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ABSTRACT

Specifications are necessary for nearly every software engineering
task, but they are often missing or incomplete. “Specification min-
ing” is a line of research promising to solve this problem through
automated tools that infer specifications directly from existing pro-
grams. The standard practice is one of inductive learning: mining
tools make observations about software and inductively generalize
them into specifications. Inductive reasoning is unsound, however,
and existing tools commonly grapple with the problem of inferring
“false” specifications, which must be manually checked.

In this work, we introduce a new technique for automatically
validating mined specifications that lessens this manual burden. Our
technique is not based on heuristics; it rather uses a general, semantic
definition of a “true” specification. We perform systematic, targeted
program transformations to test a mined specification’s necessity
for overall correctness. If a “violating” program is correct, the
specification is false. We have implemented our technique in a
prototype tool that validates temporal properties of Java programs,
and we demonstrate it to be effective through a large-scale case
study on the DaCapo benchmarks.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengin-
eering; F.3.1 [Logics and Meaning of Programs]: Specifying and
Verifying and Reasoning about Programs
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1. INTRODUCTION

Nearly all software engineering tasks require some form of a
specification. Implementation, debugging, and testing, for example,
all involve reconciling a software program’s specified and actual
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behaviors. Documentation and source code comments are standard
sources of specifications, but they are often incomplete, incorrect,
or missing entirely. Worse yet, time-saving software tools—our
research focus—require formal, machine-readable specifications,
which are even rarer.

Research in specification inference [3] aims to solve this prob-
lem through tools that automatically reverse engineer specifications
directly from programs. Although reasoning soundly about specifi-
cations from implementations is generally impossible, the intended
behavior of a stable software project can be somewhat evident.
For example, if calls to the function Lock.lock() often precede
Lock.unlock(), it might be reasonable to suggest that this relation-
ship is necessary and required. This example illustrates the essence
of how specification “mining” tools work: they make observations
about software and generalize them into specifications, albeit with a
degree of uncertainty.

That “degree of uncertainty” is a central issue in specification
inference. The fundamental cause of imprecision in specification
inference is the standard problem of induction: generalizing from ex-
amples is unsound. A mining tool is easily deceived into reporting
frequently-observed coincidental relationships as false specifica-
tions, e.g. “calls to List.add() must precede List.isEmpty().” The
possibility of these “false positives” forces the user of the tool to
validate each inferred specification manually.

Manual validation of mined specifications is an expensive and
error-prone process. Unfortunately, it is also essential: truly sound
reasoning about specifications requires specifications, a circular
dilemma. Researchers have nonetheless tried to reduce this burden
with several automated techniques for identifying and filtering likely-
false specifications, including leveraging simple usage statistics [38],
more advanced statistical models [24], and assorted heuristics [7].
All of these techniques are alike in that they operate on the belief
that classes of true and/or false specifications are somehow “alike”
and mechanically recognizable.

In our own continuing research, we have found existing specifica-
tion validation techniques to be insufficient. The current “statistics
and heuristics” approach does work adequately when applied to the
examples frequently found in the research literature, such as specifi-
cations mined from language-level standard libraries. Specifications
over Java’s Iterator (Iterator.hasNext()/next()) and C’s file de-
scriptors (open(fd)/close(£d)) are recognizable examples. Our re-
search focus, however, has been to scale specification mining “down”
and “out” to project-specific and highly semantic properties—those
perhaps most relevant to the majority of software tasks [27]—and
existing techniques have left us at a “precision wall.” In short, false
positives dominated our early experimental results.

In this paper, we present a novel and effective automated tech-
nique for validating mined specifications. Our technique is not a



surface-level statistic or heuristic; it is instead based on a purely
semantic definition of a “true” specification that is a result of a first-
principles reexamination of the problem. We have formulated our
approach around this key observation: a true specification is one
that is necessary for correctness.

Our technique takes the following high-level approach. We start
with a program and a (potentially false) mined specification, say, that
acall to method foo () should always be followed by a call to bar ().
We then perform a series of automated experiments, each of which
involves 1) transforming the program to violate that specification
(in this case, reordering and/or removing calls to foo() and bar())
and 2) evaluating correctness using testing. If we can generate a
transformed program that both a) violates the mined specification
and b) is correct, then we have shown the mined specification to be
unnecessary for correctness, and thus false.

We call our technique Deductive Specification Inference, or DSI.
The name “Deductive” reflects our goal of moving away from heuris-
tics and statistics, but it is of course an idealization: as mentioned
earlier, sound deductive reasoning about specifications from pro-
grams is impossible. That limitation is manifest here by the require-
ment that we precisely evaluate the correctness of a program, which,
if possible, would require complete specifications—obviating the
need to mine them! We have approximated this ideal with testing,
and our implementation of our technique is thus (like any specifi-
cation miner must be) imperfect. Nonetheless, DSI is effective in
practice, as we show in a case study of several real Java programs.

This paper includes the following contributions:

1. A novel specification validation methodology, DSI, that avoids
the use of statistics or heuristics.

2. An implementation of our method for a well-studied domain:
temporal specifications over the sequences of method calls in
a Java program.

3. A case study demonstrating our tool’s effectiveness on several
open source Java programs.

4. A detailed discussion of the nuances and limitations of our
technique, including how these limitations speak to funda-
mental limitations of specification inference in general.

The next section (Section 2) provides an overview of our approach
through a set of examples. Section 3 then presents in detail both the
DSI methodology and a tool implementing DSI for the domain of
temporal properties of method calls. Our experimental results and
related discussions follow in Section 4. In Section 5 we discuss DSI
in the context of related work, and in Section 6 we conclude with a
discussion of future work.

2. OVERVIEW

In this section, we provide an overview of our general approach
through a series of examples. We begin with an introduction to
our target domain, temporal specifications, and continue with a
presentation of our general technique as well as our implementation.

2.1 Temporal Properties and Their Inference

The examples in this section are drawn from the domain of rem-
poral specifications over program elements. Here, “temporal” refers
to the span of runtime execution and “program elements” refers to
executable code. A temporal specification extends traditional state
assertions (“variable x is always positive”) with the notion of time
(“once x is positive, y will eventually become positive as well”).

One commonly studied class of temporal properties involves or-
dering restrictions on function calls. Functions are building blocks
of software projects, and the order in which they are composed is
both critical and subtle, especially in imperative and object-oriented

systems with side effects. Common examples include locking disci-
plines, in which a specification might state “calls to methods lock
and unlock on each Lock object strictly alternate at runtime” and
resource usage rules, in which a partial specification might state
“one should call close on a file descriptor soon after its final use.”

Temporal properties are often much more domain-specific and
obscure than these canonical “locking” and “resource” examples,
and they are rarely fully documented. Researchers have recognized
this problem and developed automated software tools capable of
“mining” temporal properties directly from programs. The predom-
inant models are forms of inductive learning. Many tools operate
similarly in two high-level steps: 1) observing (at runtime or stati-
cally approximating) the behavior of a program and 2) generalizing
that behavior into a specification.

2.2 Validating Specifications

Figure 1 lists four examples of “potential” temporal specifications.
They were synthesized from observations of real software projects,
simplified excerpts of which are listed as well. Mining tools may
report specifications like these for several reasons, including:

e The observed property is satisfied (or mostly so) by the ob-
served program. This condition is often trivially true.

e The tool observes the property frequently, with examples
occurring frequently at runtime or within the static source
code. This encodes the belief that “common behavior is likely
to be correct” [12].

o Assorted heuristics. For example, the property listed in Fig-
ure la involves a method named execute, which may match
a “function name filter” that identifies naming patterns that
have often been important in the past.

Ultimately, a specification mining tool takes an inductive leap,
essentially “lifting” observations into specifications based on both
observed evidence and prior beliefs.

“Potential” specifications may not be frue, though, which is a
natural consequence of inductive learning. When a programmer
is presented with a mined specification, he or she must generally
validate and/or debug it before it becomes useful. Approaches
include:

e Code inspection. If the specification is not followed, would it
lead to an obvious error?

e Reconciling with known requirements. Is the specification
clearly (in)consistent with existing specifications?

e Consulting with experts and past software engineering data.
Have the elements of this specification been involved in any
prior issues?

Note the lack of a complete, algorithmic solution. This is precisely
what makes specification inference difficult in practice and impossi-
ble in the limit. These validation techniques do follow a common

theme, though: they involve using disparate sources of information
to answer the following question as accurately as possible:

Given a potential specification ¢, is ¢ necessary for
my program’s correct execution?

Our current work can be framed as a method for solving this problem
systematically and automatically.

2.3 Automated Experimental Validation

Returning to the running examples, consider now the contraposi-
tive of the “validation problem”:

Does violating ¢ make my program incorrect?



CompilerTest test = ...
test.reset();

/* Set up ’prog’ variable */
test.execute(prog, out, err);

s w N e

a. “Call CompilerTest.reset at some point before calling
CompilerTest.execute.”

GeneratorAdapter gen = ...

/* Set up ’'type’ and ’constr’ variables */
gen.loadThis();

/* ... other ’gen’ invocations */
gen.invokeConstructor(type, constr);

e W o e

c. “Call GeneratorAdapter.loadThis at some point before
calling GeneratorAdapter.invokeConstructor.”

1 ResourceAttributes attr = ...
2 /* Other setup */

3 attr.setArchive(true);

4 attr.setSymbolicLink(false);

b. “ResourceAttributes.setArchive and setSymbolicLink
must appear in sequence.”

1 SaveManager sm = this;

2 /* Other state restoration actions */

3 try {

4 sm.restoreMarkers(resource, true, p);
5 sm.restoreSyncInfo(resource, true, p);
6 } catch (Exception e) { /* Ignore */ }

d. “SaveManager.restoreMarkers and restoreSyncInfo
must appear in sequence.”

Figure 1: Four observed temporal properties and a selection of the Java source code that generated them.

CompilerTest test = ...
//test.reset();

/* Set up ’prog’ variable */
test.execute(prog, out, err);
test.reset();

“wos W e

a. “Call CompilerTest.reset at some point before calling
CompilerTest.execute.”

GeneratorAdapter gen = ...

/% Set up ’'type’ and ’constr’ variables */
//gen.loadThis();

/* ... other ’gen’ invocations */
gen.invokeConstructor(type, constr);
gen.loadThis(Q);
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c. “Call GeneratorAdapter.loadThis at some point before
calling GeneratorAdapter. invokeConstructor.”

1 ResourceAttributes attr = ...
2 /% Other setup */

3 //attr.setArchive(true);

4+ attr.setSymbolicLink(false);
5 attr.setArchive(true);

b. “ResourceAttributes.setArchive and setSymbolicLink
must appear in sequence.”

1 SaveManager sm = this;

2 /* Other state restoration actions */

3 try {

4 //sm.restoreMarkers(resource, true, p);
5 sm.restoreSyncInfo(resource, true, p);
¢ sm.restoreMarkers(resource, true, p);

7 } catch (Exception e) { /* Ignore */ }

d. “SaveManager.restoreMarkers and restoreSyncInfo
must appear in sequence.”

Figure 2: Transformed programs that should now be “wrong” if each specification is “real” or ‘“necessary.”

Phrasing the question this way suggests an experimental solution.
Figure 2 reprises the potential properties listed in Figure 1, but
the code excerpts have now been transformed. For the domain
of temporal properties, we have a strong idea of what it means
to “violate” a specification, and in each case the code has been
“minimally” and straightforwardly modified to violate each property.
If each of the potential specifications is true, then each program in
Figure 2 should now be wrong.

The problem now reduces to judging each “experiment” as “cor-
rect” or “wrong.” If we were able to judge any as being correct—
despite being transformed—we could say with some certainty that
the associated specification is unnecessary for correct execution and
thus false. Similarly, if one of those programs were now incorrect,
we would obtain evidence (but not proof) that the associated specifi-
cation is necessary and frue. Note the lack of the word “certainty”
in the latter case: it is rife with subtlety and will be discussed in
more detail throughout this paper.

Judging a program “correct” or “wrong” is generally impossible,
of course, and to do so actually begs the question of a complete spec-
ification. However, correctness checking can often be approximated
through testing and analysis, giving us the final component we need
to automatically (but approximately) validate specifications. Our
high-level technique is as follows:

1. Start with a proposed specification ¢ from a program P. For
temporal function-call specifications, this might be of the form

“calls to function a always precede calls to function b”. The
normal source of proposed specification will be a specification
mining tool.

2. Create a suite of experimental programs around P and @, a
sort of “design space” populated with programs similar to
P but violating ¢. We accomplish this through automatic
program transformations. Continuing the earlier example,
this space may consist of the family of programs in which
calls to a and b are reordered.

3. Test these experimental programs. If ¢ is found to be unnec-
essary for correctness, then ¢ is not a specification.

We call this process “Deductive Specification Inference,” or DSI.
This name reflects DSI’s logical and experimental nature, but we em-
phasize again that truly sound deductive reasoning in this setting is
impossible. Nonetheless, on our example properties this automated
process is very revealing.

e The experiment in Figure 2a crashes early: reset does in fact
set up the precondition for execute to run; the specification
is true.

e Experiment 2b passes: the order in which these two fields are
set is irrelevant.

e Experiment 2c fails, but not with an immediate crash: it
ultimately causes operations much later in the test suite to fail.



GeneratorAdapter is a helper class within a Java bytecode
library. Not following this temporal specification will actually
result in the generation of bytecode that violates the Java
Bytecode Specification, which is what ultimately causes the
(much) later test failure.

e Experiment 2d passes, but perhaps surprisingly so: each oper-
ation contains a substantial amount of overlapping side effects.
From a class-level perspective, though, the tests demonstrate
that the observed ordering is irrelevant.

In theory, one could transform this specification validation pro-
cedure into a specification inference algorithm, as validation and
inference are fundamentally the same problem. For temporal spec-
ifications, we could simply enumerate every possible ordering of
function calls and systematically validate or invalidate each one.
However, for efficiency and to better leverage advances in specifica-
tion mining, we bootstrap the process with an inductive specification
mining tool.

This section has provided an overview of our automated valida-
tion technique and how we implement it for the domain of temporal
function-call properties. The following section presents our DSI
methodology and implementation in full detail, including a discus-
sion of the strengths and subtle limitations of the technique.

3. TESTING SPECIFICATIONS

We have implemented DSI for the domain of temporal function-
call properties of imperative and object-oriented systems. Our im-
plementation uses automated program transformations to conduct
its experiments, and it uses software testing to approximately evalu-
ate correctness. We introduced the temporal function-call problem
domain earlier (see Section 2.1) and continue here in more depth.

3.1 Temporal Function-Call Properties

We address a common class of specification: ordering restrictions
on function calls within a software project. These specifications
are common and error-prone, as they are not enforced by the type
systems within standard compilers. When they are defined formally,
however, advanced software tools can check them statically [5, 15]
or at runtime [8], preventing and eliminating errors.

The formalism we use to represent specifications is regular lan-
guages. While the most general formalism for expressing these
properties is some form of a temporal logic, many important prop-
erties can be expressed as simple regular languages. The earlier
examples of “locking” and “resource disposal” are both regular:
(lock unlock)* and (read* close), respectively. Each specification
is quantified over a domain of possible “usage scenarios,” which is a
general way of capturing the notion that the properties only restrict
related function calls, e.g. lock and unlock calls on the “same Lock
object” or read and close calls on the “same file descriptor.”

Our tool is implemented for programs written in the Java program-
ming language. For simplicity we focus on temporal properties of
function calls on a single object; that is, our domain of “scenarios” is
the set of objects at runtime. Note that we use receiver objects solely
as a convenient and reliable way of relating sets of method calls
through data. No aspect of our implementation is fundamentally
restricted to object-oriented systems.

Remark. A related concept is typestate [35], the notion that indi-
vidual types have a high-level “state” that dictates when certain
operations (e.g. method calls) are legal, i.e. when they do not violate
an internal class invariant. Because we focus on single-object prop-
erties, it is tempting to view DSI narrowly as a form of “typestate
inference.” Our technique certainly will validate typestate proper-
ties (the two examples above fall into this category) but it is far
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Figure 3: Implementation architecture.

more general. By using “overall system correctness” as an oracle
rather than “obeys a preexisting local class invariant,” our tool can
(and frequently does) infer interesting domain-specific properties
like that shown in Figure 1c: the class does not crash when used
incorrectly—no local class invariant is violated—but it eventually
causes a violation of a higher-level system specification.

3.2 Temporal Function-Call DSI

Our temporal function-call implementation of DSI takes as input:

1. aJava program, and
2. amined temporal specification over a set of function calls.

It runs a series of automated experiments, returning as output:

1. “(likely) true specification”, or
2. “(likely) false specification” (with supplemental details).

The high-level architecture appears in Figure 3. Execution occurs
in two phases: Preamble and Experiment. The first involves con-
structing a set of “experiments” that aim to test the necessity of the
mined specification. We implement this process using static program
transformations that use a novel lazy evaluation framework for Java
programs. The second phase is dynamic, running and interpreting
these experiments with respect to a correctness oracle, which we
approximate through testing.

Remark. Testing for “necessity for correctness” is superficially sim-
ilar to testing for control flow or data flow dependencies, a heavily-
studied subject. Lack of any control or data dependence is sufficient
cause to invalidate a specification, but it is far from necessary. This
issue is analogous to the distinction between strong and weak muta-
tion testing [22].

Mining a set specifications to validate for a given program is straight-
forward. We make use of an existing dynamic inductive specification
inference tool [17] that has had its heuristics disabled.

3.3 Phase I: Preamble

Our temporal properties describe ordering relationships between
sets of function calls. We test a mined specification by transforming
the input program, in various ways, so that all relevant function calls
are reordered in a specification-violating way.

Transforming Java Programs Reordering function calls in real
software projects is problematic. Highly local cases are simple:
if two function calls appear on subsequent lines, their parameters
tend to draw from the same variable scope, simplifying the actual
transformation. In our experience, though, the source code of actual
projects tends to form a complex and rigid “scaffolding” that is



GeneratorAdapter gen = ...

/* Set up ’'type’ and ’constr’ variables */
gen.loadThis(Q);

/* Other ’gen’ invocations */

/* Possibly crossing procedure boundaries */
gen.invokeConstructor(type, constr);

o v oA W oN e

a. Original source code.

Thunk t; // Global, known location
GeneratorAdapter gen = ...

/% Set up ’'type’ and ’constr’ variables */

t = delay({gen.loadThis();});

/* Other ’gen’ invocations */

/* Possibly crossing procedure boundaries */
gen.invokeConstructor(type, constr);

force(t)

® N o v A W N e

b. Transformed source.

Figure 4: The essence of our transformation. Delaying the first
invocation until the second has executed violates the mined
specification.

difficult to modify—and the most important and subtle properties
are likely to be those that are not confined to a pair of sequential
lines of code.

We solve this problem by implementing a robust lazy evaluation
Jframework for Java programs. Put simply, our framework lets us
capture an arbitrary Java function call and its parameters in an exe-
cutable function object, save it, and execute it later. It brings to Java
the concept of promises in eager functional languages like Scheme.
The entry point is analogous to the delay () primitive in Scheme, but
slightly generalized: given an arbitrary sequence of (straight-line)
Java bytecode, our framework 1) functionally abstracts it and 2)
creates a closure with its (eagerly-bound) parameters, thus convert-
ing it into a thunk. This object may then be executed at any time,
immediately or later, by an analogue of Scheme’s force () primitive.

Lazy evaluation greatly simplifies the task of reordering function
calls. Our transformation occurs at the bytecode level, but it maps
conceptually well on to source code. An example of the essence of
our transformation appears in Figure 4. The higher level operation
in the figure is “delay the first function call until point p”. This
operation is the basis of all of our transformations, and the remaining
questions are when and where to apply it.

Surveying Behavior Our selection technique relies on proactively-
collected information about the runtime behavior of the program.
Figure 5 provides an overview of the complete DSI process; the left
pane depicts this Preamble phase. Before selecting experiments, we
execute the program’s test cases (the same tests that will be used
during the Experiment phase) twice: once unmodified and once
“instrumented,” which collects a property-related trace. We then use
this trace to generate our set of transformations. In addition, these
“pilot runs” allow us to perform various sanity checks, including:

e [s the property actually exercised in these test cases? [if not,
then our “broken” programs will certainly be judged “correct,”
causing a false invalidation. |

o s the property satisfied by the program? [if not, the currently-
passing tests imply this is a trivially false specification]

e [s the program’s behavior deterministic enough to allow ex-
perimentation? [if not, our experiment selection algorithm
may fail.]

The third check is not as stringent as it appears: we use a flexible
form of execution indexing that tolerates a great amount of variation
in program behavior.

Selecting Effective Experiments Consider the mined specifica-
tion “method foo should always be called before method bar.” There
are many ways to violate this specification:

e Remove all calls of foo and bar from the program entirely.
e Randomly delete calls of foo/bar throughout the program.

e Reorder the calls by “delaying” all runtime invocations of foo
until the program exits.

e Reorder the calls by “delaying” each invocation of foo by the
minimum amount of time necessary to cause a violation.

These actions differ in the amount of change, or “disturbance,” they
cause on the target system, and the fourth, least intrusive option
appears most sensible. There is an analogy here to traditional sci-
entific experimentation and the issue of control. Here, we wish to
answer the question, “is the stated relationship between foo and bar
necessary for correctness?” A well-designed experimental answer
should vary precisely that relationship and leave unchanged all other
aspects of the program’s execution. In realistic software projects,
full, behavior-isolated “control” will be generally impossible: speci-
fications overlap and program components communicate. Rather, as
the examples demonstrate, it tends to be a matter of degree.

Selection Algorithm The preceding line of reasoning led us to
an experiment selection algorithm that strives for completeness
and control. We respect completeness by generating test programs
that violate each potential binding of the property at runtime. We
maintain control by doing so in as minimally intrusive manner as
possible. That is, each time the elements of a mined specification
are used at runtime, we delay the minimum number of function calls
by the minimum amount of (execution) time necessary to violate
the property.

Our experiment selection algorithm is listed as Algorithm 1.
It takes as input 1) a mined specification and 2) the previously-
described frace of the program’s specification-related method calls.
It returns an “instruction” for a minimal experiment, (idx,len),
which can be interpreted as, “The minimally-intrusive way to violate
the given specification is to delay() the idxth method call by len
calls.” This algorithm ensures minimality by taking a brute-force
approach: it simply evaluates all possible transformations. In the
worst case, this algorithm runs in time quadratic in the length of
the trace; in practice, it is much closer to linear: the set of “trials”
(line 2) is eagerly pruned (lines 10-18) and remains consistently
small. Note that this algorithm is formulated in terms of a single
“usage scenario,” e.g. the calls surrounding a single file descriptor,
and it returns a single experiment. In practice, we process multiple
scenarios simultaneously and generate a suite of experiments.

Remark. The simple primitive “delay a call until time p” is powerful:
for example, multiple functions can be simultaneously delayed and
re-emitted in any order. In theory, this “delay primitive” is not pow-
erful enough to “break” (i.e. transform to rejecting) every accepting
string of any arbitrary (non-total) regular language. Fortunately, in
practice, every valid trace of every regular specification pattern we
have encountered in our work can be “broken” by delaying just a
single event, albeit by varying amounts of time. We have performed
a more thorough theoretical investigation of this problem, which we
have omitted for brevity.

Other Implementation Notes One complication to our otherwise
simple process is caused by the presence of explicit return values
from the functions we “delay:” if a function is not evaluated, we can-
not know what it will return. We solve this problem by implementing
a model of what a sensible programmer would do in this situation,
inspired by our principle of “minimally intrusive” experiments. We



Algorithm 1 Algorithm for selecting an experiment for a given
usage scenario. Returns a minimally-disruptive perturbation that
causes a violation of a mined specification.
Input: P: (X ={ml1,m2,...},S,s9,0,F)

Mined regular specification over methods {m1,m2,...}

T : {call: (idx,method),...)

An indexed runtime trace of method calls for one ‘usage

scenario,” where method € {m1,m2,...}
Output: (idx, len)

A minimal perturbation: delaying the call at trace index

‘idx’ by ‘len” number of calls 1) violates P and 2) minimizes

‘len” over all such violating transformations.

1: Sirace < S0 > The state of the trace w.r.t. specification P

2: E+{} b Setof trial experiments: {(idx,len,s)} If the call at ‘idx’
were to be ‘delay’ed by ‘len’ calls, P would be in state s.
3: min <~ NULL > Minimum-amount perturbation
4:
5: for all call : (idx, method) in 7 do
6: for all trial : (idx,len,s)in £ do b trial.s is the state of P
had the call at trial.idx been delayed
7: trial.s <— NEXTSTATE(P, trial.s, call.method)
8: trial.len < trial.len 41
9: Sforced < NEXTSTATE(P,trial.s, T [trial.idx])
D> Sforced 18 the state of P if ‘forced’ now
10: if ISREJECTING (Sforceq) and ISSINK (sfyrceq) then
11: if min = NULL or trial.len < min.len then
12: min < (trial.idx, trial.len)
13: end if
14: E < E\ trial
15: else if min # NULL and trial.len > min.len then
16: E < E\ trial
17: end if > Perf. optimization: track minimum and prune early
18: end for
19: E < E U (call.idx,0, strace) > Create a new trial
20: Strace < NEXTSTATE(P, $7qce, call.method)
21: end for

22: for all trial : (idx,len,s) in E do > Tabulate remaining trials
23: if min = NULL or trial.len < min.len then

24: min < (trial.idx, trial.len)
25: end if
26: end for

27: return min

implement a simple type analysis that allows us to replace the return
value of a delayed call with the value of the “nearest-defined local
variable of the appropriate type” (or the language-defined default
value if one is not found). This general definition automatically
captures many intuitive actions, including reusing the return value
from a previous call (among others).

Multithreaded programs caused complications as well. Avoiding
any single-threaded assumptions handled most issues, but our early
experiments revealed several fundamental challenges. For one, we
may “move” a function call to a program point at which an impor-
tant lock is no longer held. To solve this issue, our lazy analysis
framework makes note of the locks held during a runtime invocation
of delay() and optionally attempts to reacquire them, if necessary,
when the thunk is force(ed. In another case, a delayed call was
indirectly responsible for some event that, if omitted, would cause a
second call to block indefinitely, creating a deadlock. In this case,
we instituted a global “inactive timeout” on our experiments: if the
subject program makes no forward progress after a period of time,
we forcibly terminate the program.

The execution of these initial runs, tests, and experiment selection
algorithms form the entirety of the Preamble phase. At its conclu-
sion, we have produced a set of transformed experimental programs
that are ready to be evaluated.

3.4 Phase II: Experiment

The Experiment phase is conceptually simple: we run each ex-
periment in the suite of transformed programs and interpret the
results.

Testing as an Oracle Our approximation of a correctness oracle
is testing. This portion of our tool is pluggable to allow the use of
user-defined tests and test oracles. In addition, we also provide a
default implementation based on randomized regression testing. We
first run the unmodified, assumed-correct program on random inputs.
We record the input/output behavior on these inputs as a behavioral
profile, which then becomes our test oracle. This process is similar
to Differential Testing [14], which uses automatically generated
tests to test modified software for regressions.

Analysis of Results At a high-level, the only important output is
the success or failure of each individual test: failures suggest the
mined specification is valid; successes suggest it is false. However,
exactly how a test executes and fails can be useful knowledge. Re-
gardless of the property—the precise relationship it defines or the
number of functions it references—each experiment reduces to de-
laying a single function call until a second call completes (albeit with
other calls possibly executing in between). This simplicity allows
us to analyze a finite set of cases that may arise during execution;
these cases are depicted in the right pane of Figure 5.

o Normal: This is the standard, unmodified case for reference.
Function f; executes, followed by f,, which is followed by
normal execution.

Stage 0: f1 has been delayed, but execution failed before
reaching f>. The experiment failed at a very fundamental
level: we could not violate this property using our standard
program transformations. Interpretation of this case could fall
in either direction: the tests did fail, but the experiment was
not actually “conducted.”

e Stage 1: Execution fails while executing f>. This is indicative
of a real specification, but the circumstances also suggest ad-
ditional information: f}, the delayed call, appears to directly
or indirectly establish f,’s precondition.

Stage 2: Execution fails while forcing the execution of fi.
Once again, this is evidence of a real specification, but it also
reveals that f; puts the program in a state in which f; cannot
safely execute. An example might include f] involving the
“use” of a resource and f> “closing” it.

Stage 3: The experiment fully completes and execution contin-
ues as in the normal case. If the tests pass, then we have strong
evidence that the specification is false: obeying it appears to
be unnecessary for correctness. If the tests fail, then we have
potentially revealed what may be a particularly subtle and
important true specification—one that, if violated, silently
puts the system in an undefined error state.

3.5 Validity and Limitations of Results

In the ideal, we have a fully representative universe of perfectly
controlled experiments executed under fully exhaustive tests, and
DSI always classifies valid and false specifications correctly. This
ideal is impossible both in theory and in practice, imposing sev-
eral limitations on the technique—limitations that also apply to
specification inference in general.
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Figure 5: The complete DSI process for temporal function-call properties.

False Validations DSI can misjudge false specifications as true.
Two main issues surround DSI’s false validations: false causal
inference and overgeneralization. Both are ultimately a result of
problems with DSI’s experiments.

False causal inference arises when DSI attempts to violate a
specification, but that violation causes unintended, non-specification-
related side effects. As we discussed earlier, this issue relates to the
matter of experimental control, and perfectly controlled automated
experimentation within complex, interconnected software systems
is impossible in the limit. We have, however, sought to mitigate this
problem with our notion of minimally-intrusive transformations, and,
to a lesser extent, our choice of domain. Temporal specifications are
a natural fit for DSI: they specify the ordering of method calls, a
separable concern that can be modified fairly independently of the
methods themselves.

Overspecification occurs due to a lack of sufficient examples of a
specification’s usage in a code base. Consider a hypothetical specifi-
cation: “List.size() must be called before calling List.get(int).”
It is arguably false: although it reflects a sensible bounds check-
ing practice, there are plenty of use cases where it need not be
followed. If those alternate use cases are not reflected in the pro-
gram, though, DSI will only generate failing experiments and judge
it valid. This class of false inference is naturally more prevalent
when DSI evaluates more “intended-general” specifications, such as
those over standard libraries. There is an interesting nuance here,
however: many apparently-overspecified false specifications may
in fact be valid. If every List in one specific project does always
have the possibility of being empty, then DSI has classified a true,
project-specific refinement of a more general specification.

False Invalidations DSI can also misclassify true specifications as
false. The main issue here is conceptually simpler than the previous
cases: software testing is naturally incomplete, so it is possible
for the “spec-violating” experimental program to be misjudged as
correct. We avoid the more egregious cases of this problem in
practice with the Preamble phase’s sanity checks that ensure the test
cases exercise the property-related behavior. In other words, we run
all experiments along the paths of known test cases, giving us a form
of “partial completeness.” Note, though, that these checks do not
guarantee that the test suite (especially its oracle) is perfect. In any
case, DSI provides a very concrete counterexample that is likely to
be much easier to inspect than a specification on its own: a test case
in the form of a similar alternate program that both 1) violates the
mined specification and 2) is apparently correct.

The Inability to Violate a Specification Occasionally, DSI is
unable to violate a given mined specification. This anomaly is sur-
prisingly useful in practice. We believe our tool’s ability to “break”
specifications is comparable in power to a human programmer: it
lacks human ingenuity, but it does have access to the unique and
powerful lazy analysis primitives. If DSI cannot violate a proposed
specification in any reasonable way, that specification is likely to be
unimportant even if technically true.

An example will clarify this point. Our implementation works by
reordering function calls. Consider the following code snippet:

1 public String getResult() {
2 return this.calc.compute();

3}

A simple inductive inference tool may observe that getResult and
compute always execute in sequence at runtime and may present the
relationship as a specification. Note, though, that the structure of
the program prevents any sensible violation. A programmer would
quickly dismiss this specification as false for the very same reason
that DSI would fail to (even begin to) prove it true: neither DSI nor
a programmer could possibly violate it.

This specific problem of “false specifications caused by one func-
tion calling another” has been addressed in the literature through
purpose-built heuristics, such as the “control-flow artifact filter” in
Yang et al.’s Perracotta tool [38]. DSI’s natural “failure to violate”
elegantly generalizes and handles this and many other cases of “spu-
rious specifications” without the need for heuristics.

Our implemented tool is robust, scalable, and general. In the
following section, we present the results of a case study of our tool
on real, widely-used Java projects.

4. CASE STUDY

This section presents the results of a case study of our DSI tool
for Java programs. We have sought to answer the following research
questions.

1. Is our tool robust? Does it function on complex, real-world
software?

2. What are the characteristics of DSI-validated specifications
of set of real-world Java programs?

3. What are the practical strengths and limitations of our tool,
and how do they translate to the DSI methodology as a whole?



We continue with a discussion of our experimental setup, which is
followed by a presentation and an analysis of our results.

4.1 Experimental Setup

Our test subjects are a set of Java programs drawn from the Da-
Capo benchmark suite (version 9.12-Bach).! DaCapo differs from
traditional “microbenchmarks” in that it is formed from over a mil-
lion lines of code of real, widely-used applications, creating an
uncommonly realistic workload.

DSI operates on mined specifications. As we noted earlier, we
modified an inductive specification learning tool [17] to function
without heuristics. We configured it to find all instances of simple
sequences: pairs of method calls that appear to be obeying a se-
quential ordering restriction between them. For brevity, we omit the
implementation and experimental details of this process.

Remark. The “sequence” template is simple, almost to the point
of being simplistic. In practice, it captures a surprisingly broad
amount of specification behavior. Our previous work on the Javert
tool [18] has demonstrated that almost all temporal function-call
specifications can be decomposed into fundamental pieces, simple
sequences and small loops. In addition, note that our DSI tool is
not inherently limited to simple patterns, both in theory and in the
current implementation: it can work with any regular specification
pattern over any number of distinct functions.

We ran all experiments in parallel on several 64-bit Linux servers,
each configured with with Intel processors (Xeon and Core 2) and
the 64-bit Oracle Java Virtual Machine, Server Edition, version
1.6.0_25.

4.2 Results

A summary of our results appears in Figure 6. Our tool individ-
uvally analyzed 7,848 mined specifications, systematically judging
each as a likely specification or likely non-specification. In each
case our tool performed robustly, both validating and invalidating
specifications within large, complex software projects.

Performance Performance was acceptable: the majority of specifi-
cations were analyzed in under two minutes. Our task is embarrass-
ingly parallel as well, a fact we utilized fully in our study by using
several compute servers. Notable performance exceptions were the
Jython and Eclipse benchmarks. Jython and Eclipse contain many
mined specifications whose violation hinders termination, forcing
our system to often wait until a conservative timeout had expired
(five minutes) before proceeding. In practice, this timeout can be
reduced to a value more appropriate to a particular project.

Likely Non-Specifications Figure 6 lists detailed results of our
tool’s experiments on the 7,848 input specifications. The first group
of four columns describes the mined specifications our tool judged
as likely non-specifications.

The first column (“Could Not Violate”) counts specifications that
could not violate in any way, and as discussed earlier, were judged to
be “unimportant.” Many of these cases were a result of the “control-
flow artifact” specifications described earlier (one function directly
or indirectly calling another), but there were several other cases as
well that were naturally captured by our tool’s “cannot-violate im-
plies non-importance” principle. For example, one case involved the
static type system preventing us from moving an object’s constructor
call after its first true method call, the more abstract principle here be-
ing “ordering restrictions involving constructors cannot be violated

'A small minority of the standard benchmarks were omitted solely
due to technical problems with their execution under instrumentation.
‘We have no reason to believe our results will significantly differ once
they are included.

by programmers.” This eliminated the need to write a “constructor
ordering relationships are false” heuristic.

The second two columns correspond to “Stages” of execution
described earlier and depicted in Figure 5. In the second column
(“Stage 07), every experiment resulted in a program crash soon after
we “delayed” the first function call. Stage O results generally fall
into two categories:

1. The fact appears to be fully “enforced” at runtime, either
through assertions or other checks, and is thus impossible to
violate on tested code.

2. There is a more specific and relevant specification we should
be analyzing instead. For example, if functions a, b, and ¢
all execute in sequence at runtime and a crucial relationship
exists between a and b, we will be unable to run a successful
experiment involving a and c. Our heuristic-less specification
miner forces us to test every possible mined specification, so
we would eventually properly classify the crucial a/b specifi-
cation. The general practical implication is that DSI can more
readily experiment on smaller, more manageable pieces (the
transitive reductions) of larger specifications.

The third column lists those mined specifications whose experi-
ments all fully completed, violating the property, but continued
to be judged correct by the relevant tests. The experiments can
be inspected by a programmer and serve as a form of “certificate’
demonstrating that the lack of the specification’s necessity—our
primary goal. Note the sheer volume of this category: 55% of
the mined specifications (over 4,000) were invalidated, every one
of which had the potential to be called a “true specification” by
an inductive learning tool and to waste a programmer’s time. We
note also that the standard frequency heuristic does not appear to
properly classify these “shown unnecessary” specifications. In our
results, significant portions of both rarely- and frequently-executed
specifications were invalidated.

In response to Research Question 1, we are encouraged by the
fact that this level of interference and experimentation was possible
in large and complex software projects: our initial hypothesis was
that almost any runtime perturbation of function ordering would
result in a fairly immediate crash.

As noted in the previous section, it is possible for DSI to mis-
takenly invalidate a specification. If a transformation successfully
violates a specification, it is possible for it to “infect” the state of a
system in such a way that existing tests do not detect. We selected a
limited random sample of 25 of these invalidated specifications and
manually analyzed their usage in each project’s source code. None
of them appeared to be improperly classified: the ordering exhibited
in the source code is apparently coincidental.

s

Likely Specifications To answer RQ2, we analyze the set of likely
specifications in more depth. The second group of columns in
Figure 6 contains counts of the mined specifications our tool judged
to be likely true. Each column corresponds to a “stage” of execution
described earlier and depicted in Figure 5. The first two columns
of this group correspond to fairly standard and local “typestate”
specifications:

1. Specifications whose experiments all end in Stage 1 exhibit a
precondition relationship: the first function call establishes (a
part of) the precondition of the second, and delaying it causes
the appropriate crash.

2. Specifications whose experiments all end in Stage 2 exhibit a

state transition relationship: the first function call was legal
in its original context, but it becomes illegal after the second



Likely Non-Specifications

Likely Specifications

Mean Time/ Could Not Stage O:  Stage 3: Stage 1:  Stage2:  Stage 3:
Benchmark Spec. (s) Violate Failure = Complete  Total f> Crash  f] Crash Complete Total
avrora 47.1 16 91 281 388 18 2 52 72
batik 69.4 190 543 1171 1904 27 5 127 159
eclipse 225.9 357 297 627 1281 25 45 75 145
h2 102.8 19 96 325 440 18 2 37 57
jython 936.4 135 129 200 464 10 8 11 29
luindex 35.1 8 125 256 389 10 32 32 74
lusearch 91.4 16 55 73 144 3 6 14 23
pmd 79.1 116 152 593 861 12 1 37 50
sunflow 34.1 4 79 64 147 13 0 36 49
xalan 76.0 102 278 713 1093 18 6 55 79
Total 963 1845 4303 7111 154 107 476 737

Figure 6: Detailed results of our case study. Each entry is a count of the number of mined specifications our tool judged to fall into the
given column’s category. Times are given in terms of single-CPU time per property, which is independent of our parallel execution

of the larger collection of experiments.

function executes (e.g. attempting to use a resource after it
has been closed).

Most interesting are the specifications whose experiments all fully
completed (Stage 3). In these cases, each experiment silently cor-
rupted the program state and caused the tests to fail at a later—
sometimes much later—time. A small, randomly sampled collection
of these specifications follows.

e In Lucene, delaying a “commit” operation on an index until
after it is closed corrupts the index but causes no overt failure.

e In H2, a connection information object will silently return a
bogus password hash from a connection information if read
before initialization is complete.

e Various XML parsers in the projects require handlers to be
set before parsing begins and will not warn the user if none
has been set (our sample included two of these).

o In Sunflow, the SunflowAPI object’s initialization is idiomatic.
Moving any part of it until after a call to render causes incor-
rect output but no obvious crash. Two other examples in our
sample followed a similar “idiomatic initialization” pattern.

We are continuing to analyze these results in depth, but thus far this
case study has suggested that our DSI tool is general, robust, and
effective.

4.3 Discussion

To further answer Research Questions 2 and 3, we analyze our
results in further detail.

Confidence in Results DSI is systematic and appears to yield
strong, algorithmically-decided results. However, as we discussed
in Section 3.5, our methodology is subject to a number of potential
threats that may lead to incorrect classification. We have not yet
manually validated all 8,000 classified specifications, but we are
nonetheless confident in the quality of the majority of our results.
One notable exception is the class of specifications (weakly)
classified as false during “Stage 0: Failure” (Column 2 of “Likely
Non-Specifications in Figure 6). Recall that these are specifica-
tions for which we delay the first call, but the program crashes
soon after, suggesting that they are difficult to meaningfully violate.
In the previous section, we did classify these “failed experiments”
into two fairly benign general categories, but we believe that with

continued exploration we may encounter cases for which a human
programmer could have conducted a successful experiment. If this
occurs, however, we intend to use those examples to improve DSI’s
transformations.

On the other hand, we are generally confident in DSI’s systematic
invalidations: to date, we have observed no false classifications
caused by insufficiently powerful tests. We are also optimistic about
our continued evaluation of the “true” specifications. Our continuing
manual validation of these specifications has turned up no false
positives thus far.

Performance and Usefulness Obscured by the “average time per
specification” performance statistic is the fact that this case study
consumed two full weeks of CPU time. Our prototype is certainly
computationally expensive: for each mined specification, it gener-
ates a family of transformed programs and runs an entire test suite
several times. We note that DSI is currently implemented straight-
forwardly and that we expect many significant optimizations to be
possible, including, for example, performing multiple transforma-
tions at once or taking advantage of a capture/replay framework.
We also emphasize that our results form a rich dataset on which
simpler approximations may be trained, similar to Le Goues and
Weimer’s [24] lightweight statistical model for classifying mined
specifications.

5. RELATED WORK

This section discusses our automated specification validation tech-
nique in terms of several lines of related work.

Inductive Specification Inference Inductive specification infer-
ence techniques have been developed for a variety of domains.
Kremenek et al. have presented a framework [23] based on proba-
bilistic inference that reflects the essence of the inductive process:
leveraging beliefs about software to infer general specifications from
specific examples of programs. Several targeted techniques infer
temporal specifications, the subject of our own implementation of
DSI. Both dynamic [3, 9, 18, 25, 38] and static [34] techniques fol-
low the same general approach: they observe temporal relationships
in programs and inductively elevate them to specifications. Other
successful application domains of inductive specification inference
are assertions over program state [13, 20], determinism specifica-
tions for concurrent programs [6], and function contracts [30]. Less
formal approaches include lightweight “programming rules” [7, 26],



which have been particularly effective at revealing programming
mistakes.

These techniques all confront one central issue: precision. Gener-
alization is unsound, and the inductive leap from one program to a
specification about an entire class of programs is essentially an edu-
cated guess. This issue is not merely theoretical: a recent study [29]
has shown that one third of inductively-learned code contracts are
incorrect or irrelevant (and in our experience, the temporal property
domain can be worse). As a result, specification inference research
tends to contain an empirical component evaluating precision, and
specific techniques have also been proposed to help programmers
debug [4] and filter [24] erroneous mined specifications.

DSI provides a new way of approaching the specification vali-
dation problem. Rather than speculating about specifications, our
technique allows one to test them experimentally and automatically.
As a standalone automated validation procedure, it treats classifica-
tion as a separate problem and could thus be used to improve any of
these existing inductive techniques.

Validating Mined Specifications with Testing In recent work de-
veloped concurrently with our own, Nguyen and Khoo [28] use
mutation testing to validate one class of temporal specification: pre-
condition relationships. If a function call foo() appears to be a
precondition for calling bar (), their technique generates a test that
deletes the call to foo() and simply replaces its return value with
a randomly-generated value. Their technique then classifies the
specification as “significant” if and only if bar (), specifically, then
crashes with an exception.

DSI is a much more general technique that targets the entire
class of regular temporal properties, of which preconditions are one
special case. It also implements function reordering, a much more
complex and nuanced form of experimentation than their simple
deletion of function calls (which can be done in our tool as well).
Nguyen and Khoo’s work also focuses only on “local” specifications:
a tested API must crash immediately with an API-related exception
to be judged significant. DSI tests significance with a more general
notion of system-level correctness, which fully encompasses both
these “local preconditions” and a much larger class of subtle, system-
level specifications. In addition, Nguyen and Khoo do not discuss
the important threats and limitations we describe in Section 3.5.

Fraser and Zeller use an idea similar to DSI in recent work on
generalizing unit tests [16]. We aim to invalidate mined specifica-
tions; they aim to invalidate inferred assertions for unit tests, and
both techniques use mutation as the underlying technique. Apart
from the technical differences arising from the differing problem
domains, DSI’s general execution somewhat differs as well. Put
plainly, we invalidate specifications when a known-violating pro-
gram does not appear to be broken. They invalidate assertions when
a known-broken program does not appear to violate the assertion.

Non-Inductive Specification Inference Some specification infer-
ence techniques are non-inductive. Work on extracting component
interfaces [2, 21, 36] is superficially similar to inductive specifica-
tion inference techniques, but the processes are more well-defined
and involve no inductive generalization. These techniques require
low-level specifications as input (or they are extracted from explicit
assertions in the code). They then solve the formal problem of
extracting a sound, higher-level “model” of component usage that
avoids violating any of the given low-level specifications. In essence,
DSI takes this process and lifts it to entire programs. In place of
a model of a specific component, we define a set of specification-
violating program transformations, and in place of low-level specifi-
cations, we use system tests.
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Combining Testing with Specification Inference Our implemen-
tation of DSI leverages testing to enhance specification inference,
the general idea of which was originally proposed by Xie and
Notkin [37]. Dallmeier et al.’s Tautoko tool [10] also uses test-
ing in a similar way. Tautoko’s problem setup is similar to that of
the “component interface” tools described earlier: generate a compo-
nent “model” that avoids errors. In Tautoko’s case, the component
is a Java class that is assumed to crash or otherwise raise an error if
used incorrectly. Tautoko starts with an inductively inferred model,
but it then enhances it in a feedback loop by generating targeted,
exploratory tests. There is a parallel here to DSI: we start with an
inductively learned specification and essentially “generate tests” to
validate it.

Testing “Necessity” with Experiments Our implementation of
DSI uses experimentation to infer properties of programs. Ruthruff
et al. [33] describe a general conceptual framework, Experimental
Program Analysis, for conducting experiments within programs; our
methodology can be seen as an instance of this framework. An idea
similar to “testing for necessity” has been used by Renieris et al. in
their study of elided conditionals [31]. In their work, the authors
generate experiments that test the whether or not the outcome of a
conditional statement (i.e. a branch) affects the outcome of a test,
much as we generate experiments that test the necessity of proposed
specifications.

Automatic parallelization tools make use of Commutativity Anal-
ysis [1, 32], which evaluates the necessity of a given ordering of
program statements. This is similar to how we test the “necessity”
of a temporal ordering constraint. Commutativity analysis uses a
far stricter criterion than DSI does in practice: that various order-
ings produce semantically identical results. In our implementation
of DSI, the fact that two functions commute is only one of sev-
eral reasons a specification might be invalidated, and the fact that
two functions do not commute does not imply a given ordering is
necessary to correctness.

Our work is also similar to Mutation Testing [11, 19]. In mutation
testing, modified programs (“mutants’) are used to experimentally
test the fault-finding ability of fest suites. In our work, we use
transformed programs that are similar to standard mutants to experi-
mentally test the validity of potential specifications.

6. FUTURE WORK AND CONCLUSION

This paper has presented DSI, a new methodology for automati-
cally validating specifications mined from programs. DSI’s novelty
lies in its ability to systematically test a specification for necessity
for correctness. We have implemented DSI for the domain of tempo-
ral function-call properties of Java programs. Our implementation
creates experiments through fully automated program transforma-
tions, and it evaluates them with traditional software testing. In a
case study, we demonstrated that our tool is effective on real-world
programs.

Our most immediate future work involves implementing DSI for
other domains to further demonstrate the strengths of the method,
and our early results in this area have been promising. We are also
interested in exploring other aspects of the definition of importance
of a specification. We presently define “important” conservatively:
if a programmer can feasibly violate a specification it is important.
Collecting more data on what it means for a specification to be
“important” might allow us to synthesize other effective and testable
definitions like this “ability to violate” concept introduced here.
Finally, we are exploring the possibility of using our DSI-validated
directly with other software tools—without intervention by a human
programmer.
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