉 where si = conf (M,k, v) (a
policy configuration) or si = eval(M,k, p) (a policy evaluation).

Note that in Definition 2.4, the configuration state M changes at
runtime, because S dynamically configures new security policies
during its execution over the workload w. Also note that π(S,w)
provides precise information on policy evaluations during S’s exe-
cution over w. We now define security policy evaluation patterns.

DEFINITION 2.5 (SECURITY POLICY EVALUATION PATTERN).
For a given π(S,w), the security policy evaluation pattern, de-
noted by epat(π(S,w)), is the sub-sequence epat(π(S,w)) =
[〈ki, pi, eval(M,ki, pi)〉] extracted from the policy evaluations from
π(S,w) where ki, pi, and eval(ki, pi) correspond to a policy iden-
tifier, an operand for its policy evaluation, and the evaluation result
(matched or unmatched) respectively.

Insecure Component Usage. For a reference R and a test sub-
ject T , we define two types of inconsistent policy configurations:
missing and incorrect configurations.

DEFINITION 2.6 (MISSING CONFIGURATION). The test sub-
ject T misses the configuration of a policy k evaluated by the ref-
erence R if ∃p, s(〈k, p, s〉 ∈ epat(π(R,w)) and ∀p, s(〈k, p, s〉 6∈
epat(π(T,w)).

DEFINITION 2.7 (INCORRECT CONFIGURATION). The test sub-
ject T incorrectly configures a policy k if ∃p, r1 6= r2(〈k, p, r1〉 ∈
epat(π(R,w)) ∧ 〈k, p, r2〉 ∈ epat(π(T,w))).

Inconsistent policy configurations can lead to unprotected soft-
ware execution; we define it as follows.

DEFINITION 2.8 (UNPROTECTED SOFTWARE EXECUTION).
Suppose that a security policy k blocks a malicious behavior Φ at
runtime. Given a reference R, a test subject T , and a common
workload w, T is unprotected w.r.t. k if R blocks Φ but T does not.

Suppose that a component C maintains its configuration state
M at runtime. If a client using C configures a policy stored by M
insecurely, it can be unprotected w.r.t. the policy. We next define
insecure component usage.

DEFINITION 2.9 (INSECURE COMPONENT USAGE). Suppose
that a component C maintains a security policy k that blocks a mali-
cious behavior Φ at runtime. For a reference R and a test subject T
that use C, T insecurely uses C w.r.t. k if T is unprotected w.r.t. k.

2.2 Overview
To detect inconsistent policy configurations formalized in Defi-

nitions 2.6 and 2.7, it is necessary to analyze how security policies
are set and enforced in code. However, it is challenging, because 1)
most components are distributed as binaries, and 2) it is difficult to
know which memory locations are used for security policy config-
uration and evaluation. To address this issue, at the high-level, we
design our framework as two phases: runtime extraction and offline
detection. In the runtime extraction phase, we instrument executions
of a reference and a test subject to capture security policy-related
executions (Definition 2.4). We perform an offline analysis to detect
insecure component usage in the captured executions.

Although the high-level approach appears straightforward, the
main challenge is how to perform scalable and precise analysis. For
example, IE performs millions of memory accesses at runtime, and
it is practically infeasible to instrument and analyze all of them.

To address this scalability issue, our framework uses the following
optimizations: 1) instrumenting target component execution, 2)
filtering irrelevant memory accesses, and 3) performing preliminary
analysis on policy evaluation.

Instrumenting Target Component Execution. Instrumenting all
instructions executed by an application at runtime suffers from poor
scalability. To mitigate this issue, our framework only instruments
components of interest at runtime, because the configuration state
maintained by the components is generally accessed by their code.
Suppose that the configuration state M is maintained by a compo-
nent A. When other components access M , they generally invoke
relevant interface calls of A that access M .

It is possible that other components can directly accessM , but this
cannot be used in component-based software development because
the location ofM cannot be reliably resolved. For example, the base
addresses of the components loaded at runtime often change [42, 52],
making locations of their global data regions inconsistent.

Filtering Irrelevant Memory Accesses. As we discussed, captur-
ing all accesses to arbitrary memory space is not feasible. To miti-
gate this issue, we filter the memory accesses that are unlikely to be
relevant to security policy-related executions.

Our key insight is that the code executed by any thread can access
the configuration state maintained by a component at runtime. Sup-
pose that two different threads configure and evaluate a particular
security policy. In this case, both threads should access the same
memory location. Otherwise, integrity issues on the configuration
data would arise. Based on this observation, we filter the logging of
accesses to thread-specific memory space, such as the stack.

Performing Preliminary Analysis on Policy Evaluation. Accord-
ing to Figure 1, policy evaluations are conducted by 1) reading data
from the configuration state and 2) determining whether or not the
data is matched with a specified operand. In order to detect incon-
sistent policy configurations, it is necessary to capture the results
of policy evaluations at runtime. However, it again suffers from
scalability problems, because the policies are generally evaluated
by conditional jumps such as JNE, which are executed frequently
to determine program flow at runtime. Thus, instrumenting all
conditional jumps is infeasible in practice.

To address this problem, we perform a preliminary analysis to
detect those conditional jumps affected by data reads from the con-
figuration state. Our observation is that the evaluation of the condi-
tional jumps are affected by the data reads from the configuration
state (see Figure 1). We detect these conditional jumps via dynamic
and static binary analyses. Specifically, we dynamically capture the
memory reads from the configuration state under a given workload.
Then we extract the conditional jumps potentially affected by them
via static binary analysis. We use information on the memory reads

3

Target componentsReference

Preliminary Analysis

on Policy Evaluation

Extraction of

Interface Entries
Extraction of Security

Policy-related Execution

Instrumentation Point (IP) Analysis Runtime Trace Extraction

Detection of Insecure

Policy Configuration

Offline Detection

Trace setsIP Info IP InfoReference Test subject

Figure 2: Detection framework.

and the conditional jumps to reduce logging of policy evaluations in
the subsequent phase.

Based on these optimizations, we present our framework in Fig-
ure 2. The following sections illustrate details of each phase in our
framework using a running example. In particular, we detect inse-
cure component usage to allow potentially malicious URL addresses
in IE-based browsers. In the example, we use WININET.dll as a
target component and access http://www.microsoft.com as the
workload for detection.

2.3 Instrumentation Point Analysis
Preliminary Analysis on Policy Evaluation. As discussed, instru-
menting all memory reads and conditional jumps is not feasible. To
address this problem, we detect them in advance and instrument their
executions in the subsequent analysis. Our key observation is that
there exists data flow between the memory reads and the conditional
jumps. According to Figure 1, the policy evaluation is affected by
the configuration data read. Based on this, we locate the instructions
relevant to the policy evaluation via dynamic and static program
analyses. In particular, we 1) dynamically instrument the execution
of target components to detect reading data from the configuration
state and 2) perform static forward data slicing w.r.t. the detected
memory reads to locate relevant jumps. Note that we assume heap
or global data regions may contain the configuration state, because
they are not thread-specific (Section 2.2).

Figure 3(a) shows an example of policy-controlled execution
by WININET.dll during the workload. In particular, i1 reads the
configuration data _GlobalProcessDisableUserPswdForHttp
stored in the global data region of WININET.dll and determines
whether or not the data is equal to zero. The evaluation result affects
the invocation of the GetUrlAddress function at i5 by deciding
one of its parameters, i.e., the value of eax.

To detect the instructions relevant to policy evaluation, we cap-
ture the instructions to read data from the global data region in
WININET.dll during the workload via dynamic binary instrumen-
tation (i.e., i1). Then we extract the static forward slice w.r.t. the
data read by i1. In this case, the slice contains i1 and i2, because
the cmp instruction at i1 sets ZF according to the comparison result,
and jz takes ZF to determine the next instruction to execute.

Once the slices w.r.t. the detected memory reads are extracted,
we analyze them to locate the instructions relevant to the policy
evaluation. In particular, suppose that S is a forward data slice
w.r.t. a memory read instruction I . In this case, we consider I
relevant to the policy evaluation only if S contains conditional
jumps. This is because policy evaluations are generally performed
by both memory reads and relevant conditional jumps (see Figures 1
and 3(a)). Based on this idea, we determine the memory reads and
the conditional jumps in its forward slice as the instrumentation
points in the subsequent analysis.

Note that we only perform this preliminary analysis for the ref-
erence software. This is because our framework does not detect

security policies configured only in the test subject (Definitions 2.6
and 2.7). To detect them, we swap the test subject with the reference
and repeat the analysis.

Extracting Interface Entries. As we have discussed, when a com-
ponent A maintains the configuration state M , other components
generally accessM by invoking interface calls exported byA. Thus,
information on the invoked interface calls provides us with detailed
insight on insecure component usage.

To capture the information, our framework dynamically instru-
ments the entry points of the interface calls exported by the target
components. To this end, it is necessary to determine the interface
entries as the instrumentation points. However, it is difficult to
locate them at runtime, because the instructions at the entries are
also frequently executed by non-entry code at runtime. For example,
while the push instruction is often executed at the entry point as
part of a function prologue, it is also used for parameter passing. To
address this problem, we perform static binary analysis to extract
the interface call entries and pass them into the subsequent analysis
as the instrumentation points.

Our key observation is that the addresses of the interface call en-
tries are generally stored in data tables that can be read from outside
of the component. Because components are developed as position-
independent code, they generally support memory chunks that can
be accessed by other components to resolve the virtual addresses
of desired interface calls at runtime. For example, the PE [39] and
ELF [15] formats have Export Table and Procedure Linkage Table
to provide dynamic linking, respectively. We statically analyze data
reference to the entries of all functions in the target components. We
consider the function entries that have such data references as the
instrumentation points to capture interface call invocations.

2.4 Runtime Trace Extraction
This phase extracts detailed information on security policy-related

executions of the target components during the workload run by
both the reference and the test subject.

In particular, we instrument the runtime execution of the target
components to record the policy configurations, their evaluations,
and invocations of the interface calls to the target components. We
store the captured information to files for use in our offline analysis.

Policy Configuration. According to Definition 2.2, an application
specifies security policies via memory writes to its configuration
state. To capture policy configurations, we instrument the runtime
information of the target components that perform data writes to
non-thread specific memory regions (Section 2.2). During instru-
mentation, we log addresses of the memory writes, values of the
data written, and addresses of the memory written.

Figure 3(b) shows a policy configuration example
by WININET.dll with the given workload. In par-
ticular, i1-i6 initialize eax by determining whether
FEATURE_HTTP_USERNAME_PASSWORD_DISABLE is enabled.

4

...

i1 cmp _GlobalProcessDisableUserPswdForHttp, 0

i2 jz i6

i3 xor eax, eax

i4 inc eax

i5 call GetUrlAddress(*,*,*,*,*,*,*,*,*,eax,*,*)

...

i6 xor eax, eax

i7 jmp i5

...

(a) Evaluation.

...

i1 push offset g_FEATURE_HTTP_USERNAME_PASSWORD_DISABLE

i2 call _CoInternetIsFeatureEnabledInternal

i3 dec eax

i4 neg eax

i5 sbb eax, eax

i6 neg eax

i7 mov _GlobalProcessDisableUserPswdForHttp, eax

...

(b) Configuration.

Figure 3: Policy-related code example.

Next i7 writes the value of eax to a memory buffer
_GlobalProcessDisableUserPswdForHttp in the global data
region of WININET.dll. In this case, our framework instruments
the execution of i7 and logs the following information: address of
i7, address of _GlobalProcessDisableUserPswdForHttp, and
value of the eax.

Policy Evaluation. To capture information on policy evaluations,
our framework only instruments executions of those instructions
detected by the preliminary analysis from the previous phase. Note
that this allows us to significantly reduce the instrumentation points
for capturing policy evaluations (see Section 2.2).

Regarding the information to be captured, consider the follow-
ing code execution for evaluating a policy: an instruction I reads
a data D from a non-thread specific memory region Mem , and
D determines whether a conditional jump Cond is taken or falls
through. In this case, our framework logs 1) the address of I , 2) the
value of D, 3) the address of Mem , 4) the address of Cond , and
5) the evaluation result of Cond (i.e., taken or fall-through). For
example, when instrumenting Figure 3(a), we capture the address
of i1, the value of _GlobalProcessDisableUserPswdForHttp,
the address of the memory read, and the evaluation result of i1.

Interface Call Entries. We capture invocations of the interface
calls to the target components by instrumenting their statically-
detected entry points. However, it is possible for a component
to invoke its interface call at runtime. To detect this, we analyze
the return addresses of invoked interface calls, which are stored
on the top of the stack. In particular, suppose that we instrument
an interface call entry f of a component C. In this case, we log
f only if the return address of f is not part of the memory space
corresponding toC. Based on this approach, we can precisely detect
invocations of the interface calls to target components at runtime.

2.5 Offline Detection
From the previous analyses, we obtain the execution traces of the

target components by the reference and the test subject under the
given workload. Each trace contains a sequence of detailed infor-
mation for each software with the following runtime information:
1) the policy configurations, 2) the policy evaluations, and 3) the
invocations of the interface calls on the target components. Our
offline phase detects inconsistent policy configurations from the
traces as follows:

Extracting Policy Configurations and Their Evaluations. For
each trace, we extract information on the configuration and the
evaluation for each security policy. To this end, we first track the
memory access patterns for each captured data address. For ex-
ample, i7 in Figure 3(b) writes a configuration data to a memory
region _GlobalProcessDisableUserPswdForHttp, and i1 in
Figure 3(a) reads the data. Based on this memory access pattern,
we can infer the instructions for configuring security policies and
reading their configuration data.

Once the instructions that read the configuration data are located,
we can extract the evaluation results of their relevant conditional
jumps. In particular, we sequentially search for the relevant con-
ditional jumps, starting from the instructions, until the next read
access of the configuration data is found. Next we retrieve their
evaluation results captured during the instrumentation. Note that the
result of the preliminary analysis provides us with the conditional
jumps relevant to the instructions. For example, because i1 affects
the evaluation of i2 (see Section 2.3), i2 can be located by checking
the instructions that follow i1 in the trace.

Detecting Inconsistent Policy Configurations. The previous anal-
ysis step provides us with the policy configurations and their eval-
uation results for the reference and the test subject. We use this
information to detect inconsistent policy configurations formalized
in Definitions 2.6 and 2.7. Missing configurations are detected
by finding those policy configurations and the associated evalu-
ations that are only present in the reference, and incorrect con-
figurations are detected by finding inconsistent evaluations of the
relevant conditional jumps. In particular, a security policy is con-
figured incorrectly in the test subject if the following conditions
are satisfied: 1) both the reference and the test subject configure
the same security policy and read its configuration data; 2) the
policy evaluation results on the data are different. For example,
while IE Tab takes a jump at i2 in Figure 3(a), IE just continues
the execution. This inconsistency shows that IE Tab does not en-
able FEATURE_HTTP_USERNAME_PASSWORD_DISABLE whose con-
figuration is stored in WININET.dll. This incorrect configuration
makes IE Tab allow user names and password in URL address, which
is blocked by IE [29]. Thus, IE Tab misuses WININET.dll w.r.t. the
security policy FEATURE_HTTP_USERNAME_PASSWORD_DISABLE,
making it vulnerable to phishing attacks [29].

Helping Developers to Securely Use Components. Our frame-
work can extract interface calls for policy configurations and their
evaluations. Because we capture all invocations of the interface
calls to the target components, we can infer which interface calls
perform policy configurations or their evaluations. For example, IE
Tab invokes the InternetSetOptionA function to execute i7 in
Figure 3(b) for policy configuration.

This interface-level information can help developers to use com-
ponents securely. For example, IE configures its policy by invoking
the InternetQueryOptionW function, leading to its correct policy
configuration. Although both IE and IE Tab evaluate the policy
while invoking HttpSendRequestW, the interface calls that config-
ure the policy are different. This information can guide developers
of IE Tab to securely use WININET.dll.

3. IMPLEMENTATION
We have implemented our technique for Microsoft Windows

applications. This section presents details on our implementation.

Overview. According to Figure 2, our framework consists of three

5

Image base

address

Code

Global data

region

Image end

address

Global data

base address

Global data

end address

(a) Base and end addresses.

Configuration data

Policy configuration

(b) Relative offset.

Figure 4: Memory address space of loaded target component.

phases: 1) instrumentation point analysis, 2) runtime trace extrac-
tion, and 3) offline detection. The main components for the first
two phases are dynamic binary instrumentation and static binary
analysis. To this end, we use Pin [36] for runtime instrumentation
and have developed plugins for IDA Pro [21] (a state-of-the-art com-
mercial binary disassembler) by using IDAPython [22] for binary
analysis. When instrumenting each policy-related execution, we
record not only the information of the captured instructions but also
process and thread identifiers at runtime. This makes our offline
analysis independent of thread interleavings. For the offline phase,
we have developed Python scripts to analyze the traces obtained
from the earlier phases.

Runtime Trace. As we discussed in Section 2.2, an application
performs many memory accesses and conditional jumps. Although
we filter those irrelevant ones, the number of captured instructions is
still large. For example, when IE accesses the Google web page, we
dynamically captured a large number (332,756) of memory accesses
and conditional jumps. To store this large amount of information
efficiently, we dump the captured information as binary data. As an
example, we designed a data structure to store conditional jumps that
contains the following information: an identifier for the conditional
jump, process and thread identifiers, the address of the conditional
jump, and its evaluation result. When capturing this information on
a conditional jump, we fill the data structure and stores it as binary
data of twenty bytes. Using this optimization, we can effectively
analyze the large captured information in practice.

Instrumenting Component Code Execution. Our framework only
instruments executions of target components at runtime. To this end,
we dynamically instrument the loading of each image and determine
whether or not the image is one of the target components. If so, we
use the base and end addresses of the image (see Figure 4(a)) to
determine the instructions to instrument. In particular, we instru-
ment executions of those instructions whose virtual addresses are
part of the memory spaces of the target components. Note that a
target component is loaded before its instructions are executed.

Filtering Irrelevant Memory Accesses. To capture policy configu-
rations and evaluations, we focus on memory accesses to the global
data region of a target component. To this end, when the target
component is loaded, we extract the base and end addresses of its
global data region (see Figure 4(a)). We use this information to
detect those instructions that access the global data region.

Logging Virtual Address Information. We capture information
on virtual addresses for use by the offline detection. For example,
we log information on those virtual addresses for reading or writing
configuration data. However, we cannot use virtual addresses alone
for offline detection because the same virtual address may not refer

to the same location in the target component. For example, suppose
that a component C is loaded by the reference and the test subject
at the memory spaces starting with different base addresses [42, 52].
In this case, the same virtual address in the offline phase does not
refer to the same instructions or memory buffers.

To address this issue, when capturing a virtual address at runtime,
we compute its relative offset from the base address of the loaded
target component (e.g., Figure 4(b)) and log it. Using this approach,
we can precisely extract the virtual address information independent
of the base address of the loaded target component.

4. EMPIRICAL EVALUATION
In this section, we evaluate how effective our technique is for

detecting and analyzing insecure component usage in popular Win-
dows applications. We show that 1) our framework can automati-
cally detect inconsistent policy configurations in real-world software,
and inconsistent policy configurations are prevalent and constitute a
general security and reliability issue (Section 4.1); 2) our in-depth
study of selected inconsistencies reveal new, serious vulnerabilities
in widely-used software (Section 4.2); and 3) our framework can be
effectively used for root-cause analyses to understand the detected
inconsistent policy configurations and vulnerabilities (Section 4.3).

4.1 Prevalence of Inconsistent Configurations
to detect inconsistent policy configurations in real-world software.

In particular, we have analyzed applications using widely-used com-
ponents (such as the IE browser components and the Flash Player)
and evaluated how our chosen reference programs and test subjects
differ in terms of policy configurations under various workloads. Ta-
ble 1 gives the detailed information on the analysis of the IE browser
components, in particular how many detected inconsistent policy
configurations in the Trident-based browsers w.r.t. their respective
reference program (i.e., IE) and workloads. 1 Our results show that
inconsistent policy configurations frequently occur in real-world,
widely used applications. Note that all the reported inconsistencies
are real and detected fully automatically by our tool by capturing
and comparing inconsistent security policy evaluation patterns.

According to Definition 2.9, inconsistent policy configurations
can lead to insecure component usage. Our framework automati-
cally detects inconsistent policy configurations. A detailed analysis
is needed to understand how security relevant they are. We per-
form such a detailed analysis of insecure component usages of
major IE components [47] (i.e., MSHTML.dll, URLMON.dll, and
WININET.dll) in real-world IE-based browsers. We consider IE
as a reference and the following browsers as test subjects: IE Tab
2 [24], Lunascape 6 [37], Slim Browser 5.01 [43], Green Browser
5.8 [17], WebbIE 3.14 [51], and Enigma Browser [14]. The tested
Trident-based browsers are in wide use. For example, IE Tab is
among the most popular plugins for both Firefox and Chrome, and
has millions of downloads and users [25, 26, 46], and Lunascape
has more than 20 million downloads and millions of users.

We next describe the new security vulnerabilities we discovered.
We have reported these problems to the affected software vendors,
and some of them such as Lunascape and IE Tab have already
acknowledged our findings. Since we were able to manually trigger
all these reported vulnerabilities, they constitute real, and some
of which very serious, security concerns. We also provide further
discussions in Section 4.5.

4.2 New Vulnerabilities Discovered
As discussed in Section 2, we can utilize our framework to detect

the security vulnerability where the test subjects allow an insecure
1Due to space constraints, we include the result of our empirical
evaluation on other components such as Flash Player and Quick
Time Player in the tech report [35].

6

Reference Workload Component Test subject Inconsistent policy configuration Total
Missing Incorrect

Internet Explorer 9

connect to microsoft.com

URLMON.dll

IE Tab 2 176 28 204
Lunascape 6 167 33 200
Slim 5.01 197 36 233
Green 5.8 188 26 214
WebbIE 3.14 175 27 202
Enigma 190 25 215

WININET.dll

IE Tab 2 215 18 233
Lunascape 6 272 21 293
Slim 5.01 229 19 248
Green 5.8 235 14 249
WebbIE 3.14 217 11 228
Enigma 187 20 207

login to gmail.com

URLMON.dll

IE Tab 2 43 12 55
Lunascape 6 81 10 91
Slim 5.01 45 16 61
Green 5.8 83 12 95
WebbIE 3.14 112 13 125
Enigma 33 17 50

WININET.dll

IE Tab 2 151 4 155
Lunascape 6 102 5 107
Slim 5.01 148 3 151
Green 5.8 138 6 144
WebbIE 3.14 153 3 156
Enigma 128 3 131

MSHTML.dll

IE Tab 2 16 1 17
Lunascape 6 16 1 17
Slim 5.01 14 1 15
Green 5.8 15 1 16
WebbIE 3.14 16 1 17
Enigma 16 1 17

Table 1: Inconsistent policy configurations in test subjects reusing IE components w.r.t. given workloads.

URL scheme that can be exploited by phishing attacks [29]. This
section illustrates the effectiveness of our framework by detecting
additional security vulnerabilities. Our high-level approach is as
follows. We first capture inconsistent policy configurations from a
given workload. Next we analyze them for detecting potential inse-
cure component usage and then manually trigger them for validation.
For evaluation, we consider the accesses to the URLs for Microsoft
homepage and gmail account as workloads. Table 1 shows the in-
consistent policy configurations our tool detected in the test subjects
under the given workloads. Next we describe the security problems
caused by them and our analysis approach.

Insecure Configuration of URL Security Zone. As a protection
mechanism, IE categorizes URL namespaces into five types of URL
security zones (i.e., Local Intranet, Trusted Sites, Internet, Restricted
Sites, and Local Machine). Each zone has a different trust level [1]
to determine whether or not a URL action is allowed. For example,
while Internet zone allows the execution of script code, Restricted
Site zone does not.

This privilege-based protection mechanism can cause security vul-
nerabilities. Suppose that a web page on a particular zone accesses
resources on less restrictive zones. In this case, when accessing the
web page, privilege escalation happens, called Zone Elevation. This
security vulnerability has been exploited by real-life attacks2 based
on Cross Zone Scripting [11]. To mitigate this issue, IE blocks the
Zone Elevation [31]. However, the test subjects do not block it and
are vulnerable to these attacks. Next we describe how to use our
framework to detect these vulnerabilities in the test subjects.
2Examples include MS05-001, MS05-014, MS08-048, and CVE-
2008-2281.

Under the gmail workload, MSHTML.dll stores the configuration
of the security policy on Zone Elevation and checks it at runtime.
Figure 5(a) illustrates its detailed code and operates as follows. First,
i1–i3 invoke an interface call CoInternetIsFeatureEnabled to
URLMON.dll, which determines whether or not the current process
enables FEATURE_ZONE_ELEVATION [32]. Then i4–i5 initialize
the memory buffer byte_6402C6C4 based on the result of the func-
tion. The stored value is evaluated to check the configuration of
the feature in i6–i7. In particular, if the feature is enabled, the
conditional jump in i7 falls through in the execution. Otherwise, it
takes the jump.

For IE and the test subjects, we analyzed inconsistencies in i7 to
detect incorrect configurations. We found that only IE enables this
feature and the test subjects allow Zone Elevation. To validate this
finding, we developed a trusted web site having an <iframe> tag to
a local HTML file. When accessing the site, we observed that the
zone elevation is indeed only successful for the test subjects.

In order to launch the cross zone scripting attacks, it is necessary
to run script code in a local HTML file. To block this malicious
behavior, IE adopts a default protection mechanism, called Local
Machine Zone Lockdown (LMZL) [30], which configures more
restrictive security policies on particular URL actions. For example,
IE disallows the execution of any script code in local HTML files
by default. During our validation, we identified that the test subjects
do not adopt LMZL, allowing the execution of local script code.

Thus, this insecure component usage can lead to serious vulnera-
bilities. In particular, the disabled FEATURE_ZONE_ELEVATION and
the missing LMZL make the test subjects vulnerable to cross zone
scripting attacks.

7

...

i1 push 2 // GET_FEATURE_FROM_PROCESS

i2 push 1 // FEATURE_ZONE_ELEVATION

i3 call CoInternetIsFeatureEnabled

i4 cmp eax, 1

i5 setnz byte_6402C6C4

...

i6 cmp byte_6402C6C4, 0

i7 jz short loc_6397DAB1

...

(a) Zone elevation.

...

i1 mov edi, offset g_FEATURE_ALLOW_LONG_INTERNATIONAL_FILENAMES

i2 push edi

i3 call CoInternetIsFeatureEnabledInternal

i4 neg eax

i5 sbb eax, eax

i6 inc eax

i7 mov _GlobalAllowLongIntlFileNames, eax

...

i8 cmp _GlobalAllowLongIntlFileNames, 0

i9 jz i10

...

(b) Long filename handling.

Figure 5: Policy configuration and evaluation.

Incorrect Handling of Long File Name. When IE 9 beta and the
test subjects connect to microsoft.com, they configure & evaluate
a policy on FEATURE_ALLOW_LONG_INTERNATIONAL_FILENAMES
at runtime. Figure 5(b) illustrates the relevant code of WININET.dll
for this policy configuration and evaluation. In particular, i1–
i6 determine whether or not the feature is enabled by invoking
CoInternetIsFeatureEnabledInternal. Later i7 writes the
result to the memory buffer _GlobalAllowIntlFileNames in the
global data region of WININET.dll. For evaluation, i8 reads the
configuration data from the _GlobalAllowIntlFileNames, and
i9 evaluates the configuration by comparing its value of the data
with zero. According to our analysis, the test subjects take the
branch at i9, but IE 9 beta falls through. This shows that only IE 9
beta enables the feature.

This feature is related to the maximum path length limitation [40].
In particular, for a given file, its fullpath length cannot be longer
than 256. Suppose that IE downloads and opens a file whose name
having non-ASCII characters. In this case, the previous IE releases
store the file to the temporary folder by encoding its name based on
UTF-8 [49] and opens it based on the encoded fullpath. However,
the length of its fullpath is often longer than the given limit. For
example, when a .xlsx file whose name is composed of 17 ASCII
and 12 Korean characters is downloaded, the length of its encoded
fullpath is larger than 256. In this case, Microsoft Excel 2010 cannot
open the downloaded file [53]. To mitigate this issue, Microsoft
released a hotfix KB982381, and recent IE releases changed the
encoding scheme for international file names. We confirmed the
detected inconsistent configuration because the test subjects cannot
download and open the .xlsx file. Thus, incorrect policy configu-
rations may also cause compatibility issues.

4.3 Root-Cause Analysis of Vulnerabilities
As we discussed in Section 4.2, the insecure configuration of the

URL zones leads to security vulnerabilities. To mitigate this issue,
it is necessary to configure and evaluate the URL action policies
in a secure manner. However, we observe that third-party devel-
opers often insecurely reuse the IE browser components without
considering this issue, which makes the test subjects disable these
protection mechanisms of IE. For example, although IE supports
XSS and Phishing filters [23, 44] by default, the test subjects neither
configure relevant security policies nor block the malicious behavior.
To address this problem, it is necessary to understand the root cause
of this insecurity. In this section, we present how to use of our
framework to analyze insecure URL action policies.

Evaluation of URL Action Policies. According to MSDN, the
evaluation of URL action policies is performed by certain interface
calls exported by URLMON.dll. For example, ProcessUrlAction [27]
determines whether or not a specified action for a particular URL
is allowed. Based on this information, we reverse engineered such

Checking

URL zone

Global data

region in

URLMON.dll

Action

Target

URL zone

Zone

Policy

.

.

.

.

.

.

Checking

action

Checking

policy

matched

matched

Target

action

Target

policy

matched

Specified policy matched

Figure 6: Evaluation of URL action policies.

interface calls to analyze the detailed process of evaluating URL
action policies.

Figure 6 shows the high-level overview of this evaluation. In
particular, URLMON.dll maintains URL action policies as a list of
memory buffers in its global data region. Each buffer contains in-
formation on a URL zone, a URL action (e.g., downloading signed
ActiveX), and its policy (e.g., allow). The evaluation of the URL ac-
tion policies is performed by an internal function, which is invoked
by several interface calls at runtime. In particular, the function takes
three parameters (i.e., a URL zone, a URL action, and a policy to
check) and iterates through the memory buffers to locate the con-
figuration whose data are matched with the parameters. If such a
memory buffer is found, the function returns true, showing that the
specified URL action policies are matched with the current config-
uration setting. To extract the URL action polices checked by the
reference and the test subjects at runtime, we can use our frame-
work to infer the detailed information on policy evaluation. This
is because 1) the configuration data is stored in the global memory
space, and 2) matching the parameters with the configuration data is
performed by conditional jumps affected by the data read.

Based on the above observations, we analyze the runtime traces
obtained in the second phase of Figure 2 to extract the evaluations
performed by the reference and the test subjects. To this end, we
first locate the matched conditional jumps on the target policy. Then
we traverse the traces backward to find the consecutive conditional
jumps that check the target action and URL zone. According to
Figure 6, the data reads for evaluating the detected conditional jumps
correspond to the target URL zone, action, and its policy. Using
this approach, we can extract the evaluations of URL action policies
performed by the reference and the test subjects. In the following

8

URL action
XSS filter (Internet) Phishing filter (Internet) Script execution (Local machine)

Reference Test subjects Reference Test subjects Reference Test subjects
URLACTION_DOWNLOAD_SIGNED_ACTIVEX 3 7 3 7 7 7
URLACTION_DOWNLOAD_UNSIGNED_ACTIVEX 3 7 3 7 7 7
URLACTION_ACTIVEX_OVERRIDE_OBJECT_SAFETY 3 3 3 7 7 7
URLACTION_SCRIPT_RUN 3 3 3 3 3 7
URLACTION_SCRIPT_XSSFILTER 3 7 7 7 7 7
URLACTION_HTML_INCLUDE_FILE_PATH 3 7 7 7 7 7
URLACTION_SHELL_VERB 3 7 3 7 7 7
URLACTION_SHELL_EXECUTE_HIGHRISK 3 7 3 7 7 7
URLACTION_COOKIES_ENABLED 3 3 7 7 7 7
URLACTION_BEHAVIOR_RUN 3 3 3 7 7 7
URLACTION_FEATURE_MIME_SNIFFING 3 7 3 7 7 7
URLACTION_FEATURE_DATA_BINDING 3 3 3 3 3 7
URLACTION_ALLOW_APEVALUATION 7 7 3 7 3 7
URLACTION_INPRIVATE_BLOCKING 3 3 3 3 3 7
URLACTION_ALLOW_STRUCTURED_STORAGE_SNIFFING 7 7 3 3 7 7

Table 2: Evaluated URL action policies for XSS and Phishing filters / local script execution.

Workload Target component IP analysis (s)
Runtime trace extraction (s)

Offline phase (s)IE 9 IE Tab 2 Lunascape 6 Slim 5.0.1 Green 5.8 WebbIE 3.14 Enigma

microsoft.com URLMON.dll 73.8 169.7 264.6 792.0 865.4 354.7 444.8 288.5 152.2
WININET.dll 108.2 265.6 483.9 290.1 165.2 247.0 300.2 267.2 237.7

gmail account
URLMON.dll 201.1 249.0 197.7 221.4 159.9 258.4 238.8 188.8 518.5
WININET.dll 270.5 583.1 348.0 327.0 315.8 282.8 384.0 349.2 536.5
MSHTML.dll 1,852.2 1,902.2 1,909.2 1,774.7 1,698.6 1,462.1 1,774.2 1,436.0 59.6

XSS filter URLMON.dll 82.3 79.8 111.6 92.5 142.9 78.4 74.7 117.2 106.0

Phishing filter URLMON.dll 76.5 104.6 179.6 89.3 75.8 71.4 71.3 79.8 98.6

Local script run URLMON.dll 190.9 105.5 67.1 86.9 83.7 67.7 79.6 66.5 89.3

Table 3: Execution time for each analysis phase.

sections, we discuss and analyze the security vulnerabilities caused
by insecure configurations of URL action policies.

Disabled XSS and Phishing Filters. Recent IE releases have sup-
ported the XSS filter [23] and the Phishing (or SmartScreen) fil-
ter [44] by default. These mechanisms can effectively protect users
from unknown XSS and phishing attacks. We confirmed that the
test subjects do not enable these protection mechanisms even though
they use the same browser components. To analyze these security
vulnerabilities, we access malicious web sites that trigger these fil-
ters (i.e., our workloads). Then we apply our framework to capture
the runtime traces of the reference and the test subjects running
under the given set of workloads. We next extract the evaluations
of these URL action policies using our approach discussed earlier
in the section. Table 2 shows the evaluated URL action policies for
the Internet zone under our workloads, where 3 represents the case
where the corresponding policy has been evaluated, and 7 represents
that the corresponding policy has not been evaluated. It is interesting
that the URL action policies relevant to XSS and Phishing filters
are evaluated only when these filters are enabled. This information
helps pinpoint the code relevant for evaluating the policies.

In the case of XSS filter, MSHTML.dll calls an internal func-
tion IsXssFilterEnabled, which invokes an external function
ProcessUrlAction exported by URLMON.dll, to check whether
the XSS filter is enabled. As for the Phishing filter, MSHTML.dll
calls an internal function CMarkup::ProcessUrlAction2 to in-
voke an interface call ProcessUrlActionEx2 to URLMON.dll,
which checks whether or not the Phishing filter is enabled. The
information on the caller-callee relationship can be a starting point
for analyzing software behavior relevant to these URL actions. Note
that the top of the stack at the interface entries contains the address
to be returned after invoking the interface call.

Disabled Local Machine Zone Lockdown. As we have discussed
in Section 4.2, the test subjects allow local script execution, making

them vulnerable to cross zone scripting attacks. To analyze this
vulnerability, we run local script code using an external script file
as workload and repeat the analysis steps earlier for the XSS and
Phishing filters. Table 2 shows the evaluated URL action policies for
Local Machine during the workload. According to our result, all test
subjects execute the local script code without evaluating any secu-
rity policy on its action. However, IE evaluates the security policies
on the potentially malicious behavior and blocks it. For example,
IE blocks the execution of local script code, protecting IE from
the cross zone scripting attacks. Similar to the Phishing filter case,
the function CMarkup::ProcessUrlAction2 of MSHTML.dll in-
vokes the interface call ProcessUrlActionEx2 to evaluate the
security policy on URLACTION_SCRIPT_RUN at runtime.

4.4 Performance
Table 3 shows the execution time for each phase of our analysis

(Section 4.2). All experiments were done on a Core2 Duo 2.40GHz
processor with 4GB RAM. The results show that our framework can
easily scale to real-world applications. For example, it can detect, in
about 2 hours, inconsistent configurations of the three components
by the 6 real-world IE-based browsers accessing a complex web
sites such as microsoft.com.

Detecting insecure component usage from the gmail workload
is relatively more time consuming. In particular, the analysis of
MSHTML.dll took about four hours. The main reasons are as follows.
First, the user login is necessary to access the gmail account, and
MSHTML.dll is heavily used for this [28]. Second, when an instruc-
tion is executed, the second phase in our framework checks whether
or not the instruction is to be instrumented. Because MSHTML.dll
is a large file whose size is about 12MB, a large number of checking
is necessary, even though the number of instrumented instructions
is relatively small. Despite the additional performance overhead,
the analysis time for each browser is reasonable. For example, the
analysis of MSHTML.dll used by IE Tab 2 took about thirty minutes.

9

It is interesting to note that the offline analysis phase for MSHTML.dll
is relatively fast. This is because the size of the traces extracted
is much smaller. For example, while the analysis on URLMON.dll
generates runtime traces of 335MB during the gmail workload, the
analysis on MSHTML.dll only generates runtime traces of 7.53 MB.
The main reason is that the accesses to the global data region of
MSHTML.dll is rare at runtime. For the gmail workload performed
by IE Tab 2, URLMON.dll and MSHTML.dll access their global data
regions 800,120 times and 1,585 times, respectively.

4.5 Further Discussion and Analysis
We now further discuss a natural question: Are the other detected

inconsistent policy configurations security relevant? 3

Our framework provides useful information on inconsistent con-
figurations and evaluations of security polices. As we have dis-
cussed, such information is effective at detecting and analyzing
insecure component usage. However, the detected inconsistent exe-
cutions may not all be security relevant. For example, WININET.dll
maintains a configuration of Autodial [2] in its global data re-
gion, and only IE enables it. Also, while IE initializes User-Agent
String [48] whose configuration is stored in URLMON.dll, the test
subjects do not. Although these configurations are inconsistent, they
may not introduce security issues for the test subjects. However,
such information can still be valuable for improving the functionali-
ties of the client software using the components.

To determine the importance of the detected inconsistencies, do-
main knowledge of the test subjects is typically needed. Sometimes
we are not able to determine whether the detected inconsistencies
may cause security vulnerabilities. For example, an internal function
of URLMON.dll takes the data stored in the global data region as a
parameter, and a conditional jump is affected by the return value of
the function. We observed that IE falls through and the test subjects
take the branch at the conditional jump. Although this inconsistency
may lead to a security problem, it is difficult to fully determine as
we do not know the precise semantics of this function.

Also, the inconsistent policy configurations detected from the
non-IE components (such as Adobe Flash Player and QuickTime
Player) can also lead to security vulnerabilities. However, because
we lack domain-expert knowledge on these components, we have
focused our analysis on the IE components. In particular, the source
code and the detailed documentation for the non-IE components are
not publicly available. On the other hand, our results have clearly
demonstrated that inconsistent policy configuration is a general
concern that affects many applications.

5. RELATED WORK
This section surveys closely related work, which we divide into

four categories: bug detection via inconsistent software behavior
detection, detection of component insecurity, frameworks for secure
component usage, and detection of violated browser policies.

Bug Detection via Inconsistent Software Behavior Detection.
Brumley et al. [10] present a bug detection technique to discover
deviations among different implementations of the same protocol
specification. The technique is related to ours because it is also
based on the general differential analysis concept. It analyzes differ-
ent software and detects inconsistent behavior that is supposed to be
consistent. However, the technique has a different goal from ours.
Their goal is to detect inconsistent implementations of the same
protocol, while ours is to detect inconsistent policy evaluations that
may lead to insecure component reuse.

Detection of Component Insecurity. The detection of insecure
software components has been actively studied. Neuhaus et al. [41]
3In the tech report [35], we also discuss results on Gecko- and
WebKit-based browsers.

propose a technique that performs statistical analysis on vulnera-
bility history; the function calls and the imports of each vulnerable
component are utilized to characterize the corresponding vulnerabili-
ties. Bandhakavi et al. [3] present a static analysis to detect informa-
tion flow vulnerabilities in Firefox extensions. Dhawan et al. [13]
dynamically track the execution of JavaScript extensions in Firefox
to detect information flow violations. Guha et al. [20] statically
check security of the browser extensions by using software veri-
fication techniques. In comparison, while these techniques detect
the insecurity of target components, we focus on detecting inse-
cure usage of the components. In particular, we model insecure
usage of a component as inconsistent evaluations of security policies
maintained by the component. With this model, we are able to, for
example, detect and analyze browser components insecurely used
by IE-based browsers (see Section 4).

Framework for Secure Component Usage. Because malicious or
vulnerable components can introduce security problems to soft-
ware, extensive research has been conducted on protecting soft-
ware against them. For example, secure browsers [19, 45, 50] ap-
ply sandboxing techniques to protect them from crashed plugins.
Grier et al. [18] present security policies to use browser plugins in
a secure manner. Barth et al. [5] propose a technique to mitigate
the damage caused by the exploitation of vulnerable extensions by
designing least privilege, privilege separation, and strong isolation.
Kirda et al. [34] detect malicious browser components by monitor-
ing spyware-like behavior. These techniques aim at detecting and
protecting against insecure execution of target components, while
our purpose is to detect insecure usage of components.

Detection of Violated Browser Policies. A browser’s security pol-
icy serves as a key part for safe web browsing. Thus, modern
browsers support a number of policies to improve their security [9].
Based on this insight, many researchers [4, 6, 7, 8, 33] have fo-
cused on detecting violations of browser security policies. Although
our framework also detects the violation of browser security poli-
cies (Section 4), its goal is different from that of these previous
techniques. We aim at detecting policies incorrectly configured by
insecure browser component usage. In contrast, the aforementioned
techniques detect subversions of the enforced security policies.

6. CONCLUSION
We have presented an effective framework to detect and analyze

insecure component usage. Our key idea is to detect inconsistent
security policy configurations. Suppose that both a reference and
a test subject use a component that maintains the configuration of
a security policy. If they use the component in ways that make the
policy inconsistently evaluated, the test subject can be vulnerable
to attacks intended to be blocked by the policy. We model compo-
nent usage relevant to the policy as memory access patterns and the
conditional jumps affected by them. Based on this model, we have
presented a program analysis technique to locate inconsistent policy
configurations at runtime. Our evaluation results show that our tech-
nique is effective at detecting and analyzing insecure component
usage. In particular, it detected inconsistent policy configurations
of real-world applications and discovered several new security vul-
nerabilities of IE-based browsers. We have also shown that our
framework can be used effectively to conduct detailed analysis of
security vulnerabilities related to insecure component usage.

For future work, we would like to analyze insecure usage of other
widely-used components. Our current implementation focuses on
analyzing the global data region to detect component usage relevant
to security policies. We plan to expand the work’s scope by handling
other types of non-thread specific memory regions (e.g., the heap)
to detect and analyze general inconsistent component usage.

10

References
[1] About URL Security Zones. http://msdn.microsoft.

com/en-us/library/ms537183(v=vs.85).aspx.
[2] Autodial. http://technet.microsoft.com/en-us/

library/cc781180(W.10).aspx.
[3] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett.

Vex: vetting browser extensions for security vulnerabilities. In
Usenix Security, 2010.

[4] A. Barth, J. Caballero, and D. Song. Secure content sniffing
for web browsers, or how to stop papers from reviewing
themselves. In SSP, 2009.

[5] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting
Browsers from Extension Vulnerabilities. In NDSS, 2009.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for
cross-site request forgery. In CCS, 2008.

[7] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. Commun. ACM, 52, June 2009.

[8] A. Barth, J. Weinberger, and D. Song. Cross-origin javascript
capability leaks: detection, exploitation, and defense. In
Usenix Security, 2009.

[9] Browser Security Handbook.
http://code.google.com/p/browsersec/wiki/Main.

[10] D. Brumley, J. Caballero, Z. Liang, N. James, and D. Song.
Towards automatic discovery of deviations in binary
implementations with applications to error detection and
fingerprint generation. In Usenix Security, 2007.

[11] CAPEC-104: Cross Zone Scripting. http:
//capec.mitre.org/data/definitions/104.html.

[12] P. T. Devanbu and S. Stubblebine. Software engineering for
security: a roadmap. In Proceedings of the Conference on The
Future of Software Engineering, 2000.

[13] M. Dhawan and V. Ganapathy. Analyzing information flow in
javascript-based browser extensions. ACSAC, 2009.

[14] Enigma Browser. http://www.suttondesigns.com/.
[15] Executable and Linkable Format (ELF). http://www.

skyfree.org/linux/references/ELF_Format.pdf.
[16] K. M. Goertzel, T. Winograd, and B. A. Hamilton. Safety and

security considerations for component-based engineering of
software-intensive systems. Technical report,
https://buildsecurityin.us-cert.gov/swa/
downloads/NAVSEA-Composition-DRAFT-061110.pdf,
2010.

[17] Green Browser 5.8.
http://greenbrowser.en.softonic.com/.

[18] C. Grier, S. T. King, and D. S. Wallach. How I learned to stop
worrying and love plugins. In Web 2.0 Security and Privacy,
2009.

[19] C. Grier, S. Tang, and S. T. King. Secure Web browsing with
the OP Web browser. In SSP, 2008.

[20] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified
security for browser extensions. In SSP, 2011.

[21] IDA Pro Disassmelber.
http://www.hex-rays.com/idapro/.

[22] IDAPython. http://code.google.com/p/idapython/.
[23] IE Cross-site Scripting Filter.

http://windows.microsoft.com/en-US/
internet-explorer/products/ie-9/features/
cross-site-scripting-filter.

[24] IE Tab 2. https://addons.mozilla.org/en-US/
firefox/addon/ie-tab/.

[25] IE Tab for Chrome. http:
//www.chromeextensions.org/utilities/ie-tab/.

[26] IE Tab for Firefox. https://addons.mozilla.org/
en-US/firefox/addon/ie-tab/.

[27] IInternetSecurityManager::ProcessUrlAction Method.
http://msdn.microsoft.com/en-us/library/

ms537136(v=vs.85).aspx.
[28] Internet Explorer Architecture. http://msdn.microsoft.

com/en-us/library/aa741312(28v=vs.85)29.aspx.
[29] Internet Explorer does not support user names and passwords

in Web site addresses (HTTP or HTTPS URLs) .
http://support.microsoft.com/kb/834489.

[30] Internet Explorer Local Machine Zone Lockdown.
http://technet.microsoft.com/en-us/library/
cc782928(WS.10).aspx.

[31] Internet Explorer Zone Elevation Blocks.
http://technet.microsoft.com/en-us/library/
cc757200(WS.10).aspx.

[32] Introduction to Feature Controls. http://msdn.microsoft.
com/en-us/library/ms537184(v=vs.85).aspx.

[33] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh.
Protecting browsers from dns rebinding attacks. In CCS,
2007.

[34] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A.
Kemmerer. Behavior-based spyware detection. In Usenix
Security, 2006.

[35] T. Kwon and Z. Su. Automated detection and analysis of
insecure component usage. Technical report,
http://www.cs.ucdavis.edu/research/
tech-reports/2011/CSE-2012-25.pdf, 2012.

[36] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
building customized program analysis tools with dynamic
instrumentation. In PLDI, 2005.

[37] Lunascape 6. http://www.lunascape.tv/.
[38] W. M. Mckeeman. Differential testing for software. Digital

Technical Journal, 10(1):100–107, 1998.
[39] Microsoft Portable Executable and Common Object File

Format Specification. http://www.microsoft.com/whdc/
system/platform/firmware/PECOFF.mspx.

[40] Naming Files, Paths, and Namespaces.
http://msdn.microsoft.com/en-us/library/
aa365247\%28v=vs.85\%29.aspx.

[41] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller.
Predicting vulnerable software components. In CCS, 2007.

[42] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space
randomization. In CCS, 2004.

[43] Slim Browser 5.01. http://www.slimbrowser.net/en/.
[44] SmartScreen Filter. http://windows.microsoft.com/

en-US/internet-explorer/products/ie-9/
features/smartscreen-filter.

[45] S. Tang, H. Mai, and S. T. King. Trust and protection in the
illinois browser operating system. In OSDI, 2010.

[46] Top 10 Chrome Browser Add-ons.
http://www.pcworld.com/article/185744/top_10_
chrome_browser_addons.html.

[47] Trident (layout engine). http://en.wikipedia.org/
wiki/Trident_(layout_engine).

[48] Understanding User-Agent Strings.
http://msdn.microsoft.com/en-us/library/
ms537503(v=vs.85).aspx.

[49] UTF-8. http://en.wikipedia.org/wiki/UTF-8.
[50] H. Wang, C. Grier, A. Moshchuk, S. King, P. Choudhury, and

H. Venter. The multi-principal OS construction of the Gazelle
web browser. In Usenix Security, 2009.

[51] WebbIE 3.14. http://www.webbie.org.uk/.
[52] O. Whitehouse. GS and ASLR in Windows Vista. In Black

Hat DC, 2007.
[53] You receive a “File Not Found” error message in Excel when

you open a file by double-clicking the file name.
http://support.microsoft.com/kb/207574.

11

