
Automatic Detection of Unsafe Component Loadings∗

Taeho Kwon Zhendong Su

University of California, Davis
{kwon,su}@cs.ucdavis.edu

ABSTRACT
Dynamic loading of software components (e.g., libraries or modules)
is a widely used mechanism for improved system modularity and
flexibility. Correct component resolution is critical for reliable and
secure software execution, however, programming mistakes may
lead to unintended or even malicious components to be resolved and
loaded. In particular, dynamic loading can be hijacked by placing
an arbitrary file with the specified name in a directory searched
before resolving the target component. Although this issue has been
known for quite some time, it was not considered serious because
exploiting it requires access to the local file system on the vulnerable
host. Recently such vulnerabilities started to receive considerable
attention as their remote exploitation became realistic; it is now
important to detect and fix these vulnerabilities.

In this paper, we present the first automated technique to detect
vulnerable and unsafe dynamic component loadings. Our analysis
has two phases: 1) apply dynamic binary instrumentation to col-
lect runtime information on component loading (online phase); and
2) analyze the collected information to detect vulnerable compo-
nent loadings (offline phase). For evaluation, we implemented our
technique to detect vulnerable and unsafe DLL loadings in popular
Microsoft Windows software. Our results show that unsafe DLL
loading is prevalent and can lead to serious security threats. Our
tool detected more than 1,700 unsafe DLL loadings in 28 widely
used software and discovered serious attack vectors for remote code
execution. Microsoft has opened a Microsoft Security Response
Center (MSRC) case on our reported issues and is working with us
and other affected software vendors to develop necessary patches.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools

General Terms
Reliability, Security
∗This research was supported in part by NSF CAREER Grant No.
0546844, NSF CyberTrust Grant No. 0627749, NSF CCF Grant No.
0702622, NSF TC Grant No. 0917392, and the US Air Force under
grant FA9550-07-1-0532. The information presented here does not
necessarily reflect the position or the policy of the Government and
no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’10, July 12–16, 2010, Trento, Italy.
Copyright 2010 ACM 978-1-60558-823-0/10/07 ...$10.00.

Keywords
Unsafe Component Loading, Dynamic Analysis

1. INTRODUCTION
Dynamic loading is an important mechanism for software de-

velopment. It allows an application the flexibility to dynamically
link a component and use its exported functionalities. Its benefits
include modularity and generic interfaces for third-party software
such as plug-ins. It also helps to isolate software bugs as bug fixes
of a shared library can be incorporated easily. Because of these
advantages, dynamic loading is widely used in designing and imple-
menting software.

A key step in dynamic loading is component resolution, i.e.,
how to locate the correct component for use at runtime. Operating
systems generally provide two resolution methods, either specifying
the fullpath or the filename of the target component. With fullpath,
operating systems simply locate the target from the given full path.
With filename, operating systems resolve the target by searching a
sequence of directories, determined by the runtime directory search
order, to find the first occurrence of the component.

Although flexible, this common component resolution strategy
has an inherent security problem. Since only a file name is given,
unintended or even malicious files with the same file name can
be resolved instead. Thus far this issue has not been adequately
addressed. Operating systems may provide mechanisms to protect
system resources, such as Windows Resource Protection (WRP) [2]
in Microsoft Windows Vista. However, these do not prevent loading
of a malicious component located in a directory searched before the
directory where the intended component resides.

The problem of unsafe dynamic loading had been known for a
while, but it had not been considered a serious threat because its
exploitation requires local file system access on the victim host.
The problem has started to receive more attention due to recently
discovered remote code execution attacks. Here is an example attack
scenario. An attacker sends an archive file containing a document
for a vulnerable program (e.g., a Word document) and a malicious
DLL to a victim. If the victim opens the document, the vulnerable
program will load the malicious DLL and the host machine can be
subverted. Section 2.3 describes in more detail potential remote
code execution attack vectors exploiting unsafe dynamic loadings.

In this paper, we present the first automated technique to detect
unsafe dynamic component loadings. We cast our technique as a
two-phase dynamic analysis. In the first phase, which is online, we
use dynamic binary instrumentation to capture a program’s sequence
of events related to component loading (dynamic profile generation).
In particular, we dynamically collect three kinds of information:
1) system calls invoked for dynamic loading for information on
target component specifications, directory search orders, and the
sequence of component loading behavior; 2) image loading for
information on resolved component paths, and 3) process and thread

identifiers for multi-threaded applications. In the second phase,
which is offline, we analyze the captured profile to detect unsafe
component resolutions (offline profile analysis). We detect two types
of unsafe loadings—resolution failure and resolution hijacking—
for each component loading from the profile. A resolution failure
corresponds to the case where the target component is not found,
while a resolution hijacking corresponds to the case where there
exist other directories searched before the directory containing the
found target component.

To evaluate our technique, we have implemented it in a tool
for detecting unsafe DLL loadings on Microsoft Windows. In the
empirical evaluation, we analyzed unsafe DLL resolutions in 28
popular software applications on Microsoft Windows XP (SP3)
and Microsoft Windows Vista (SP1). Our results show that unsafe
DLL loadings are prevalent, and some can lead to serious security
threats. More specifically, we found more than 1,700 unsafe dy-
namic component loadings with the administrative privilege and
19 vulnerabilities that can easily cause remote code execution. We
reported these remotely exploitable vulnerabilities to Microsoft and
are collaborating with Microsoft engineers to address these issues.

This paper makes the following main contributions:

• We present an effective dynamic analysis to detect vulnerable
and unsafe dynamic component loadings. To our knowledge,
this work introduces the first automated technique to detect
and analyze vulnerabilities and errors related to dynamic com-
ponent loading.

• We have realized our technique as a practical tool for detecting
unsafe DLL loadings on Microsoft Windows and conducted
an extensive analysis of unsafe DLL loadings on various types
of popular software.

• We have discovered new remote attack vectors based on the
findings from our analysis, which Microsoft has confirmed
and is actively working with us and other software vendors
to develop engineering solutions to patch. We also propose
techniques to mitigate unsafe DLL loadings.

The remainder of this paper is structured as follows. Section 2
describes security vulnerabilities and threats in dynamic component
loading, including a discussion of three types of remote code exe-
cution attacks based on unsafe dynamic loadings. In Section 3, we
present our general technique to detect unsafe dynamic loadings. In
Section 4, we describe background on DLL loading in Microsoft
Windows and implementation details of our tool for detecting un-
safe DLL loadings. Section 5 presents the evaluation of our tool,
including characteristics and exploitability of the detected vulnera-
ble and unsafe DLL loadings and our tool’s performance. We also
discuss techniques to mitigate unsafe DLL loadings and generality
of our proposed approach (Section 6). Finally, we survey related
work (Section 7) and conclude with a discussion of future work
(Section 8).

2. UNSAFE COMPONENT LOADING
This section describes dynamic loading of components, types of

unsafe loadings, and remote attack vectors for vulnerable dynamic
loading.

2.1 Dynamic Loading of Components
Software components often utilize functionalities exported by

other components such as shared libraries at runtime. This oper-
ation is generally composed of three phases: resolution, loading,
and usage. Specifically, an application resolves the needed target
components, loads them, and utilizes the desired functions provided
by them.

Component inter-operation can be achieved through dynamic
loading provided by operating systems or runtime environments.

Component A
Component B

(target)

Component B

(target)

Resolution

Loading

Component C

(dependent)

Component C

(dependent)

Resolution

Loading

Software

Figure 1: Dynamic loading procedure.

For example, the LoadLibrary and dlopen system calls are used
for dynamic loading on Microsoft Windows and Unix-like operating
systems respectively. Dynamic loading is generally done in two
steps: component resolution and chained component loading.
Component resolution To resolve a target component, it is nec-
essary to specify it correctly. To this end, operating systems pro-
vide two types of target component specifications: fullpath and
filename. For fullpath specification, operating systems resolve a
target component based on the provided fullpath. For example, a
fullpath specification /lib/libc-2.7.so for the libc library in
Linux determines the target component using the specified full
path. For filename specification, operating systems obtain the full
path of the target component from the provided file name and a
dynamically determined sequence of search directories. In par-
ticular, an operating system iterates through the directories un-
til it finds a file with the specified file name, which will be the
resolved component. For example, suppose that a target compo-
nent is specified as midimap.dll and the directory search order is
given as C:\Program Files\iTunes;C:\Windows\System32;
. . . ;$PATH on Windows. If the first directory containing a file with
the name midimap.dll is C:\Windows\System32, the resolved
full path is determined by this directory.
Chained component loading In dynamic loading, the full path
of the target component is determined by its specification through
the resolution process, and the component is incorporated into the
host software if it is not already loaded. During the process of
incorporating the target component, the component’s load-time de-
pendent components are also loaded. Figure 1 illustrates the general
procedure of dynamic loading. Suppose component B is loaded
by component A. B’s dependent components (e.g., component C)
are also loaded. We can usually obtain information on B’s depen-
dent components from B’s file description. This process of chained
component loading is repeated until all dependent components have
been loaded.

2.2 Unsafe Component Resolution
Although dynamic loading is a critical step in software execution,

it also has an inherent security implication. Specifically, a loaded
target component is only determined by the specified file name. This
can lead to the loading of unintended or even malicious components
and thus may allow arbitrary code execution. For example, an
attacker can trick a vulnerable web browser to resolve a spyware file
with the specified file name instead of the intended component.

To mitigate this problem, operating systems provide functionali-
ties to prevent certain components from being replaced. For example,
Windows Vista has Windows Resource Protection (WRP) [2] to pro-
tect system resources, and Unix-like operating systems require root
privilege for modifying system files. However, these protections are

Detection

Result

Dynamic

Loading Tracer

Unsafe

Resolution

Checker

executables profiles output

Dynamic Profile Generation Offline Profile Analysis

Figure 2: Analysis process.

not sufficient to prevent unsafe component loadings. Due to defects
in the resolution process, it is possible to hijack the loading of an
intended component. We classify two types of unsafe component
resolution: resolution failure and resolution hijacking.
Resolution failure This occurs when an application fails to re-
solve a target component because the file does not exist in the
specified path or the specified search directories. If this happens,
any file with the same specified name in the directories searched by
the application can be loaded, and attackers can execute arbitrary
code by placing malicious component files in such directories.
Resolution hijacking Although the correct component is resolved,
there may still exist a vulnerability that makes hijacking possible.
In particular, if the resolution of a component satisfies the following
conditions, it may still be possible to hijack the loaded component:

1. The target component is specified by its file name;

2. The resolution is determined by iteratively searching a se-
quence of directories; and

3. There exists another directory searched before the one con-
taining the target component.

If a dynamic loading satisfies the above conditions, an attacker
can attempt to place a malicious component with the same specified
name in such an earlier searched directory. When the OS tries to
resolve the target component, the malicious component is found
first and loaded in place of the intended component. In such a case,
arbitrary code execution becomes possible.

2.3 Dynamic Loading-related Remote Attacks
As we mentioned in Section 2.2, unsafe component resolutions

may cause an application to load unintended components. This issue
had been known for a long time, but it had not been considered a
serious threat because it requires local file system access on the
victim host for exploitation. Recently, realistic attacks exploiting
vulnerable component loading have been discovered, including ones
by us. In this section, we describe these attack vectors.

2.3.1 “Carpet Bomb"-based attack
The Carpet Bomb attack [1] can lead to remote code execution

in conjunction with unsafe DLL loading on Microsoft Windows. In
particular, when the Safari browser accesses a malicious web page,
attackers can make the browser automatically download arbitrary
files to the user’s Desktop directory without any prompting. This is
referred to as the Carpet Bomb attack. This flaw leads to remote code
execution if a vulnerable application checks in the Desktop directory
first for resolving a DLL. For example, suppose sqmapi.dll is
downloaded onto the victim’s Desktop directory through the Carpet
Bomb attack. When Internet Explorer 7 runs, it loads this DLL
file and executes arbitrary code [19]. Microsoft released software
patches [25, 26] to fix this vulnerability.

2.3.2 “Shortcut with Component" attack
Sending a victim an archive file containing a shortcut to a vul-

nerable program and a malicious component can also cause remote
code execution. If the vulnerable program starts up via the shortcut,
it loads the component and executes malicious code.

This flaw can be exploited through social engineering-based at-
tacks. For example, Opera 9.64 running via its shortcut will load
aspell-15.dll placed in the same directory as the shortcut. At-
tackers can deceive the victim to run Opera through its shortcut to
access interesting web sites such as Facebook. This way they can
exploit this vulnerability by making the browser load the provided
malicious DLL.

Furthermore, this attack vector can be combined with the Carpet
Bomb attack. Because shortcuts tend to be placed in the Desktop
directory, running a vulnerable application such as Opera via its
shortcut can load the relevant components stored on the Desktop
through the Carpet Bomb attack.

2.3.3 “Document with Component" attack
Opening a document can load particular files placed in the same

directory as the document. This vulnerability can be exploited to
launch remote code execution attacks by sending a victim an archive
file containing a document and a malicious component.

For example, opening a Microsoft Word document can load the
GoogleDesktopCommon.dll file if Google Desktop is installed on
the victim host. In particular, a third-party component, Google
Desktop Office Addin, is registered in Microsoft Word 2007
when Google Desktop is installed. The component is loaded when
the programs execute, but the document directory is searched before
resolving the DLL during loading of the component. This flaw can
lead to serious security threats in Microsoft Word 2007.

3. DETECTION OF UNSAFE LOADINGS
As we mentioned in Section 2.3, unsafe component loading can

cause serious security vulnerabilities in software. In this section, we
present a dynamic analysis technique to detect unsafe resolutions.

Figure 2 shows the high-level overview of our analysis process,
which is composed of two phases: dynamic profile generation and
offline profile analysis. To detect unsafe component resolutions,
we first capture a sequence of system-level actions for dynamic
loading during a program’s execution. We use dynamic binary
instrumentation to generate its runtime profile. We then reconstruct
dynamic loading information from the profile offline and check
safety conditions for each resolution. Because our technique only
requires binary executables, it is robust and can be applied to analyze
not only open source applications but also commercial off-the-shelf
products,

Alternatively, we could also detect unsafe component loading
during the program execution. However, we divide our analysis
into two phases (i.e., the dynamic profile generation and the offline
profile analysis) to reduce the performance overhead incurred during
dynamic binary instrumentation.

3.1 Dynamic Profile Generation
In this phase, we instrument runtime executions of the binary

executable under analysis to capture a sequence of system-level
actions for dynamic loading of components. In particular, we collect
three types of information during the instrumented program execu-
tion: system calls invoked for dynamic loading, image loading, and
process and thread identifiers. The collected information is stored
as a profile for the instrumented application and will be analyzed in
the offline profile analysis phase.

Type Conditions

Resolution failure 1. Target component is not found

Resolution hijacking
1. Target component is specified by its name
2. Target component is resolved by iterating

through multiple directories

Table 1: Conditions for detecting unsafe component loadings.

System calls invoked for dynamic loading System call analysis
is a widely used analysis technique to understand program behav-
ior because a sequence of invoked system calls (with names of the
invoked functions and their arguments) can provide useful infor-
mation on program execution. To capture system-level actions for
dynamic component loading, we instrument system calls that cover
all possible control-flow paths of the dynamic loading procedure,
which enables us to reconstruct the procedure offline.

Besides the name of an instrumented system call, we also col-
lect its parameter information for detecting unsafe component res-
olutions. Specifically, the target component specification and the
directory search order can be obtained from the system call parame-
ters. Although the directory search order can vary according to the
underlying system and program setting, it is computed by operat-
ing systems at the higher-level and provided as parameters to the
relevant system calls for dynamic loading. Furthermore, results of
the instrumented system calls provide both the control flow in the
loading procedure and error messages generated by the operating
systems. Such information is used for the reconstruction of the
dynamic loading procedure and the detection of unsafe resolutions.
Image loadings We also capture actual loadings of target compo-
nents via dynamic binary instrumentation. The loading information
is needed for reconstructing the loading procedure in combination
with the information captured by system call instrumentation. It also
indicates the resolved full path determined by the loading procedure.
We use this resolved path to detect resolution hijacking.
Process and thread identifiers Because our approach is based
on system call instrumentation, it is important to consider multi-
threaded applications. If the target program uses multi-threads and
each thread loads a component dynamically, the instrumented sys-
tem calls for each loading can be interleaved, which makes it difficult
to correctly reconstruct the loading procedure of each thread. To
solve this problem, we capture process and thread identifiers along
with the other information on instrumented system calls. With this
additional information, we can analyze dynamic loadings of each
thread by grouping its system calls using these recorded identifiers.

3.2 Offline Profile Analysis
In this phase, we extract each component loading from the profile

and detect defects in the resolution of a target component and its
dependent components (cf. Section 2).

In the first step of this offline phase, we extract each component
loading from the profile. To this end, we first group a sequence of
actions in the profile by process and thread identifiers as the actions
performed by different threads may be interleaved due to context
switching. This grouping separates the sequences of dynamic load-
ings performed by different threads. Next, we divide the sequence
for each thread into sub-sequences of actions, one for each distinct
dynamic loading. This can be achieved by using the first invoked
system call for dynamic loading (e.g., dlopen) as a delimiter. After
this step, we obtain a list of groups, each of which contains a se-
quence of actions for loading a component at runtime. This gives the
possible control-flows in the dynamic loading procedure. Note that
each group contains loading actions for both the target component
and the load-time dependent components (cf. Section 2.1).

Our analysis detects the two types of unsafe component resolution
that we discussed in Section 2.2: resolution failure and resolution

Algorithm 1 OfflineProfileAnalysis
Input: S (a sequence of actions for a dynamic loading)
Auxiliary functions:

TargetSpec(S): return target specification of S
DirSearchOrder(S): return directory search order used in S
ImgLoad(S): return the image loadings in S
ResolutionFailure(S): return the resolution failures in S
ChainedLoading(S): return actions for the chained loadings in S
IsResolutionHijacking(filename, resolved_path, search_dirs):

check whether resolution hijacking is possible

1: img_loads← ImgLoad(S)
2: failed_resolutions← ResolutionFailure(S)
3: if |img_loads| == 0 then
4: if |failed_resolutions| == 1 then
5: Report this loading as a resolution failure
6: end if
7: else
8: spec← TargetSpec(S)
9: dirs← DirSearchOrder(S)
10: if spec is the filename specification then
11: resolved_path← img_loads[0].resolved_path

// retrieve the first load
12: if IsResolutionHijacking(spec,resolved_path,dirs) then
13: Report this loading as a resolution hijacking
14: end if
15: end if
16: chained_loads← ChainedLoading(S)
17: for each_load in chained_loads do
18: OfflineProfileAnalysis (each_load)
19: end for
20: end if

hijacking. To this end, we check conditions in Table 1, which
are directly derived from the definition of each unsafe component
resolution, for each component loading. Details of our offline profile
analysis are given in Algorithm 1.
Resolution failure of target component To detect failed resolu-
tion of a target component, we simply check the number of image
loads and failed resolutions during the dynamic loading procedure.
In particular, if no image is loaded and its resolution is failed, we
report it as a resolution failure (lines 3–6).
Resolution hijacking of target component Lines 10–15 describe
how to detect resolution hijacking of a target component. We first
check whether the target component is specified by its file name,
because a full path specification does not iterate through the search
directories for resolution. If the file name is used, we retrieve the
resolved path of the target component by retrieving the first element
of a list of image loads in the dynamic loading procedure. Note
that the first element of the list corresponds to the target component,
because 1) there exists no image load in the loading procedure if the
target component is already loaded or its resolution fails, and 2) the
target component is always loaded for the first time during its run-
time loading. Based on the resolved full path, the target component
specification and the applied directory search order, we determine
whether to classify this as a resolution hijacking by checking the
directories searched before the resolution.
Unsafe component resolution by chained loadings In lines 16–
19, we detect unsafe component resolutions in the chained loading
procedure by performing the offline profile analysis recursively. In
particular, we extract each component loading from the chained
loadings and recursively apply our earlier described techniques to
detect unsafe resolutions of the component.

4. IMPLEMENTATION
To evaluate our proposed technique, we have developed a tool to

detect unsafe DLL loadings on Microsoft Windows. In this section,
we explain background on the DLL loading procedure in Windows,
discuss implementation details of our tool, and show examples of
generated profiles and unsafe DLL loadings.

Search Type Order

Standard 1. The directory of the application loaded
2. The system directory
3. The 16-bit system directory
4. The Windows directory
5. The current directory
6. The PATH environment variable

Alternate 1. The directory specified by lpFileName
2. The system directory
3. The 16-bit system directory
4. The Windows directory
5. The current directory
6. The PATH environment variable

SetDllDirectory 1. The directory of the application loaded
-based 2. The directory specified by lpPathName

3. The system directory
4. The 16-bit system directory
5. The Windows directory
6. The PATH environment variable

Table 2: DLL search orders of SafeDllSearch mode.

4.1 Background on DLL Loading

4.1.1 Target DLL resolution
Microsoft Windows supports the two aforementioned types of

target DLL specifications: fullpath and filename. For the filename
specification, there exist Windows-specific mechanisms to resolve
target DLLs. In particular, Microsoft Windows supports Side-by-
Side Assembly [32] and maintains Known DLLs to determine the
target DLL fullpath directory without the directory iteration.
Side-by-Side Assembly This technique has been provided to mit-
igate DLL Hell [33]. In this technique, Windows stores multiple ver-
sions of a DLL in the WinSxS directory and loads the desired DLL
on demand. For example, when Microsoft Word 2007 loads the Mi-
crosoft C runtime library by using its file name (i.e., MSVCR80.dll),
its full path is determined by a sub-directory of the Windows SxS
directory (i.e., C:\WINDOWS\WinSxS\ . . . \MSVCR80.dll) without
iteratively searching a list of directories. In general, the full path
is determined by the existence of its corresponding Manifest, an
XML document which is usually embedded in the executable. More
details can be found in an MSDN article [32].
Known DLLs The Microsoft Windows operating systems main-
tain a set of known DLLs that correspond to core system DLLs and
their load-time dependent ones. The set of core DLLs is determined
by the registry key HKLM\System\CurrentControlSet\Control
\Session Manager\KnownDLLs. If the target DLL is among the
known DLLs, its full path is resolved by the directory specified in
the DllDirectory value located in the registry, which is %System-
Root%\system32 by default on 32-bit Windows XP and Vista.

4.1.2 Directory search order
As we mentioned in Section 2, dynamic component resolution

based on filename requires a directory search order, which is de-
termined by system and program settings at runtime. Accord-
ing to MSDN [12], the SafeDllSearchMode registry key, the
LOAD_WITH_ALTERED_SEARCH_PATH flag, and the SetDllDirec-
tory system call determine five possible types of directory search
orders at runtime, which are standard search order (SafeDllSearch-
Mode), alternate search order (SafeDllSearchMode) and SetDllDire-
ctory-based SearchOrder. Table 2 shows the search orders when
SafeDllSearchMode is enabled.
Standard Search Order The standard search order is the de-
fault directory search order in Microsoft Windows, which has two
types determined by whether SafeDllSearchMode is enabled. The
SafeDllSearchMode was introduced by Microsoft Windows 2000
SP4, and it has been enabled by default since Microsoft Windows
XP SP2. For the Standard Search Order of the SafeDllSearchMode,
there exist six types of directories to search for DLL resolution (see

Table 2). If the SafeDllSearchMode is disabled, the priority of the
current directory is elevated to the second one.
Alternate Search Order The standard search order can be mod-
ified by invoking the system call LoadLibraryEx with the flag
LOAD_WITH_ALTERED_SEARCH_PATH. Similar to the standard search
order, the SafeDLLSearchMode can be applied to the alternate
search order. However, it places the directory of the loading DLL
to the first directory to search; the target DLL is specified by its
full path, which corresponds to an lpFileName parameter of the
LoadLibraryEx function.
SetDllDirectory-based Search Order Microsoft has provided
the SetDllDirectory system call to enable developers to manip-
ulate the search order since Microsoft Windows XP SP1. The
SetDllDirectory function makes it possible to replace the current
directory with an arbitrary directory specified by an lpPathName
parameter. Also, the current directory can be removed from the
search order by invoking the system call with the empty string as
the parameter. Note that this search order is independent from the
SafeDllSearchMode; the search order is determined as shown in
Table 2 regardless of the SafeDllSearchMode.

4.1.3 Chained DLL loading
According to Microsoft [3], there exist two types of load-time

dependencies among DLLs: implicit dependency and forwarded
dependency.
Implicit Dependency If a DLL A and a DLL B are linked at
compile/link time, and the source code of DLL A calls one or more
functions exported from DLL B, DLL A has implicit dependency
on DLL B. Note that implicit-dependent DLLs are determined by
function calls invoked by the source code of the loading DLL. Even
though the function is not invoked at runtime, the DLL exporting the
function is also loaded. The loading DLL’s Import Directory
Table, one entity of the PE executable file format [24], contains its
implicit-dependent DLLs.
Forwarded Dependency While this dependency is similar to im-
plicit dependency, it differs in what the DLL that implements the
invoked functions is. For the load-time dependency, the functions
a loading DLL invokes are directly implemented in its dependent
DLLs. However, for forwarded dependency, the implementation
of the invoked function call simply forwards control to the actual
code implemented in the other DLL. In this case, the loading DLL
has forwarded dependency on the DLL containing the forwarded
implementation. For example, the GetLastError function of Ker-
nel32.DLL is forwarded to the RtlGetLastWin32Error function
of ntdll.dll.

4.2 Implementation Details
In order to generate profiles for DLL loading behaviors, we utilize

Pin [23], an open source dynamic binary instrumentation tool. We
record a sequence of information on the system calls of interest, im-
age loading, and process/thread identifiers with functions provided
by the tool.

As we mentioned in Section 3, the system calls to instrument are
determined to cover all possible control-flow paths in the DLL load-
ing procedure. Because this information is not well-documented, we
reverse-engineered the LdrLoadDll function of ntdll.dll using
the IDA Pro Disassembler [18] based on detailed analysis of DLL
loadings for Windows 2000 [38]. Table 3 describes the system calls
instrumented in our implementation. We chose the name of each
system call based on the analysis of the disassembler, which uses
the Windows symbol package.

Instrumenting a system call requires information where it is lo-
cated in the address space such as its starting virtual address. How-
ever, this information is difficult to obtain reliably because DLLs
follow the PE format and can be relocated in the address space.
Also, Address Space Layout Randomization [39] is one of the de-

1 (1744,1050) LdrLoadDll midimap.dll C:\Program Files\iTunes;C:\WINDOWS\system32;
2 C:\WINDOWS\system;C:\WINDOWS;.;$PATH
3 (1744,1050) RtlDosApplyFileIsolationRedirection_Ustr midimap.dll c0150008
4 (1744,1050) LdrpLoadDll midimap.dll
5 (1744,1050) LdrpCheckForLoadedDll midimap.dll 0
6 (1744,1050) LdrpMapDll midimap.dll
7 (1744,1050) LdrCheckForKnownDlls midimap.dll 0
8 (1744,1050) LdrpResolveDllName midimap.dll 0
9 (1744,1050) IMG_LOAD C:\WINDOWS\system32\midimap.dll 77b80000

10 (1744,1050) LdrpMapDll_RET midimap.dll
11 (1744,1050) LdrpWalkImportDescriptor 274658
12 (1744,1050) LdrpLoadImportModule msvcrt.dll
13 (1744,1050) RtlDosApplyFileIsolationRedirection_Ustr msvcrt.dll c0150008
14 (1744,1050) LdrpCheckForLoadedDll msvcrt.dll 1
15 ...
16 (1744,1050) LdrpLoadImportModule WINMM.dll
17 (1744,1050) RtlDosApplyFileIsolationRedirection_Ustr WINMM.dll c0150008
18 (1744,1050) LdrpCheckForLoadedDll WINMM.dll 1
19 (1744,1050) LdrpWalkImportDescriptor_RET 274658
20 (1744,1050) LdrLoadDll_RET midimap.dll

Figure 3: Profile excerpt of iTunes.

1 (ac0,114c) LdrLoadDll GoogleDesktopCommon.dll C:\Program Files\Microsoft Office\Office12;
2 C:\WINDOWS\system32;C:\WINDOWS\system;
3 C:\WINDOWS;.;$PATH
4 (ac0,114c) RtlDosApplyFileIsolationRedirection_Ustr GoogleDesktopCommon.dll c0150008
5 (ac0,114c) LdrpLoadDll GoogleDesktopCommon.dll
6 (ac0,114c) LdrpCheckForLoadedDll GoogleDesktopCommon.dll 0
7 (ac0,114c) LdrpMapDll GoogleDesktopCommon.dll
8 (ac0,114c) LdrCheckForKnownDlls GoogleDesktopCommon.dll 0
9 (ac0,114c) LdrpResolveDllName GoogleDesktopCommon.dll c0000135

10 (ac0,114c) LdrpMapDll_RET GoogleDesktopCommon.dll
11 (ac0,114c) LdrLoadDll_RET GoogleDesktopCommon.dll

Figure 4: A resolution failure in Microsoft Word 2007.

Name Description

LdrLoadDll Load a DLL

LdrpLoadDll Load a DLL (private function)

RtlDosApplyFileIsolationRedirection_Ustr Apply the redirection of the DLL
specification

LdrpCheckForLoadedDll Check whether or not a target DLL
was loaded before

LdrpCheckForKnownDlls Check whether or not a target DLL
is one of known DLLs

LdrpResolveDllName Resolve the fullpath of the target
DLL specification

LdrpMapDll Map a DLL to the address space

LdrpWalkImportDescriptor Load loadtime-linking DLLs of the
target DLL

LdrpLoadImportModule Load a loadtime-linking DLL

Table 3: Instrumented system calls.

fault configurations of Windows Vista, which can randomize the
base addresses of the loading images to mitigate memory corruption
attacks. To address this problem, we identify target virtual addresses
to instrument by combining the last two bytes of the address with
consecutive bytes of the predefined number starting from the virtual
address. For example, the LdrLoadDll of ntdll.dll of version
5.1.2600.5755 is located at 0x7C9463C3, and it can be identified
by using its last two bytes (i.e., 0x63C3) and the consecutive eight
bytes starting from that address (i.e., 0x6518680000026C68) as the
signature for the address. The eight bytes are enough not to induce
any false positives in our test environment, and we were able to
reliably instrument these system calls.

To facilitate the offline profile analysis for reconstructing dynamic
loadings, we also capture the execution of return instructions of
particular system calls (i.e., LdrLoadDll_RET, LdrpMapDll_RET,

and LdrpWalkImportDescriptor_RET). The system calls and
their corresponding return instructions can be used to determine
the scope of component loadings in the profile.

To implement our offline profile analysis, we wrote a Python
script (239 lines) to extract each DLL loading from the profile and
detect unsafe DLL loadings.

4.3 DLL-loading Behavior Profile Example
Figure 3 shows part of a generated profile, which describes run-

time loading procedure of midimap.dll in iTunes. The profile is
composed of two parts. Lines 1–10 represent runtime loading of
midimap.dll, and lines 11–20 correspond to loadings of its load-
time dependent DLLs such as msvcrt.dll and WINMM.dll. The
profile provides detailed information on DLL loading. The first and
second items in each line describe the process/thread identifier and
the loading behavior represented by the corresponding system call
name or a tag for image loading, IMG_LOAD, respectively. Accord-
ing to the type of the loading behavior, each line contains different
information required for the analysis: 1) lines 1–2 contain the target
DLL specification given by its file name and the directory search
order to be applied for the current DLL loading; 2) lines 3, 5, and
7 show information on the DLL redirection and the checks for the
known DLL and the loaded DLL by the return value of the corre-
sponding system calls, respectively; 3) line 8 shows result of the
DLL name resolution; 4) line 9 shows the resolved DLL path for the
given DLL specification; and 5) lines 11 and 19 give the scope of
the behaviors performed for the chained loading due to the loaded
target DLL. Based on this information stored in the profiles, we
perform offline analysis to detect unsafe DLL loadings.

4.4 Example Unsafe DLL Loading
We describe how our detection technique works by showing ex-

amples for each type of unsafe DLL loadings.
Resolution Failure Figure 4 shows a resolution failure type in
Microsoft Word 2007. The application tries to resolve a DLL speci-

Software

XP Vista

Resolution Failure Resolution Hijacking Resolution Failure Resolution Hijacking

Target Chained Target Chained Target Chained Target Chained

MS Office
Access 2007 0/0 0/0 0/7 0/9 0/0 0/0 0/17 0/5
Excel 2007 0/1 0/0 0/7 0/7 0/1 0/0 0/12 0/5
Word 2007 1/2 0/0 0/16 0/9 1/2 12/0 0/20 0/26
PowerPoint 2007 1/2 0/0 0/14 0/9 1/2 0/0 0/12 0/16
Outlook 2007 1/1 0/0 0/9 0/12 1/1 0/0 0/11 0/10
Visio 2007 2/0 0/0 0/8 0/9 2/0 0/0 0/6 0/4
Onenote 2007 0/0 0/0 0/8 0/6 0/0 0/0 0/8 0/7

Web Browser
Internet Explorer 8 0/0 0/0 0/16 0/18 0/1 0/0 0/18 0/18
Firefox 3.0 3/1 1/0 0/5 0/12 3/1 1/0 0/12 0/20
Chrome 2.0 0/0 0/0 0/13 0/16 0/0 0/0 0/10 0/13
Opera 9.64 0/2 0/0 0/2 0/9 0/2 0/0 0/10 0/20
Safari 4.0 0/1 0/0 0/34 0/18 0/0 0/0 0/9 0/5

PDF Reader
Acrobat Reader 9.1.2 0/0 0/0 0/6 0/5 0/0 0/0 0/11 0/11
Foxit Reader 3.0 0/0 0/0 0/3 0/3 0/0 0/0 0/6 0/3

Messenger
Windows Live Messenger 2009 0/0 0/0 0/3 0/4 0/0 0/0 0/22 0/12
Pidgin 2.5.8 1/0 0/2 0/25 0/9 1/0 0/1 0/11 0/37
Google Talk Beta 0/1 0/0 0/10 0/20 0/1 0/0 0/19 0/12
Yahoo! Messenger 9.0 0/1 0/0 0/16 0/24 0/1 0/0 0/24 0/21
Skype 3.0 0/0 0/0 0/13 0/31 0/1 0/0 0/28 0/19

Image Viewer
Picasa 3 0/0 0/0 0/9 0/18 0/0 0/0 0/14 0/13
Irfan View 4.25 0/0 2/0 0/10 0/6 0/0 0/0 0/17 0/17

Multimedia Player
Itunes 8.2.1 0/1 0/0 0/34 0/31 0/2 0/0 0/25 0/21
Winamp 5.56 2/1 0/1 0/6 0/13 3/0 0/0 0/21 0/25
Realplayer 10.0 0/2 0/0 0/20 0/21 2/3 0/0 0/27 0/35
Windows Media Player 11 0/1 0/1 0/19 0/27 0/1 0/1 0/34 0/37
QuickTime 7.6.2 0/0 0/0 0/18 0/23 0/1 0/0 0/25 0/32

Others
Google Desktop 5.8 0/0 0/0 0/8 0/12 0/0 0/0 0/14 0/5
Google Earth 5.0 1/3 0/0 0/12 0/15 1/4 0/0 0/19 0/16

Table 4: Prevalence of unsafe DLL loadings (fullpath/filename).

fied by GoogleDesktopCommon.dll. However, the resolution fails
because there does not exist a file in the directories determined by
the applied directory search order. LdrpResolveDllName on line 9
is unable to locate the DLL, which corresponds to the error message
c0000135.
Resolution Hijacking Figure 3 is an example of resolution hi-
jacking. The target DLL specified by midimap.dll is resolved
to C:\Windows\System32\midimap.dll by checking the file of
the specified name located in the directories based on the direc-
tory search order. Because the system directory is the second di-
rectory to be searched by the OS, placing an arbitrary file of the
specified name in the first searched directory (i.e., C:\Program
Files\iTunes\midimap.dll) can lead to the hijacking of the in-
tended DLL loading.

5. EVALUATION
In this section, we analyze the unsafe DLL loadings detected

from the popular software on Windows XP Professional SP3 and
Windows Vista Home Edition SP1, evaluate their severity by show-
ing exploitability of the detected results by local and remote attacks,
and measure performance of our technique.

5.1 Analysis of Unsafe DLL Loadings
In our evaluation, the detection of unsafe DLL loadings is per-

formed with the administrator privilege because 1) we aim at de-
tecting all possible unsafe DLL loadings to evaluate the worst case,
and 2) most Windows users have the administrator privilege [34], in
contrast to Unix/Linux-based operating systems.

Table 4 shows how prevalent unsafe DLL loadings are for each
phase of dynamic loading (i.e., target and chained component load-

Type
FULLPATH FILENAME

XP Vista XP Vista

Application DLL 3 4 10 8
Third-party component DLL 7 21 9 9
Language support DLL 5 3 0 0
Unsupported DLL 0 0 5 10

Table 5: Analysis of resolution failures.

ing). We include detection results for a few different types of soft-
ware developed by major software vendors. The two numbers in
each entry in the table represent the numbers of unsafe DLL reso-
lutions caused by fullpath and filename specifications, respectively.
According to the table, unsafe DLL loadings are common program-
ming mistakes in developing these applications. We found more
than 1,700 instances of unsafe dynamic loadings, 786 under XP
and 982 under Vista. Considering the types of these unsafe DLL
loadings, resolution hijacking is largely responsible for them. In par-
ticular, resolution hijackings in Windows XP and Vista correspond
to 95% (747/786) and 94% (927/982) of the total unsafe loadings, re-
spectively. In the following subsections, we give a detailed analysis
of each type of the unsafe DLL loadings.

5.1.1 Resolution failures
Table 5 shows types of target DLLs whose resolutions fail. In

particular, for the fullpath and filename specifications, there exist
four types of target DLLs: application DLL, third-party component
DLL, language support DLL, and unsupported system DLL.
Application DLL Many applications do not include application-
specific DLLs in their releases, which can cause resolution failures
of these libraries. For example, Google Earth 5.0 tries to load

DLL-hijacking Directory
XP Vista

Runtime Loadtime Runtime Loadtime

Application directory 396 282 462 392
Application library directory 9 9 0 20
System directory 2 0 4 0
Current directory 1 0 1 0
Part of $PATH 1 0 1 0
Plug-in directory 0 6 0 7
WBEM directory 0 10 0 11
Driver directory 0 14 0 16
System-hook source directory 0 31 1 36

Table 6: Types of DLL-hijacking directories.

Resolved Directory XP Vista

System directory 727 905
Application library directory 18 18
Application plug-in directory 1 3
Application directory 1 1

Table 7: Types of resolved directories.

collada.dll in the application directory when it starts up, but
such a library is not included in the release.
Third-party component DLL Third-party components embed-
ded in applications can also cause DLL resolution failures. There are
two main reasons for this: 1) difference of the directory search order
between the application and the component, and 2) the loadings of
missing DLLs by the components.

For the first reason, when an application loads a third-party com-
ponent, the applied directory search order for the resolution is de-
termined by the setting of the running application. Because the
intended directory search order for the component can be differ-
ent from the applied one, the DLL resolution by the component
can fail. Figure 4 describes an example of resolution failure be-
cause of attempting to load a third-party component. In particular,
Google Desktop registers a Google Desktop Office Addin
to Microsoft Word and PowerPoint, and it is loaded when these
applications run. During the loading procedure, the component tries
to load GoogleDesktopCommon.dll, which is located in the direc-
tory of Google Desktop. However, because the applied directory
search order does not contain this directory, this resolution fails.

Similar to resolution failures of an application, third-party compo-
nents may attempt to load DLLs that do not exist on the system due
to careless programming. For example, Microsoft Word and Pow-
erPoint 2007 try to load driver files of the printers installed on the
system during their startup. However, some HP printer drivers try to
load the non-existing HPProfiler.dll during the driver loading
process, which causes the resolution failure.
Language-support DLL Many applications load resource files
for language-support, but these files may not exist on the system.
For example, Microsoft Visio 2007 loads VISIOKOR.DLL in its ap-
plication directory when it runs on the Korean version of Microsoft
Windows XP Professional SP3. However, the release of Visio does
not contain such a file.
Unsupported system DLL Windows Vista provides some DLL
files to support new features. Because these DLLs do not exist
on Windows XP, it is necessary to consider the version of the cur-
rent operating system when loading these files. Otherwise, it can
cause resolution failures. However, many applications developed
for both versions of Windows usually do not consider this issue. For
example, Winamp 5.56 loads DWMAPI.dll, a DLL for Windows
Manager API in Windows Vista, even if the current operating system
is Windows XP.

In Windows Vista Home Edition SP1, many applications access-
ing the web try to load a Novell NetIdentity HTTP Filter rpaw-
inet.dll. However, the file is not installed in the system by default,
which causes a resolution failure.

5.1.2 Resolution hijackings
Tables 6 and 7 show distributions of types of DLL-hijacking

and resolved directories. These results indicate that most unsafe
resolutions of system DLLs can be hijacked from the directories of
the applications loading them.

Table 6 also shows that there exist types of DLL-hijacking di-
rectories that are not related to the application such as the plug-
in directory. This is because the target DLL is specified by its
full path, and the alternate search order in Table 2 is applied to
load its load-time-dependent DLLs, which searches the directory
of the target DLL first. For example, Yahoo! Messenger 9.0 loads
C:\Windows\System32\WBEM\FASTPROX.DLL to use a WMI fea-
ture [40] of Microsoft Windows based on the alternate search order.
After loading the FASTPROX.DLL, its load-time dependent DLLs
such as MSVCP60.DLL are resolved to the file in the system directory.
In this case, the WBEM directory can serve as a DLL-hijacking
directory, because the directory is searched before the resolution of
the target DLL based on the applied search order.

5.2 Severity
In this section, we evaluate exploitability of unsafe component

loadings in terms of local and remote attacks. Local attacks assume
that attackers can access the local file system on a victim host, while
remote attacks assume that attackers can only send data to the victim
user.

5.2.1 Local attacks
As we mentioned in Section 2, unsafe DLL loading can be

performed by placing a file with the specified name in the DLL-
hijacking directories. To exploit this security vulnerability for local
attacks, attackers require write permission to the DLL-hijacking
directory. According to Table 5 and Table 6, most of the directories
are not writable by non-admin users. Therefore, if attackers do not
have administrator privilege, most local attacks can be prevented.
However, according to Microsoft [34], most Windows users run with
administrative privilege. Because of this fact, unsafe DLL loadings
should still be considered serious security issues.

5.2.2 Remote attacks
To accomplish remote attacks exploiting unsafe component load-

ings, attackers need to place malicious files in the DLL-hijacking
directories from remote sites. However, accessing the file system
of a remote host is generally prohibited. For example, the system
directory is not accessible remotely unless the directory is shared to
the remote user or the system is exploited by other vulnerabilities
to enable this. Because of the difficulty in remote exploitation, un-
safe component loadings have not been considered serious security
threats. However, as we mentioned in Section 2.3, several remote at-
tack vectors based on unsafe component loading have been recently
discovered.

To find remote attacks on Microsoft Windows, we focus on unsafe
DLL loadings caused by the following three conditions: resolution
failure, filename specification, and standard or alternate search
order. According to the directory search orders discussed in Table 2,
this type of unsafe DLL loading makes OS check the current direc-

OS Software DLL name DLL-loading time Precondition

XP/Vista

iTunes 8.2.1.6 ipodvoiceover.dll On execution

Opera 9.64
aspell-15.dll On execution

GoogleDesktopCommon.dll On execution Google Desktop installation

RealPlaer 10.5 RIO300.dll or RIO500.dll On termination

Vista
iTunes 8.2.1.6 rpawinet.dll On execution
RealPlayer 10.5 rpawinet.dll On execution
Quick Time Player 7.6.2 rpawinet.dll On update check

Table 8: “Shortcut with component" attacks.

OS Software DLL name DLL-loading time Precondition

XP/Vista MS Word/PowerPoint 2007
HPProfiler.dll On document open HP printer driver installation

GoogleDesktopCommon.dll On document open Google Desktop installation

Vista Foxit Reader 3.0 rpawinet.dll On update check

Table 9: “Document with component" attacks.

OS Software DLL name DLL-loading time

Vista Internet Explorer 8 rpawinet.dll On execution

Table 10: A threat combined with “Carpet Bomb" attack.

tory corresponding to “." during DLL resolution. In this case, the
directory may be writable from the remote site because of software
bugs. The blended threat combined with the Safari’s Carpet Bomb
attack discussed in Section 2.3.1 exploits this flaw. In particular,
when Internet Explorer 7 tries to resolve the target DLL, the current
directory is checked before the resolution and corresponds to the
Desktop directory. This makes the program load and execute ma-
licious DLL files on the Desktop directory, which are downloaded
through the Carpet Bomb attack.

Based on this observation, we detect potential remote attacks by
checking whether or not the current directory is writable by remote
users when each resolution failure based on the filename specifica-
tion happens. In this evaluation, we consider the following two types
as remotely writable directories: directory sent by remote users and
the Desktop directory. For the first directory type, attackers can
send arbitrary directory structures by using archive files similar to
malware propagation via e-mail. Considering the Desktop directory,
we assume that the Carpet Bomb attack is possible.

Using this technique, we detect remote code execution vulnera-
bilities from resolution failures for the software listed in Table 5.
Based on our detection result, we discover three types of remote
attack vectors discussed in Section 2.3.
Shortcut with component The current directory of applications
run via their shortcuts may be the same directory as the shortcuts at
the point of the resolution failure. In this case, the shortcut directory
can serve as the DLL-hijacking directory for remote code execution.
Table 8 shows information on the discovered remote attacks of this
category. For example, Quick Time Player 7.6.2 run via its shortcut
on Windows Vista has a flaw where it loads rpawinet.dll located
in the same directory as the shortcut on its update check. This
vulnerability can lead to remote code execution attacks because the
program generally checks its update on its execution. Note that
this type of attack can be combined with the Carpet Bomb attack
because the usual location of the shortcut is the desktop directory.

One interesting discovery is the attack caused by third-party com-
ponent loading. For example, when Opera 9.64 runs via its shortcut
on the host where Google Desktop is installed, it loads GoogleDesk-
topCommon.dll on its startup. This vulnerability shows that third-
party components can cause software hosting them to perform un-
safe component loading, which can be exploited by attackers for
remote code execution.

Software Generation phase Analysis phase

Access 2007 41 s 16.86 ms
Excel 2007 36 s 15.66 ms
Word 2007 35 s 25.75 ms
PowerPoint 2007 46 s 26.74 ms
Outlook 2007 80 s 23.33 ms
Visio 2007 35 s 15.28 ms
Onenote 2007 29 s 11.68 ms

Table 11: Execution time for analyzing MS Office 2007.

Document with component Table 9 shows our discovered “docu-
ment with component" attacks. As we mentioned above, third-party
components can cause serious security vulnerabilities in software.
According to the Table, Microsoft Word and PowerPoint 2007 suf-
fer from security vulnerabilities caused by third-party components,
which lead to remote code execution attacks. In particular, load-
ing the Google Desktop Office Addin and the HP printer
driver fails to resolve particular DLLs when the programs open
documents, and the current directory at that point is the same direc-
tory as the opened documents. This security hole allows attackers
to make the software load the DLLs from remote sites when the
victim opens the document. We reported this issue to the Microsoft
Security Response Center, and we are working with Microsoft in
collaboration with Google and HP to develop security patches.

For Foxit Reader 3.0, the directory containing the opened PDF
document can be considered the DLL-hijacking directory due to a
resolution failure of rpawinet.dll in Windows Vista. The unsafe
component loading is performed at the point of checking for updates.
Note that updates are checked by the application automatically.
Based on this flaw, attackers can perform remote code execution
attacks by sending archives of a PDF document and a malicious
rpawinet.dll to remote users.
Combination with the Carpet Bomb attack In Windows Vista
Home Edition SP1, Internet Explorer 8 fails to resolve the DLL
rpawinet.dll on its startup, and the current directory at that point
is always the Desktop directory (Table 10). This unsafe behavior
can lead to blended attacks combined with the Safari’s Carpet bomb
attack.

5.3 Performance
To evaluate the performance of our technique, we measure the

execution time of each phase for analyzing MS Office products on
Windows XP SP3 running on a Core2 Duo 2.40GHz processor with
4GB RAM. Table 11 shows the execution time for the generation
and analysis phases of the analyzed applications. In the evaluation,
we use default documents as inputs to the analyzed programs. Our
results show that our technique is practical and can be effectively
applied for analyzing real-world programs such as MS Office.

6. DISCUSSION
In this section, we discuss techniques to mitigate unsafe dynamic

loadings, generality of our proposed technique, and unsafe compo-
nent loading as a general security concern.

6.1 Mitigation Techniques
Use fullpath Because the filename specification resolves the tar-
get component by iterating through the directories, it may lead to
resolution hijacking. This problem can be solved by specifying the
target DLL based on its full path, because the fullpath specification
determines its target file directly without iteratively searching a set
of directories. In order to generate correct fullpath specifications,
system calls that return full paths of the target directories can be
used. For example, suppose a developer wants to load a DLL in the
system directory at runtime on Microsoft Windows. In this case,
GetSystemDirectory function can be used to determine the full
path of the DLL. In particular, after obtaining the path of the system
directory through the system call, the developer can concatenate
the path with the filename of target DLL to obtain its full path. For
instance, if a developer wants to load WS2HELP.DLL in the system
directory, safe DLL resolution can be achieved by concatenating
WS2HELP.DLL with the system directory path obtained by the Get-
SystemDirectory function (i.e., C:\Windows\System32).
Resolve system call at runtime According to Section 5, chained
loading of DLLs also causes resolution hijacking. This can be miti-
gated by resolving system calls at runtime as much as possible. In
particular, if we resolve the address of the target system call exported
by a DLL and invoke it at runtime, the DLL file is not considered a
dependent DLL and is not loaded at load-time. For example, sup-
pose we want to invoke the send function of ws2_32.dll, we can
obtain the function’s address by using the LoadLibrary and GetP-
rocAddress functions exported by kernel32.dll at runtime, and
invoke the target function based on this address.
Confirm file existence As we mentioned in Section 5, resolution
failures can cause serious security vulnerabilities in software. Its
main reason is that many programs make the false assumption that
the target component exists in the system. Therefore, it is important
to check existence of the target files before loading them.
Check current OS version As we discussed in Section 5, a set
of system libraries depends on the version of the operating system.
Because many Windows applications are developed to be executable
under both Windows XP and Windows Vista, they should check
version of the OS and load only the supported components.
Provide tools for checking third-party components Unsafe com-
ponent loadings performed by third-party components can lead to
serious security holes in the applications hosting them. Because
of this security issue, although the applications resolve the compo-
nents safely, they can be attacked by exploiting vulnerabilities in the
third-party components. To mitigate this problem, it is necessary
for application developers to provide developers of the third-party
components with tools to check the safety of their components.
Check validity of loaded DLLs Because a program resolves a
target DLL based on its name, it is difficult to determine whether
or not the resolved DLL is the file intended by the program. To
address this problem, application developers can use properties of
the target file such as its hash value to determine validity of the
loaded component.
Use SetDllDirectory function As we mentioned in Section 5, the
current directory at the point of a resolution failure may cause re-
mote code execution attacks. To mitigate this type of attacks, we
can use the SetDllDirectory function which can add an arbitrary
directory instead of the current directory. Especially, this function
can remove the current directory from the directory search order.
This approach can effectively block remote code execution attacks
discussed in Section 2.3. In particular, Microsoft adopts this ap-

proach to fix the blended attack combined with the Safari’s Carpet
Bomb attack [28].
Install applications in the admin-writable directory Accord-
ing to Table 6, the application directories are the most vulnerable
ones to resolution hijacking. Therefore, unsafe resolutions per-
formed by non-admin users can be significantly reduced by installing
applications in directories only writable by administrators (e.g., the
Program Files directory on Microsoft Windows).

6.2 Generality of Our Approach
Although we have focused on detecting and analyzing unsafe

component loadings on Microsoft Windows, the underlying princi-
ple is general and can also be applied to other operating systems.
For Unix-like operating systems (e.g., MAC OS X, Solaris, and
Linux), dynamic loading is performed by the dlopen system call.
According to its man page [11], target component resolution on
these operating systems is done in a similar manner as what is done
on Microsoft Windows as we discussed in Section 2. In particular,
the fullpath specification starting with ‘/’ determines the target com-
ponent directly, while the filename specification iterates through a
list of predefined directories to find the file with the specified name.
Furthermore, chained loading happens based on dependencies of
the target component [22].

The first phase of our technique is platform-dependent, while the
second is platform-independent. Thus, to adapt the technique to a
different operating system, we need to specialize the generation of
dynamic profiles w.r.t. its component loading mechanism. However,
the offline profile analysis is platform-independent, and a generic
implementation is possible to process the generated dynamic profiles
and detect unsafe component loadings.

6.3 Unsafe Loading as A General Concern
Unsafe component loading is essentially a type of programming

defects [17, 31]. Therefore, this problem often arises in operat-
ing systems that support dynamic loading. As a recent example,
CVE-2009-0415 [9] is a vulnerability due to unsafe component
loading. In particular, when Trickle [35], a user space bandwidth
shaper for Unix-like systems, loads trickle-overload.so, it
checks the current working directory before the intended resolution
(i.e., /usr/lib/trickle/trickle-overload.so). This flaw al-
lows local attackers to execute arbitrary code by using malicious
trickle-overload.so in the current working directory.

7. RELATED WORK
This section surveys closely related work and divides the related

work into four categories: framework for safe component resolution,
safety improvement of browser plugins, vulnerability analysis and
detection, and non-control-data attacks.

Chari et al. [7] presents a mechanism, safe-open, to prevent
unsafe component resolution in Unix by detecting modifications to
path names by untrusted users on the system. In comparison, we
propose a dynamic analysis to discover unsafe component loading
vulnerabilities in the software itself.

Secure browsers [14, 15, 16, 36] have been introduced to mitigate
risks caused by unsafe usage of third-party plug-ins. Gazelle [36]
and OP [16] browsers adopt OS-level sandboxing techniques to
reduce damages introduced by unsafe plugin usage. Grier et al. [15]
propose security policies for secure plugin execution. Internet Ex-
plorer utilizes a kill-bit [20] to prevent malicious ActiveX com-
ponents from being loaded. These techniques aim at providing
software platforms with secure plugin usage, while our technique
aims at detecting unsafe loadings of general software components.

Testing and analysis techniques for detecting software vulnera-
bilities have been well explored. Most of previous approaches have
focused on detecting low-level, unexpected program behaviors such
as memory corruption errors [5, 6, 10, 13, 21, 29, 30, 41] and inte-
ger overflows [4, 27, 37]. Although these approaches have shown

promising results in detecting such vulnerabilities, none has targeted
the detection of unsafe component loadings; our work formulates
the problem and introduces the first effective automated technique
to detect such vulnerabilities.

Unsafe component loading can also be considered an example of
non-control-data attacks because it does not alter the control data
of the target program. Chen et al. [8] surveyed attack techniques
that corrupt application data, which includes user identity data,
configuration data, user input data, and decision-making data, and
presented a detailed analysis and defense mechanism. Compared to
those non-control-data attacks, unsafe dynamic loading is mainly
due to defects in the component loading procedure, while they are
originated from unsafe handling of application data. In addition,
the attack vectors are different. In particular, unsafe component
loading can be exploited by placing malicious files in the component-
hijacking directories, while non-control-data attacks corrupt certain
application data to exploit unsafe processing of the data.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a dynamic analysis technique to

detect unsafe dynamic component loadings. Our technique works
in two phases. It first generates profiles to record a sequence of
component loading behaviors at runtime using dynamic binary in-
strumentation. It then analyzes the profiles to detect two types
of unsafe component loadings: resolution failures and resolution
hijackings. To evaluate our technique, we implemented a tool to
detect unsafe DLL loadings on Microsoft Windows. Our evaluation
shows that unsafe DLL loading is prevalent and can lead to serious
threats. In particular, our tool detected more than 1,700 unsafe DLL
loadings in popular software developed by major vendors. It also
discovered potential remote code execution attacks exploiting the
detected unsafe DLL loadings.

For future work, we are interested in exploring two research
directions. First, we plan to analyze unsafe component loadings
in Unix-like operating systems. As we mentioned in Section 6,
unsafe component loading is a general security concern, and our
approach is general and can also be applied to analyze applications
on these systems. We plan to evaluate the prevalence and severity
of unsafe component loading for these other important operating
systems. Second, we plan to develop static binary analysis tech-
niques to detect unsafe component loadings. Although our dynamic
analysis is effective, it may suffer from the standard limitation of
dynamic analysis, namely the code coverage problem. We plan to
develop sound, practical static analysis techniques to complement
the dynamic analysis we introduced here.

Acknowledgments
We thank Earl Barr, David Hamilton, David LeBlanc, and the anony-
mous reviewers for useful feedback on earlier versions of this paper.
We also thank Charles Weidner at MSRC for collaborating with us
to develop patches for the reported vulnerabilities.

References
[1] About the security content of Safari 3.1.2 for Windows.

http://support.apple.com/kb/HT2092.
[2] About Windows Resource Protection. http://msdn.microsoft.

com/en-us/library/aa382503(VS.85).aspx.
[3] About Windows Resource Protection. http://www.

dependencywalker.com/help/html/dependency_types.htm.
[4] D. Brumley, D. X. Song, T. Chiueh, R. Johnson, and H. Lin. RICH:

Automatically protecting against integer-based vulnerabilities. In Proc.
NDSS, 2007.

[5] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Proc. OSDI, 2008.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically generating inputs of death. In Proc. CCS, 2006.

[7] S. Chari, S. Halevi, and W. Venema. Where do you want to go today?
escalating privileges by pathname manipulation. In Proc. NDSS, 2010.

[8] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-control-data attacks are realistic threats. In Proc. Usenix Security
Symposium, 2005.

[9] CVE-2009-0415. http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2009-0415.

[10] D. Dhurjati and V. Adve. Backwards-compatible array bounds
checking for C with very low overhead. In Proc. ICSE, 2006.

[11] dlopen man page. http://linux.die.net/man/3/dlopen.
[12] Dynamic-Link Library Search Order. http://msdn.microsoft.

com/en-us/library/ms682586(VS.85).aspx.
[13] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox

fuzz testing. In Proc. NDSS, 2008.
[14] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure

environment for untrusted helper applications confining the Wily
Hacker. In Proc. Usenix Security Symposium, 1996.

[15] C. Grier, S. T. King, and D. Wallach. How I learned to stop worrying
and love plugins. In Proc. W2SP, 2009.

[16] C. Grier, S. Tang, and S. T. King. Secure web browsing with the OP
web browser. In Proc. S&P, 2008.

[17] T. Grtker, U. Holtmann, H. Keding, and M. Wloka. The Developer’s
Guide to Debugging. Springer, 2008.

[18] IDA Pro Disassembler. http://www.hex-rays.com/idapro/.
[19] IE’s unsafe DLL loading.

http://www.milw0rm.com/exploits/2929.
[20] Killbit. http://support.microsoft.com/kb/240797.
[21] D. Larochelle and D. Evans. Statically detecting likely buffer overflow

vulnerabilities. In Proc. Usenix Security Symposium, 2001.
[22] ldd man page. http://linux.die.net/man/1/ldd.
[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proc. PLDI,
2005.

[24] Microsoft Portable Executable and Common Object File Format
Specification. http://www.microsoft.com/whdc/system/
platform/firmware/PECOFF.mspx.

[25] Microsoft Security Bulletin MS09-014. http://www.microsoft.
com/technet/security/Bulletin/MS09-014.mspx.

[26] Microsoft Security Bulletin MS09-015. http://www.microsoft.
com/technet/security/Bulletin/MS09-015.mspx.

[27] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation to
find integer bugs in x86 binary Linux programs. In Proc. Usenix
Security Symposium, 2009.

[28] MS09-014: Addressing the Safari Carpet Bomb vulnerability.
http://blogs.technet.com/srd/archive/2009/04/14/
ms09-014-addressing-the-safari-carpet-bomb-vulnerab
ility.aspx.

[29] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow
detector. In Proc. NDSS, 2004.

[30] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended
symbolic execution on binary programs. In Proc. ISSTA, 2009.

[31] Secure Linux Programming. https://foss.in/2006/cfp/
slides/Secure_Linux_Programming_145.pdf.

[32] Side-by-side Assemblies. http://msdn.microsoft.com/en-us/
library/aa376307(VS.85).aspx.

[33] The End of DLL Hell. http:
//msdn.microsoft.com/en-us/library/ms811694.aspx.

[34] The Long-Term Impact of User Account Control.
http://technet.microsoft.com/en-us/magazine/2007.09.
securitywatch.aspx.

[35] Trickle. http://monkey.org/~marius/pages/?page=trickle.
[36] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and

H. Venter. The multi-principal OS construction of the Gazelle web
browser. In Proc. Usenix Security Symposium, 2009.

[37] T. Wang, T. Wei, Z. Lin, and W. Zou. IntScope: Automatically
detecting integer overflow vulnerability in x86 binary using symbolic
execution. In Proc. NDSS, 2009.

[38] What Goes On Inside Windows 2000: Solving the Mysteries of the
Loader. http:
//msdn.microsoft.com/en-us/magazine/cc301727.aspx.

[39] O. Whitehouse. GS and ASLR in Windows Vista. In Black Hat DC,
2007.

[40] Windows Management Instrumentation. http://msdn.microsoft.
com/en-us/library/aa394582(VS.85).aspx.

[41] R.-G. Xu, P. Godefroid, and R. Majumdar. Testing for buffer
overflows with length abstraction. In Proc. ISSTA, 2008.

