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ABSTRACT
The interfaces of software components are often paired with spec-
ifications or protocols that prescribe correct and safe usage. An
important class of these specifications consists of temporal safety
properties over function or method call sequences. Because vio-
lations of these properties can lead to program crashes or subtly
inconsistent program state, these properties are frequently the target
of runtime monitoring techniques. However, the properties must
be specified in advance, a time-consuming process. Recognizing
this problem, researchers have proposed various specification in-
ference techniques, but they suffer from imprecision and require a
significant investment in developer time.

This work presents the first fully automatic dynamic technique for
simultaneously learning and enforcing general temporal properties
over method call sequences. Our technique is an online algorithm
that operates over a short, finite execution history. This limited
view works well in practice due to the inherent temporal locality
in sequential method calls on Java objects, a property we validate
empirically. We have implemented our algorithm in a practical tool
for Java, OCD, that operates with a high degree of precision and
finds new defects and code smells in well-tested applications.
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1. INTRODUCTION
The interfaces of software components are often paired with

specifications or protocols that prescribe correct and safe usage.
If violated, software systems may crash or—perhaps worse—be
placed in an inconsistent state and behave nondeterministically.
One important type of these specifications is the class of temporal
safety properties over function or method call sequences. Common
examples include locking disciplines, in which locking functions
(e.g. lock, unlock) must be called in a strictly alternating fashion, and
resource usage, in which all resource-like objects (e.g. files, sockets)
must be eventually closed or disposed and cannot be used thereafter.

Formalized by researchers as the typestate [26] concept, these
properties capture a broad category of software defects and have
inspired a diverse body of research. Many static formal verification
algorithms (in particular software model checkers [8]) either specif-
ically target these specifications [16] or use them as their primary
example. Similarly, dynamic tools, such as runtime monitoring
frameworks [6], often operate over these temporal properties as
well. These tools and techniques have advanced significantly in
recent years, particularly in the areas of scalability and automa-
tion, but they still must be supplied with temporal specifications to
verify—generally a manual and time-consuming task.

This dearth of enforceable properties has led in part to the devel-
opment of automated specification mining or inference techniques.
These tools observe a system’s source code or its runtime behavior
and produce one or more temporal specifications as a result. Most
of these tools leverage potentially imprecise parameters, such as the
frequency of a specification’s occurrence in the source code or the
number of times it was satisfied in a dynamic trace. Similar to data
mining (in fact, many specification mining tools directly use data
mining algorithms), these inexact parameters lead to a precision/
recall tradeoff: a precise tool may fail to infer important proper-
ties, while a more liberal tool may produce many false properties,
requiring a large time investment by the software developer.

In this paper, we present a novel technique and a practical tool,
OCD, for simultaneously learning and enforcing general temporal
properties over function or method call sequences. Both tasks are
tightly integrated and form a symbiotic relationship: the verifier
benefits from the abundance of inferred properties, and the learning
algorithm benefits from the results of continuous verification to learn
and refine properties. Most importantly, the software developer—
our intended user—benefits from being removed from the center of
the process: he or she can use OCD as a turn-key dynamic online bug
finding tool that requires no input beyond the program to analyze.

OCD is a dynamic trace processor for Java programs: it analyzes
Java method calls online through load-time instrumentation. At
a high level, our algorithm functions by using a predefined set of
specification templates—two-letter regular expressions that repre-
sent components of larger, more general temporal properties—and



attempting to enforce them in a brute-force manner over all possible
combinations of method calls. Our experience with the Javert spec-
ification miner [17] provides evidence that the inference of these
small properties can yield a surprisingly complete and general class
of temporal specifications, and we show in this paper that enforcing
these smaller patterns is a safe approximation of enforcing the larger,
general properties. Our work is enabled by two key observations:

Temporal Locality From a scalability perspective, this brute-force
approach would ordinarily be intractable in both time and space. We
solve this problem by operating over a relatively small finite window
of trace events, which greatly constrains the number of property
instances that we learn and enforce. Though we demonstrate that
the verification of properties over a finite window is a safe approxi-
mation of verification over a complete trace, a finite window may
greatly reduce the effectiveness of any learning algorithm: we may
be unable to sufficiently speculate if our view is too short-sighted.
This effect is greatly mitigated—sometimes even completely—by
the fact that method calls in Java programs exhibit a high degree of
temporal locality; that is, operations on particular objects tend to be
tightly clustered in time. We have stated this observation anecdotally
in previous work; we now evaluate it empirically in Section 3 and
find it to be true for a diverse set of commonly used Java programs.

Verification of Redundant Properties Dynamic specification min-
ers attempt to synthesize specifications by generalizing a program’s
observed behavior. Unfortunately, “false” specifications often result
from the inference of true properties of the trace (perhaps inferred
from coincidentally common behavior caused by control flow ar-
tifacts, for example) that are not considered by the developer to
be true specifications. While this poses a major precision problem
for specification miners, it affords us an interesting opportunity.
As the goal of our technique is to locate defects—not to produce
human-usable specifications—the properties we infer are seen by
a human developer only if they are violated. Rather than applying
coarse-grained filtering heuristics (as is commonly done [29]) and
likely losing many important specifications, we can simply attempt
to verify all learned properties without human validation. The vast
majority of the “false” properties are verified and produce no output,
thus trading inexpensive CPU time for valuable human developer
time.

We evaluated OCD on a set of commonly used Java programs
and found that it learns and fully verifies a large set of temporal
properties with acceptable overhead. On a subset of our evaluated
programs, our tool revealed previously unknown defects and code
smells. In all experiments, OCD maintained a high degree of preci-
sion.

We make the following specific contributions:

1. The first online algorithm that simultaneously learns and en-
forces general temporal properties of software systems. Our
algorithm is an online trace processor that operates over a
short-sighted, finite window of trace events.

2. A practical tool for Java, OCD, which we use to demonstrate
the effectiveness of our algorithm. OCD learns and verifies a
large number of properties with acceptable overhead and high
precision, and it finds previously unknown defects.

3. A demonstration of the generality of our work. In particular,
we show that our tool can be configured to discover and en-
force function precedence protocols [25] as well as temporal
association rules of function calls and field accesses [22].

4. An empirical evaluation of the temporal locality of Java
method accesses in practice, which we use to justify our
use of a short-sighted trace window (as well as set its size).
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Figure 1: Execution of Algorithm 1 on two example traces.

This paper is organized as follows. The following section (Sec-
tion 2) describes our general approach and algorithm, while Sec-
tion 3 discusses the realization of our algorithm as a practical defect
detection system. Section 4 contains an empirical evaluation of our
work, and Sections 5 and 6 discuss related work and our plans for
continuing this research, respectively.

2. APPROACH
This section describes our basic approach. We first describe our

algorithm in its simplest form (Section 2.1). We then expand on the
basic definition with a series of generalizations (Sections 2.2–2.4)
that form the final algorithm implemented in our tool, OCD.

2.1 Basic Algorithm
Our algorithm, described in pseudocode as Algorithm 1, functions

as an online trace processor that receives traced events from an in-
strumented application as they occur. It is configured with a pattern
template—an abstract model of a specification—and produces as
online output anomalies—specific instantiations of the templates
that likely represent defects in the monitored system.

Events In this basic incarnation of our algorithm, an event consists
only of a type τ . When tracing Java method calls, for example, τ

represents a method’s fully qualified signature. (Sections 2.2 and 2.3
sections discuss generalizations that consider additional information,
e.g. receiver objects.) Two example traces appear in Figure 1.

Pattern Templates A pattern template is a two-letter regular
expression describing the general structure of specifications to infer.
We refer to its alphabet as the symbolic alphabet, which for the
remainder of the paper we will assume without loss of generality
to be exactly {a,b}. For this expository example, we will focus on
the simple alternating pattern (ab)+, which describes the family of
two-event specifications in which the events must strictly alternate.
A minimal finite automaton that recognizes this pattern appears
in Figure 1. A concrete assignment {a 7→ τ1,b 7→ τ2} maps the
symbolic alphabet to two (distinct) trace event types. In the first
example trace of Figure 1, one possible concrete assignment into
the alternating pattern is {a 7→OS.lock,b 7→OS.unlock}, forming
the potential specification (OS.lock OS.unlock)+.

Finite Window Our algorithm operates over a finite window: a
bounded view of a trace’s history. The window is a standard FIFO



Algorithm 1 Online inference and enforcement algorithm.

Constants: P : Two-letter pattern automaton over {a,b}
with states {INIT, . . .}

Types: Asgn : (a : τ,b : τ)
Spec : (asgn : Asgn,sat : int, fail : int,st : state of P)

State: Q : Bounded Queue of τ

specs : Asgn 7→ Spec
Require: enew : τ

1: Q← ADD(Q,enew)
2: eold ← REMOVE(Q)

3: for all efut in Q do
4: if (eold,efut) /∈ domain(specs) then
5: specs(eold,efut)←

((
eold,efut

)
,0,0, INIT

)
6: specs(efut,eold)←

((
efut,eold

)
,0,0, INIT

)
7: end if
8: end for

9: for all spec in specs(eold,∗)∪ specs(∗,eold) do
10: if spec.asgn.a = eold then
11: spec.st← NEXT(spec.st,a)
12: else
13: spec.st← NEXT(spec.st,b)
14: end if

15: if spec.asgn.a not in Q and spec.asgn.b not in Q then
16: if ISFINAL(spec.st) then
17: spec.sat← spec.sat +1
18: else
19: spec.fail← spec.fail+1
20: if ISENFORCING(spec.sat,spec.fail) then
21: REPORTANOMALY( )
22: end if
23: end if
24: spec.st← INIT
25: end if
26: end for

queue; we add each new event to its head while simultaneously
removing the oldest event from its tail, maintaining a fixed size. We
formulate our algorithm in terms of this “expiring” event; the queue
in effect provides a short-sighted view of the future. Though omitted
from this presentation for brevity, we populate the queue with null
events on startup and drain it completely on shutdown.

Our algorithm aims to a) learn concrete assignments of the pattern
(i.e., specifications) that “should” be enforced and b) report viola-
tions as anomalies. Though conceptually distinct, our algorithm
integrates the two processes such that they are indistinguishable.
The following steps describe our algorithm’s execution, and they
serve to narrate the running example in Figure 1 and the pseudocode
of Algorithm 1. As this is an online algorithm, we describe its
execution in terms of the steps we perform on a single event.
State Our algorithm maintains a collection of 4-tuples, each
of which contains a) a concrete assignment, defined earlier; b) a
satisfied count, the number times the pattern was matched over a
substring of the trace; c) a failed count, defined similarly; and d) a
pattern automaton instance, which we encode as its current state.
Queue Maintenance (Lines 1-2) We add the newest event to
the head of the queue and remove the oldest for processing. In our
example (Figure 1), our queue is of length four and our newest and
oldest events are the same for both traces: Map.get and OS.lock,
respectively.

Lazy Instantiation (Lines 3-8) We observe the queue and identify
any upcoming pairings—concrete assignments of the pattern—that
we have not yet seen. We then instantiate two patterns, one for
each symmetric assignment, in their initial state. In our example
traces, Map.get and OS.lock have not yet occurred within a span
of four (our window size) events, so they are absent from the initial
specification table. After this step, two concrete assignments are
added to the table.

Advancing Automata (Lines 9-14) We iterate through all specifi-
cations that our currently processed event (eold) participates in (line
9) and advance their state machines (lines 10-14). The test at line 10
“dereferences” the concrete assignment to its symbolic letter, and the
state updates on lines 11 and 13 access an external function NEXT,
which is a simple accessor for the transition relation of the pattern P.
To improve performance, our implementation incrementally main-
tains a mapped index from each seen trace element on to the set of
all affected specifications. Trace 1 (left) of Figure 1 demonstrates
this step: all four specifications (including the two instantiated in
their initial state) are advanced according to the pattern.

Bookkeeping and Enforcement (Lines 15-26) Line 15 inspects
the queue, determining if any forthcoming event is relevant to the
current specification.1 If not, we have reached the end of a time-
clustered substring of the trace (with respect to the current specifica-
tion) and we inspect the last state of the automaton instance. If the
automaton was left in a final state (i.e., this trace “scenario” matches
the specification and is accepted), we increment the satisfied count.
If not, the we increment the failing count.

Line 20 accesses ISENFORCING, an external function (predicate)
that takes as input the historical statistics (i.e., the sat and fail
counts) and determines according to a predefined algorithm if the
specification should be considered “real” and enforced. One simple
implementation of ISENFORCING might be based on a ratio:

ISENFORCING(sat, fail)≡ sat
sat + fail

> THRESHOLD

We refer to such functions as learning strategies. The various
implementations and the values of their constants/thresholds are of
great importance to our system’s performance; we discuss them in
detail in Section 3. Finally, in the event that ISENFORCING returns
true, we report the current instance as an anomaly.

In Trace 2 (right) of our running example, both lock/unlock
specifications must be counted and reset as neither lock nor unlock
appear in the window. This results in a failure of both specifications,
with the failure of the more intuitive of the two (lock/unlock) likely
being flagged as an anomaly; that is, ISENFORCING returns true
for lock/unlock and false for unlock/lock. Note that in this case our
algorithm is conservative: it may be the case that an unlock event is
forthcoming, but our window is not appropriately sized to recognize
it. This may result in both unlearned properties (false negatives) and
false anomalies (false positives), which highlights the importance of
setting the window to an appropriate size.

2.2 Separating Event Instances
The most crucial omission from our basic algorithm is its lack of

support for separating and tracking multiple instances of the learned
specifications. When tracing Java method calls, for example, it
is often desirable to separate trace events that are generated from
different receiver objects; failing to do so can hurt both precision and
recall. For example, if we consider a source program in which all
operations require two nested locks, all traces would appear to fail
due to the apparent “double locking.” Even if we somehow learned

1For performance, our implementation maintains an incremental set
view of the queue.



the specification (or supplied it statically), we would generate false
error reports.

We adapt our algorithm to accommodate differences in receiver
objects—or, more generally, any form of different instance—by
extending the type of events from a simple type τ to a pair: (τ, id),
where τ is as defined previously and id is an integer identifier. The
remaining changes are straightforward:

• Rather than a single state st, each specification tuple now
contains a map: instances : (id : int) 7→ (st : state of P). Thus,
the single-instance specification tuple becomes a specification
“schema” that tracks multiple instances.

• The predicates “(not) in Q” on lines 3 and 15 now operate
only over the relevant queue elements; i.e. those whose id =
eold.id.

• Matching and anomaly reporting (lines 9-26) occurs on the
specific relevant instance.

• Lazy instantiation (lines 5-6) is extended to build specific
instances, and the “reset” operation (line 24) is replaced with
a full deletion from the specification’s instances map to pre-
vent unbounded memory usage. Note that our finite window
allows a rather simple solution to this problem, while other
runtime monitoring tools must interact with the target pro-
gram’s runtime (e.g. Java’s garbage collector through weak
references [6]).

The concrete assignment and statistics (sat and failure counts) are
shared between all instances.

2.3 Event Contexts and Multiple Patterns
The basic algorithm does not track any information about the

static source of the events. For example, one may choose to rep-
resent the static source of a Java method call as its call site. This
information is not critical to our algorithm’s execution, but it does
provide much more meaningful error reports. In addition, it al-
lows for new, more rich implementations of ISENFORCING (our
predicate that decides when a pattern is “learned”): we can now
favor properties that are satisfied in multiple, distinct source loca-
tions of the target program. The details of this extension amount to
straightforward bookkeeping and are omitted for brevity.

The final extension to our algorithm allows it to simultaneously
learn and verify multiple specification pattern templates. This is also
straightforward: it essentially amounts to running multiple copies
of the algorithm, one for each of the pattern templates.

2.4 Additional Considerations
Caching Failing Instances In general, the question of recall—
how many properties we enforce—is an empirical one. However,
for all specifications that are eventually learned and chosen for
enforcement, we do not miss the reporting of any anomalies. This is
due to 1) our conservative, eager error reporting and 2) the fact that
our implementation caches all failing instances for properties that
are not (yet) enforced. If the targeted program exhibits a defect while
the relevant property is still being “learned,” we cache the failing
instance and report it if or when the property reaches maturity.
Grouping and Ordering Patterns We observe that for any two
event types (method calls), there is at most one “best” property that
should be enforced. For example, consider our earlier example with
methods OS.lock and OS.unlock, and the following simple trace:

lock, unlock, lock, unlock, lock, unlock

Using fuzzy criteria for learning (i.e., an implementation of ISEN-
FORCING that admits failing instances), it is likely that both alter-
nating specifications (lock unlock)+ and (unlock lock)+ would be
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Figure 2: An example of our methodology for measuring temporal
locality.

learned. To mitigate this effect, we group all specifications over the
same trace letters—including those from multiple pattern templates,
discussed above—and restrict anomaly reporting to the “best” en-
forcing specification. We find that using a simple “satisfied ratio”
as a total ordering works well in practice as an implementation of
“best.”

3. SYSTEM DESIGN
This section presents the realization of our algorithm as a prac-

tical and effective defect detection tool, OCD. We start with our
methodology for selecting the default size for our finite window,
arguably the most important parameter in our system (Section 3.1).
Next, we discuss the various pattern templates we use (Section 3.2).
We then discuss the design and implementation of learning strate-
gies (Section 3.3), which have thus far been presented in terms of
the predicate ISENFORCING. Finally, we discuss our automatic
multivariate self-tuner (Section 3.4), which allows OCD to function
well on a wide variety of target programs without the danger of
“overtraining” its various parameters.

3.1 Window Size
The length of the finite window is a critical parameter of our

algorithm. If aggressively set to too low a value, we learn fewer
properties and perhaps generate more false defect warnings. If
conservatively set to too high a value, the algorithm may exhibit
a prohibitive amount of time and/or space overhead. Our goal is
to set a value that is as small as possible while still capturing a
large number of important properties. We set our default window
size based on an evaluation of the typical temporal locality of the
method call sequences of several Java programs. Our notion of
temporal locality is based on a measure of the trace distance between
successive method calls on individual objects; an example appears
in Figure 2.

Our choice of trace distance as a metric (as opposed to an alterna-
tive measure of locality, such as real time) is practical and driven by
our algorithm. Note, though, our restriction to pairs of successive
method calls. It should not be immediately apparent that this is
correct: if we consider a typical trace corresponding to the usage
of a resource containing the methods open(), read(), and close(),
for example, our definition omits any measure of distance between
open() and close(), which sounds like an “alternating” property we
might hope to learn. However, we can learn equally useful proper-
ties like “the string of read()s must occur after the call to open(),
and call to close() must occur after the string of read()s.” This is
the essence of our reasoning: each pair of successive method calls
represents a transition in a pattern automaton, and we can learn
patterns over the most essential transitions by solely considering
successive method calls.



Window Size
Benchmark 5 10 15 20 25 30 35 40 45 50

antlr 95.0 96.5 97.1 97.5 97.9 98.2 98.4 98.6 98.7 98.8
bloat 97.9 98.0 98.1 98.2 98.2 98.2 98.2 98.3 98.3 98.3
chart 82.4 88.3 100 100 100 100 100 100 100 100

eclipse 96.5 97.5 97.6 97.7 98.0 98.2 98.2 98.3 98.4 98.4
fop 88.5 89.9 91.0 91.2 91.3 91.5 91.7 92.9 93.4 93.8

hsqldb 99.5 99.7 99.8 99.8 100 100 100 100 100 100
jython 97.0 98.7 98.9 99.0 99.1 99.1 99.4 99.4 99.4 99.5

luindex 88.4 92.3 94.9 96.2 97.0 97.5 97.9 98.1 98.3 98.5
lusearch 93.1 94.5 95.5 96.1 96.3 96.4 96.5 96.6 96.7 96.8

pmd 97.9 98.1 98.1 98.3 98.4 98.4 98.5 98.5 98.5 98.5
xalan 82.5 87.8 90.5 92.4 93.7 94.6 95.8 96.2 96.4 96.6

Table 1: Percentage of same-object call pairs whose trace distance is
less than or equal to various potential window sizes. Traces consist
of JDK method calls.

Window Size
Benchmark 5 10 15 20 25 30 35 40 45 50

antlr 87.4 89.0 90.3 93.5 94.4 95.5 96.9 97.1 97.3 97.6
bloat 96.4 96.9 97.2 97.3 97.4 97.4 97.5 97.5 97.5 97.6
chart 70.7 77.2 99.7 99.7 99.8 99.8 99.8 99.8 99.9 99.9

eclipse 52.9 77.3 82.3 86.2 88.7 90.4 92.0 93.1 94.3 95.1
fop 73.7 83.8 84.1 84.5 85.4 86.5 87.1 87.4 89.2 90.6

hsqldb 34.9 43.5 97.2 97.5 97.7 97.8 98.0 98.1 98.2 98.3
jython 65.9 88.5 90.3 93.3 94.3 94.8 95.3 96.1 96.4 96.4

luindex 70.1 75.8 81.8 85.8 87.8 88.7 89.0 89.2 89.4 89.5
lusearch 77.1 77.8 78.1 84.8 97.7 98.5 98.5 98.6 98.7 98.7

pmd 79.6 81.2 81.8 82.1 82.5 82.7 82.9 83.0 83.2 83.2
xalan 81.9 86.7 89.0 90.5 91.7 92.5 93.7 94.2 94.5 94.6

Table 2: Percentage of same-object call pairs whose trace distance is
less than or equal to various potential window sizes. Traces consist
of intra-project method calls.

We performed our study of temporal locality on the DaCapo
workload [3], which includes a wide variety of production Java ap-
plications. For each benchmark, we evaluated the temporal locality
of successive method calls with respect to two types of traces:

JDK A caller-side transformation that traces all calls originating
in the benchmark and executing in the Java standard library.
This family of traces represents the benchmarks’ usage of
multiple external APIs.

Project A callee-side transformation that traces all methods de-
clared as public within the benchmark itself. We intend this
family of traces to represent the manner in which a project
uses its own APIs.

Figure 3 displays a histogram of the trace distances between
successive method calls for the eclipse benchmark, the largest and
longest-running of the suite, over the Project-typed traces. We omit
detailed histograms for the remaining benchmarks for brevity, but
we assert that the distribution is similar for all of the benchmarks
and trace modes. Note that it is highly left-skewed: the vast majority
of successive method calls are clustered within the trace, suggesting
that we are justified in our use of a short-sighted window.

Tables 1 and 2 contain evaluations of the effectiveness of vari-
ous potential window sizes for the JDK and Project-typed traces,
respectively. For a variety of sizes, we calculate the percentage
of pairs of successive method calls that fall at or under the given
window size. In other words, these data answer the question “If
OCD is configured with the given window size, on what portion of
a program’s execution could we effectively operate?” Our chosen
default window size (25) is emphasized.

These results are general and encouraging. However, they may
underestimate OCD’s potential. We conducted additional analysis on
the distribution of the problematic method calls within the traces, but
for space reasons, we elide a full presentation of these experiments
in favor of short descriptions.
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Figure 3: A histogram of the distances between successive method
calls on the same object during the execution of Eclipse.

Application Phases The problematic method calls were not dis-
tributed uniformly throughout the execution trace: most were con-
centrated during the startup and shutdown phases of each benchmark.
This suggests that our highly dynamic algorithm might perform
much better in the common case as it adapts to the common “phase”
of execution.

Fully Verifiable Types The problematic method calls were also
not distributed uniformly throughout all types (Java classes): a
majority of JDK types (and a sizable portion of project-specific
types) were fully verifiable with a window size of 25; that is, every
pair of method calls over these types occurred with fewer than 25
intervening trace events. In addition, the distribution of these fully
verifiable types was skewed toward the most frequently used classes;
that is, OCD has the potential to perform extremely well on those
types whose method calls occurred most frequently in the dynamic
traces.

Our sound enforcement of all inferred properties (cf. Section 2.4)
implies that OCD’s end-to-end recall—the proportion of all temporal
safety violations it finds—rests largely on its ability to effectively
learn temporal properties. The inference process is largely con-
strained by the finite window, but this demonstration of temporal
locality suggests that OCD is capable of inferring a large subset of
the relevant properties over any given execution.

Finally, note that we have specified a reasonable default window
size based on this evaluation. However, it is entirely configurable—
even online—and the temporal locality evaluation module is in-
cluded within OCD itself for project-specific tuning.

3.2 Selecting Pattern Templates
In this section, we present OCD’s rich suite of default pattern

templates. These patterns demonstrate both our tool’s power and
its generality. We first present three patterns that contain enough
expressive power to learn the phasic specifications, a general class
of typestate specifications we defined while developing the Javert
specification miner [17]. We then present two patterns that form a
dynamic version of function precondition mining, which we extend
to its dual—operational postcondition mining—with two additional
patterns. Two final patterns allow OCD to be used as dynamic
association rule miner.

Phasic Specifications In our previous work on the Javert spec-
ification miner [17], we defined the set of phasic specifications
and argued that it encompasses a large class of relevant temporal



properties in real software projects. Briefly, these specifications can
all be expressed as the composition—a generalized form of regular
language intersection—of instances of the patterns (ab) and (ab+c).
For space reasons, we state without proof that the following patterns
sufficiently form an over-approximation of this set:2

ab SEQUENCING (1)

ab+ LOOPBEGIN (2)

a+b LOOPEND (3)

Note that OCD does not actually use these patterns to build larger
specifications at runtime; it instead simply learns and enforces these
smaller building blocks. Any error that manifests itself in any
potentially composed specification also manifests itself as an error
in at least one of these smaller specifications, rendering this process
safe.
Pre and Postconditions Several recently developed tools have
focused on mining preconditions in software systems and flagging
violations as potential defects. In one particularly relevant exam-
ple, Ramanathan et al. [25] mine “function precedence protocols,”
which are preconditions of the form “function x is always called
before function y.” We introduce the following patterns that extend
this idea with the logical dual—postconditions, or function sequence
protocols—allowing OCD to function as a general, dynamic imple-
mentation of these tools.

ab? PRECONDITION (4)
a?b POSTCONDITION (5)

a+b∗ GENERALIZED PRECOND. (6)

a∗b+ GENERALIZED POSTCOND. (7)

The first two patterns are straightforward, while the second two
provide more generalized variants that allow strings of identical
calls as preconditions and postconditions.
Association Rule Mining PR-Miner [22] is a tool that locates
potential software defects by learning temporal association rules
between function calls or variable accesses. An association rule
miner infers instances of general temporal association—without
a necessary ordering relationship. An example might include the
pairing of the methods setHost and setPort on a socket: the two
methods are always called together as a pair, but the calling sequence
does not matter. The following patterns allow our system to learn
and find violations of general association rules of method calls.

(ab|ba) ASSOCIATION RULE (8)

(a+b+)|(b+a+) GENERALIZED ASSOC. RULE (9)

We also add a generalized variant that allows for sequences of
identical calls.

As with the configuration of the window size, the pattern suite
is completely configurable: should this suite be insufficient for
a particular specialized domain, a developer may add or remove
patterns using the standard (academic) regular expression syntax.

3.3 Learning Strategies
Recall that a learning strategy is a function that decides if a given

specification should be enforced. We have previously introduced
this concept in terms of the ISENFORCING predicate, which operates
over historical statistics, namely the raw counts of the number of
times the given specification has been satisfied and has failed:

ISENFORCING : (sat : int, fail : int) 7→ (true|false)
2We showed previously [18] that it was generally impossible to
precisely decompose three-letter patterns into a set of two-letter
patterns. However, safe approximations are possible.

OCD implements a slight generalization of this function:

ISENFORCING : (sat : int, fail : int) 7→
(ENFORCING|LEARNING|DEAD)

The previous values of true and false map to the new values of
ENFORCING and LEARNING, respectively. The addition of the third
value—DEAD—allows OCD to aggressively remove specifications
that are showing strong evidence of being irrelevant. These stale
specifications (e.g., those that have failed a majority of the time) can
cause a performance drain on the system and are generally safe to
prune. Note that a given implementation of a learning strategy is
not required to ever return DEAD; it can be conservatively omitted
from the strategy’s range, thus preventing any eager pruning.

We also allow learning strategies to be combined through a con-
servative join (OR) and a more aggressive meet (AND) operator,
which closely resemble the AND and OR operations in ternary logic:

E L D
E E E E
L E L L
D E L D

E L D
E E L D
L L L D
D D D D

Join Meet

OCD includes three basic strategies, and its default consists of the
“meet” of all three.

Count This strategy operates directly on the satisfying and failing
counts, returning ENFORCING if the satisfied count is above
a threshold, DEAD if it is below a (different) threshold, and
LEARNING otherwise.

Ratio This strategy closely resembles our example ISENFORCING
predicate in Section 2.1: it calculates the ratio of satisfying
instances to total instances and returns DEAD, LEARNING, or
ENFORCING based on various constant thresholds.

Context This strategy considers the static calling contexts that have
accumulated for the current specification. It returns ENFORC-
ING if the specification has recorded at least a certain thresh-
old number of unique calling contexts.

3.4 Self-Tuning
The inference of specifications directly from code is an inherently

imprecise endeavor, and attempting to automatically enforce these
specifications only compounds the problem. We have consolidated
all of our “fuzzy” reasoning in our learning strategies, which operate
implicitly with a multitude of constant “thresholds.” Thus far, we
have left the values of these constants conspicuously undefined.

These thresholds have a profound impact on our tool’s output.
When considering just a single constant—the minimum ratio in our
RATIO strategy, for example—the extremal value of zero trivially
produces an anomaly for all instances of every specification; the
extremal value of one produces no anomalies whatsoever; and other
values have the potential to produce any number in between.

A standard approach to setting these types of thresholds is to
perform a series of exploratory experiments to find reasonable, ap-
parently general values and evaluate them using a form of cross-
validation. Unfortunately, we were unable to progress past the
first step: seemingly reasonable values that produced a handful of
anomalies on one workload would cause a flood of thousands on
another.

Our solution to this problem is a multivariate self tuning module
that allows OCD to actively tune itself to the current execution. The
module takes as input an objective function and one or more tunable
variables. The objective function is defined over the reals, and the
“optimal” value is defined to be zero.
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Objective Function Tools that learn specifications from code
often make the assumption that code is mostly correct: common
behavior represents correct behavior. With this in mind, we expect
that an agnostic, dynamic fault detection tool like our own should
not generally produce voluminous output. Our standard objective
function is thus defined in terms of a user-defined “budget” of
expected anomalies, which we currently set to a liberal default of
10:

OBJECTIVEFUNC ≡ anomaly_budget−anomaly_count

We build the set of tunable variables by programmatically collecting
all thresholds and other constants accessed by the currently selected
learning strategy.

The self tuner operates by conducting a sequence of experiments
that simultaneously 1) attempt to minimize the objective function
and 2) reveal the relative “power” of adjusting any given variable in
terms of its observed effect on the objective function:

1. Pick a variable v from the set of tunable variables. Increment
or decrement the variable’s value according to its historical
“power.” Log this change and the current value of the objective
function.

2. Wait for a specified interval or number of events to pass.
3. Observe the new value of the objective function and use the

difference to refine our knowledge of v’s “power.” Repeat
from Step 1.

The selection operation (“pick”) of the first step is a randomized
choice that favors the variables most likely to minimize the objective
function. We do not assume the objective function to be stable: the
self tuner calculates a variable’s current “power” as the mean of
its last three observed effects rather than an entire history. We also
set the initial values of each constant to conservative values (i.e.,
values that cause the learning strategy to admit large numbers of
specifications).

This simple scheme works remarkably well in practice. It allows
OCD to adapt well to programs of different types and sizes, and it
greatly improves the tool’s usability and general applicability.

4. EVALUATION
This section describes the implementation and evaluation of OCD.

We start with a brief description of of OCD’s architecture and con-
tinue with a brief description of a selection of its notable components.
Next, we report on our tool’s performance when run against the Da-
Capo workload, primarily in terms of precision and overhead. We
conclude with a selection of experiments on other workloads that
highlight OCD’s practicality and effectiveness.

4.1 Implementation
OCD’s high-level architecture is depicted in Figure 4. Our system

is implemented as a pure-Java agent that is invoked by the Sun Java
Virtual Machine just prior to the execution of the target application’s
entry point. At load time, OCD adds tracing instrumentation to the
target application, which generates a stream of events. The analysis
engine runs separately, decoupled from the target application. We
briefly describe a selection of its components.

Tracing Instrumentation We have implemented a flexible trac-
ing library using bytecode instrumentation. At load time, OCD
transforms the target application’s classes. Our framework is quite
general: we have implemented a) both caller and callee tracing,
b) the tracing of field accesses, c) the ability to trace static calling
contexts for all types of tracing, and d) the ability to filter instrumen-
tation points by signature and access.

Event Stream The tracing instrumentation is added directly to
the target application’s classes, revealing a potential thread safety
issue for multithreaded targets. We solve this with a straightforward
decoupling of OCD and the target application: we run the analysis
engine in a separate thread that reads from an asynchronous event
stream. This solution also allows for a modest amount of parallelism.

Status/Control Web Server For our primary evaluation, our usage
of OCD is similar to that of most program analysis tools: we take a
predefined workload, add our tool to its configuration, and collect a
final report of the results. During development, however, we found
more interactivity necessary. OCD embeds a lightweight web server
within the target application that allows a) the viewing of the current
collection of anomalies and specifications and b) the viewing and
online mutation of any of its parameters. We expect this feature to
become more useful as we explore more specialized uses of OCD,
e.g. as a debugging tool for diagnosing known-failing test cases.

4.2 The DaCapo Workload
We performed our first evaluation on the DaCapo workload [3],

a benchmarking suite consisting of several widely-used Java ap-
plications.3 Adding OCD to the suite required no changes to the
test harness, which conveniently verified that the benchmark suite
continued to produce correct output while instrumented by OCD.
We performed our experiments over two types of tracing: 1) tracing
of all outgoing calls to Java’s standard library and 2) tracing of
all project-specific methods declared public. The results of these
experiments appear in Figure 5.

3We used DaCapo version 2006-10-MR2 on Sun’s 64-bit Linux
Server VM, version 1.6.0_16.



Specifications Overhead
Benchmark Considered Enforced Anomalies (factor)

antlr 304 31 0 2.9
bloat 1,632 12 0 5.8
chart 368 4 0 5.1

eclipse 3,272 118 2 3.0
fop 256 2 0 2.5

hsqldb 48 0 0 1.6
jython 960 23 1 2.9

luindex 472 6 0 2.1
lusearch 168 9 0 1.9

pmd 320 11 0 3.8
xalan 464 14 0 4.6

(a) JDK method tracing.

Specifications Overhead
Benchmark Considered Enforced Anomalies (factor)

antlr 23,280 380 0 282.5
bloat 50,560 156 1 52.7
chart 1,472 13 0 6.5

eclipse 145,256 898 3 14.5
fop 6,568 100 0 21.0

hsqldb 1,088 24 0 8.2
jython 46,344 81 0 89.8

luindex 2,528 104 0 143.1
lusearch 1,432 30 0 321.9

pmd 30,568 97 0 30.4
xalan 7,824 22 0 31.1

(b) Project-specific method tracing.
Figure 5: Results on the “known good” DaCapo suite.

Java Type Pattern

Enumeration hasMoreElements() nextElement()?
Iterator hasNext() next()?

StringTokenizer hasMoreTokens() nextToken()?
Vector size() elementAt(int)?

BufferedReader readLine()∗ close()+

BufferedWriter write(String)∗ close()+

BufferedWriter write(int)∗ close()+

ResultSet next()∗ close()+
ListIterator hasPrevious() previous()?

Reader read(char[],int,int)∗ close()+

Table 3: A small sampling of JDK-related patterns learned and
verified over the DaCapo suite.

In this evaluation, we expected OCD to be largely silent. As
well-tested CPU and memory benchmarks with known inputs, we
expected the executions to be relatively bug-free—at least on the
common code paths that we are limited to as a dynamic analysis. Our
goals for these experiments were to 1) verify that OCD effectively
learns a wide variety of properties, 2) investigate the error reports,
if any and 3) measure our typical overhead.

Specifications Throughout the suite, OCD inferred and verified
a large number of properties. These included many that were ob-
viously relevant, a sampling of which we display in Table 3. In
addition to these patterns, our system inferred and verified a signif-
icant number of properties that were not obviously relevant. This
apparent waste of resources is a strength of our technique: we used
OCD as an end-to-end anomaly detection tool and did not manually
verify any of these properties before they were used. Because they
produced no anomalous output, we effectively sidestepped the task
of manual validation.

Anomalies Our expectations of few error reports notwithstanding,
OCD did produce three JDK-related and four project-related anoma-
lies. Despite originating in two different projects, the JDK-related
anomalies were all derived from an identical pattern: the precondi-
tion relationship between Enumeration.hasMoreElements() and
nextElement(). In two cases, the higher-level precondition—that
the Enumeration has an element—was satisfied in a different way:
by testing using the size method. In the third case, it was not imme-
diately apparent that the enumerated collection contained at least
one element on all possible code paths.

Of the four project-specific anomalies, none were either obvi-
ously defects or obviously false alarms. We did investigate the two
highest-ranked anomalies reported in the Eclipse benchmark and
found them to be quite interesting but benign inconsistencies. Both
cases were within Eclipse’s compiler internals. In the first case,

a particular Statement-typed object was processed without first
calling complainIfUnreachable. Our investigation revealed that the
statement in question was a member of the statement list of the
“increment” portion of a for loop. We consulted the Java Language
Specification and found that these particular statements must be
of type “Expression Statement” and do not need to be individually
checked for reachability in this context. For brevity, we omit a
detailed description of the second case; it was similar in scope and
depth.

These results are encouraging: not only did OCD verify a large
number of properties, it also produced very few false reports. The
anomalies it did generate had intuitive causes, and—especially the
project-specific reports—were worth investigating.

Overhead OCD incurs a significant amount of overhead, but it
appears currently acceptable for a development-time bug finding
tool—especially on the JDK-based experiments. The overhead
on the project-specific experiments was much higher and highly
variable, though still tractable for this workload, taking minutes
instead of seconds per benchmark. We investigated this phenomenon
and noted that over the same workload, the project-specific tracing
causes nearly an order of magnitude more events to be generated:
it appears that the clearest path to significantly less overhead is to
reduce the number of instrumentation points. As Java provides the
ability to both add and remove instrumentation at runtime, something
akin to Dwyer et al.’s Adaptive Online Program Analysis [11] would
be desirable, though it is yet unclear how to adapt such techniques
when the target analysis involves a learning component in addition
to verification. Finally, we note that other runtime monitoring tools
intended for production environments, with overheads in the tens
of percents, do not instrument nearly as much of the target program
and they do not infer properties.

4.3 Bug Finding: Eclipse and Ant
We then ran OCD on the full, latest versions of two production

Java applications: Eclipse (a portion of which was already partially
exercised by DaCapo) and Ant, a build system. Our goal in these
experiments was to reveal defects by providing more variable work-
loads. We restricted our scope to JDK-based anomalies, as they do
not generally require domain-specific knowledge to investigate.

Our test input consisted of performing common tasks with each
tool, using our own code base as a dataset. For Eclipse, we a)
launched the application and let the project build, b) performed sev-
eral edits and a renaming refactoring, and c) closed the application.
For Ant, we performed two invocations, one with our project’s clean
target and one with the dist target, which involved a full compile.
We left the default anomaly “budget” (the number of anomalies the
self tuner strives for through indirect manipulations of the learning



parameters) at its default of 10. We sampled the set of anomalies
after each operation.
Eclipse OCD produced a total of 10 anomalies, unioned across the
three sampling points. Of these 10, only three were “false positives”
in the truest sense:

1. Two consisted of exactly the same false errors that manifested
themselves under the DaCapo Eclipse workload.

2. One was a violation of a clearly false property over two Col-
lection methods. OCD learned it as a result of a common
idiom used during Eclipse’s initialization; it is likely that the
property would have dropped out of the “Enforcing” state
with additional input.

3. Three involved minor performance issues relating to the toAr-
ray(T[]) method on various Collection types. The violations
involved calling this method with a freshly-allocated empty
array, a waste of resources. The more efficient idiom—used
throughout the majority of Eclipse’s code base—is to freshly
allocate an array of the appropriate size. (The specific prop-
erty violated is that size() is a precondition for toArray(T[]).)

4. One was a certain resource leak, in which the contained In-
putStream of an InputStreamReader was closed without
closing the enclosing instance.

5. Three involved abuses of the InputStream type’s interface in
which the developers neglected to call close() on instances
that they (apparently) knew would be of a concrete subtype
whose close() method did nothing.

Ant OCD produced a total of five anomalies between the two
sampling points. These consisted of:

1. Three harmless violations of the general has∗, next∗ type
specifications.

2. A neglected call to hasMoreTokens() on a StringTokenizer
on an unprocessed user string (though the runtime error is
eventually handled through an uncaught exception handler, it
is somewhat careless).

3. A resource that was closed late, by the finalizer thread. Our
system reported a “false” error due to the lack of temporal lo-
cality in this situation. However, it is almost always preferable
to close resources in a timely manner; Dillig et al.’s CLOSER
project [9], for example, aims to find and fix situations just
like this one.

Both Eclipse and Ant were quite usable while under instrumen-
tation. Eclipse was especially responsive: our decoupled design
allowed “bursty” actions, like the opening of menus, to be processed
on the second core of our dual core test system, which reduced
interface lag.

None of the reported anomalies resulted in immediate program
crashes: each defect-indicating anomaly either caused an inconsis-
tent program state or hinted at different conditions—namely, other
inputs—under which the anomaly would have resulted in a crash.
However, crashing bugs are not outside OCD’s scope. If a program
crash is the result of a violation of a temporal property, then OCD
will likely report its root cause.

4.4 Generality: Associated Field Accesses
Existing tools that search for inconsistent field accesses, e.g.

MUVI [23], have demonstrated impressive results. As an exercise
in the generality of our tool, we performed an informal experiment
of our tool’s ability to find these kinds of bugs. For this experiment,
we used the FindBugs project as a workload4 (not as an analysis
4Due to its complexity and ease of configuration with batch-mode
inputs, we utilized FindBugs as our “benchmark” workload through-

tool) and set our tracing framework to log all field writes. To de-
tect general inconsistent accesses, we used our “Association” and
“Generalized Association” patterns (Section 3.2).

Our tool produced five anomalies, all of which were highly
domain-specific. However, we were able to fully investigate one of
them: the inconsistent updating of a size field in a data structure.
OCD had detected an association between this field and another
field that were always updated in tandem. However, in the clear()
method, the fields were not updated consistently: the size field was
not cleared to zero, leaving the structure in an inconsistent state.
This defect has been confirmed and fixed.

5. DISCUSSION AND RELATED WORK
Our algorithm is the first dynamic algorithm that simultaneously

learns and verifies temporal properties. The most closely related
work can be roughly categorized in three groups: specification infer-
ence, runtime monitoring, and the detection of software anomalies.

Specification Inference Ammons et al. [2] produced the seminal
work on specification mining. Their algorithm uses a language infer-
ence technique to learn a single, general specification over a known
alphabet. OCD requires no input beyond the monitored program.
Dallmeier et al.’s ADABU [7] extracts specifications as finite au-
tomata with labeled states, which improves their usefulness. In our
case, such improvements are not necessary: our properties are used
mechanically without human validation. Acharya et al. [1] present
a static tool that extracts patterns as partial orders. Our precondition
patterns capture the idea of a partial order, allowing our tool to learn
and find violations of these patterns dynamically. Le Goues and
Weimer [21] present a specification miner that leverages a statistical
model to drastically reduce the incidence of false specifications.
In our experience, most dynamically-mined “false” specifications
describe “true” but useless properties, which are not a problem for
our fully automatic tool. However, integrating a technique like this
could serve to reduce OCD’s overhead.

More recently, Nguyen et al. present a new algorithm for mining
specifications over multiple objects [24]. As configured, OCD learns
patterns over single objects; however, it is not an inherent limitation:
if the tracing framework could assign the same identifier to multiple
related objects, OCD could possibly learn and enforce multi-object
patterns without modification. We are investigating this line of
improvement as ongoing work.

Thummalapenta and Xie present a technique for learning special-
ized instances of specifications for exceptional code paths [27], on
which OCD’s property inference performance is possibly poor. We
are investigating ways to overcome this inherent limitation of dy-
namic analysis, including possibly leveraging additional information
in the static code to augment our traces.

Runtime Monitoring Runtime monitoring frameworks, such as
Chen and Roşu’s MOP [6], have seen dramatic improvements in
performance in recent years. Often with the help of static infor-
mation [4, 12, 19], these tools can verify properties in production
programs with overhead in the low tens of percents. Our problem
domain is somewhat different: OCD must automatically infer prop-
erties as well as enforce them. Nonetheless, we are working toward
leveraging these insights to improve OCD’s performance: we do, for
example, have access to at least some static code when we perform
instrumentation at load time.

Dwyer et al. [10] improve the performance of runtime monitoring
systems by breaking larger specifications into smaller “sub-alphabet”
properties and monitoring a sampled subset to create an approximate

out OCD’s entire development. To avoid an obvious threat to validity,
we have omitted it from our standard evaluation but use it here for
convenience—with a different form of tracing.



verifier. This suggests an interesting avenue for investigation: an
empirical evaluation of the end-to-end effectiveness of our tool when
verifying only a subset of our smaller patterns, which resemble their
“sub-alphabet” properties.

Detecting Anomalies The general idea of characterizing soft-
ware bugs as anomalous program behavior was codified by Engler
et al. [14]. Hangal and Lam’s DIDUCE [20] hypothesizes and learns
invariants over program values, much like Daikon [15], and includes
a component that checks the learned invariants as well. In some
sense, our work is like DIDUCE, but our domain consists of tem-
poral invariants. Chang et al. present a tool that mines program
dependence graphs for neglected conditions [5], like missing null
checks. Our tool is effective at finding neglected conditions that are
sufficiently abstracted as method calls.

Elbaum et al. investigate the ability for anomalies in execution
traces to predict field failures [13]. They measure the effectiveness of
various anomaly detection algorithms, with their “sequence” variant
appearing similar to our own—but at a much finer granularity. In our
system, the anomalies are caused by violations of inferred temporal
safety specifications, which themselves are a form of field failure.

The tool perhaps most related to our own is Wasylkowski et al.’s
JADET [28], a static tool for finding general object usage anomalies.
JADET uses concept analysis to infer properties that are nearly al-
ways satisfied and it reports the failures as anomalies. This technique
is complementary to our own: OCD learns more general properties
with higher precision, but as a dynamic tool it has a limited view of
the target program.

6. CONCLUSIONS AND FUTURE WORK
We have presented the first online algorithm that simultaneously

learns and enforces temporal properties. Our implementation, OCD,
functions on production Java applications with acceptable overhead
and is effective in learning and validating a large number of impor-
tant properties.

Many of the properties we learn and verify are from standard,
well-tested libraries. While convenient for validating our technique,
these properties are effectively finite in number and perhaps not
necessarily the best targets for a fully automatic technique: it is
conceivable that they could be semi-automatically specified once,
perfected, and shared for all tools to use. Instead, we believe that the
greatest strength of our online tool is the learning and enforcement of
project specific properties, which are likely being created—perhaps
incidentally—faster than they can be specified. The primary obstacle
to validating and improving our tool for this purpose, though, is that
the time of domain experts is finite and expensive. To this end, we
are working with our industrial partners to validate and improve
OCD by evaluating it on commercial enterprise systems with full
access to domain experts.
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