
Building White-Box Abstractions by Program Refinement

Mehrdad Afshari Zhendong Su

Department of Computer Science, University of California, Davis, USA

{mafshari, su}@ucdavis.edu

Abstract
Abstractions make building complex systems possible. Many
facilities provided by a modern programming language are di-
rectly designed to build a certain style of abstraction. Abstrac-
tions also aim to enhance code reusability, thus enhancing
programmer productivity and effectiveness.

Real-world software systems can grow to have a compli-
cated hierarchy of abstractions. Often, the hierarchy grows un-
necessarily deep, because the programmers have envisioned
the most generic use cases for a piece of code to make it
reusable. Sometimes, the abstractions used in the program
are not the appropriate ones, and it would be simpler for the
higher level client to circumvent such abstractions. Another
problem is the impedance mismatch between different pieces
of code or libraries coming from different projects that are
not designed to work together. Interoperability between such
libraries are often hindered by abstractions, by design, in the
name of hiding implementation details and encapsulation.
These problems necessitate forms of abstraction that are easy
to manipulate if needed.

In this paper, we describe a powerful mechanism to create
white-box abstractions, that encourage flatter hierarchies of
abstraction and ease of manipulation and customization when
necessary: program refinement.

In so doing, we rely on the basic principle that writing
directly in the host programming language is as least restric-
tive as one can get in terms of expressiveness, and allow the
programmer to reuse and customize existing code snippets to
address their specific needs.

Categories and Subject Descriptors D.1.m [Programming
Techniques]: Miscellaneous; D.2.3 [Software Engineering]:

Coding Tools and Techniques; D.2.6 [Software Engineer-
ing]: Programming Environments; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords white-box abstractions, program refinement, syn-
tactic manipulation, reusability

1. Introduction
Programming is about expressing ideas. Ideas expressed in
programs vary widely in complexity. Programs can exhibit
small ideas or very complex ones. Complex ideas are built
from simple ones. There are three ways to build complex
ideas from simple ones: by combining them into a compound
one, by comparing them with each other without unifying
them, and via abstraction, i.e. distancing them from other
ideas that accompany them in their concrete existence [14].

Complex programs, like ideas, are generally composed
of smaller pieces. In order to make building complex sys-
tems tractable, and to be able to reuse these smaller pieces in
different contexts, we need to rely on abstraction. Program-
ming languages provide various ways to build abstractions,
like procedures [3], abstract data types [13], classes [6], ob-
jects [7], and actors [8]. Different programming languages
provide different means of abstraction.

In practice, software systems often consist of complex ab-
stractions composed of other complex abstractions, forming a
deep hierarchy of abstractions, created by different people at
different times to achieve different goals. While some of the
nodes in this hierarchy are essential to the program, a deep
hierarchy of abstractions has some obvious downsides.

One issue is imperfections of the abstractions themselves,
i.e. they do not fully abstract away the related ideas that
accompany the underlying concrete instantiations of the
abstraction and the subtleties leak to the higher level observer,
making it responsible for specifically working around such
leaks, thereby hindering the reusability of the abstraction in
arbitrary contexts. A library abstracting a TCP-based network
connection as if it were a local in-memory stream might limit
the caller who may also need to access the network-specific



state and manually tweak flushing the stream and traffic flow
parameters that may not necessarily be exposed via an explicit
API, but nevertheless affect the caller’s expectations, making
it distinguishable from a local stream a disconnection event,
for instance.

Another concern is understandability of programs rely-
ing heavily on complex abstractions: by design, many of the
language features and techniques to build abstractions, e.g.
procedural abstraction and object orientation, aim to build
black-box abstractions. Black-box abstractions are double-
edged swords. The advantage of hiding the internals is that the
component can be isolated and reasoned about as a separate
unit with clear interfaces and boundaries. The disadvantage
is that the interfaces can be arbitrary and lacking documenta-
tion, or worse, having incorrect documentation that does not
perfectly reflect the subtleties of the implementation, caus-
ing confusion for the programmer. Anecdotally, sometimes
reading the source code for the component, if available, can
be the best path for understanding the subtleties of the imple-
mentation. Deep abstraction hierarchies can make this more
difficult.

1.1 Abstraction by Refinement

In this paper, we introduce a new mechanism for building
abstractions: program refinement. In particular, we capture the
programmer’s intent by tracking modifications to pieces of a
program. A modified piece of code is implicitly considered
a specialized verion of the original, inducing a relationship
between the two, not too dissimilar to inheritance in object-
oriented programming, but in a static syntactic fashion.

The core idea is treating a certain procedure (β) as the
base template and letting the programmer modify it as they
wish. The new, specialized, procedure (Γ) can be formally
described as a pair consisting of the original base procedure
and its differences (∆).

Γ = (β,∆)

∆ is the refinement applied by the programmer and
captures the intent of the specialization on the base template.
The way ∆ is interpreted is implementation-dependent. In
the simplest implementations, it can be a syntactic difference
provided by a version control tool.

For it to be a proper abstraction, we need to be able to
liberate ∆ from being meaningful only in the context of that
particular base, and be able to apply it to other base templates
as well, computing a new specialization with the same delta
over a new base template. This is formalized by a merge
operation:

Γ2 = merge(Γ, β2) = merge((β,∆), β2)

The actual behavior of a merge operation is also imple-
mentation dependent. In the simplest case, it is a version
control-like syntactic automerge, but it can be made smarter
and more semantic-oriented. The smartness of the merge
operation is, in a way, representative of how capable the
programming system is in capturing the programmer’s intent.

A single base can serve as the template for many special-
izations. There can, in principle, be a nested tree of specializa-
tions. When the root base changes, the changes would prop-
agate by applying successive merge operations. The merge
operation can be unsuccessful. We will leave the discussion
on how we resolve this issue to section 3.

We have used this simple formalization to describe the
idea as an analogy to another known idea, and the differences
between the two.

At this point, the description might sound similar to a
macro system, or a template metaprogramming feature in
a language like C++. Subtle, but key, differences, however,
exist, as we describe.

Refinement vs. Macros Macros are powerful abstraction
tools. Similar to refinement, they offer specialization from a
symbolic template. Macros, in languages that embrace them,
like flavors of Lisp, operate at the abstract syntax tree level,
and therefore make the full power for the underlying language
accessible to the programmer. However, there are two key
differences:

1. Macro expansions are evaluated in the scope of the use site.
In this manner, they are similar to copy-pasted code. A
key feature in refinement abstractions is evaluation within
the environment of the original base template.

2. Macros need to be predefined. A programmer generally
needs to think beforehand about what macros to write,
and provide appropriate “holes” in them for the external
arguments. The programmer would often overgeneralize
the macro before the complexity is actually needed in
the program. The opposite can also occur, where the
macro definition does not support parameterization of
certain parts of itself. Clearly, arbitrary procedures do
not become macros automatically, but you can apply
refinement to any procedure in the program, without
any special consideration when the procedure is being
authored.

Refinement vs. Metaprogramming Templates Metapro-
gramming template systems vary in design and function.
To address the differences, we take C++ template system



as a popular, concrete instantiation. In contrast with C++
templates:

1. Refinements, being syntactic, are constrained by the ex-
pressiveness of the host language only. Templates, how-
ever, can only be parameterized in certain areas. An ar-
bitrary statement cannot be fed into a C++ template as
an argument. The parameterization potential is usually
limited to types, values, and function references.

2. Refinements can be applied to any base procedure,
whereas templates, like macros, need to be predefined as
such.

3. Depending on the way the template system is imple-
mented, its expansions can exhibit the second limitation
described for macros, i.e. redefinition of the environment
in which the template is expanded.

1.2 Main Contributions

This paper makes the following contributions:

• We introduce a new general paradigm for building ab-
stractions by allowing the programmers to refine existing
code.

• We present and discuss the design choices in GOCLR, our
development environment for Go featuring abstraction by
refinement.

• We illustrate the usefulness of this abstraction toolkit
through a collection of case studies.

• We discuss open issues, such as usability, challenges in
merging, interactions with external editors, and possible
approaches for resolving them.

1.3 Paper Outline

The rest of this paper is organized as follows. First, in sec-
tion 2, we use two examples to motivate building abstrac-
tions by refinement and illustrate its use. In section 3, we
describe our design and realization of a system that supports
building abstractions via program refinement for a real-world
language, Go. We then use a few examples in section 4 to
highlight the utility of the paradigm. In section 5, we discuss
a few open issues. Finally, section 6 surveys related work,
and section 7 concludes.

2. Illustrating Examples
To motivate and illustrate the utility of white-box abstractions
created with program refinement, we highlight the following
examples.

Depth-First Search Imagine using a package that imple-
ments some graph operations, among other things. The pack-

1 func DFS(root *Node) {

2 q := Stack{}

3 q.Push(root)

4 for !q.Empty() {

5 node := q.Pop()

6 if !visited(node) {

7 markVisited(node)

8 for adj := adjacentNodes(node) {

9 if !visited(adj) {

10 q.Push(adj)

11 }

12 }

13 }

14 }

15 }

Figure 1. The original depth-first search function provided
by the library.

1 func DFS(root *Node, look func(*Node)) {

2 q := Stack{}

3 q.Push(root)

4 for !q.Empty() {

5 node := q.Pop()

6 if !visited(node) {

7 markVisited(node)

8 look(node)

9 for adj := adjacentNodes(node) {

10 if !visited(adj) {

11 q.Push(adj)

12 }

13 }

14 }

15 }

16 }

Figure 2. Depth-first search procedure extended to support
a custom processing via a function reference.

age contains a public DFS function that does a depth-first
traversal of a graph passed via a root node as an argument
and marks them as visited. The end result is that all reachable
nodes are marked as visible in some state variables internal
to the package for future use, for instance to check graph
connectivity.

A programmer using this package is interested in the depth-
first search functionality (Figure 1), but needs to perform a
custom task when a new node is visited, like printing its
satellite data.



Had the original author of the DFS function had the
foresight that it would be used this way, they would have
provided a generic way to pass in, say, a function pointer
to the DFS function (Figure 2). The caller would have then
supplied a function that takes a node and processes it as
an argument to the DFS function. Note that providing this
functionality is only possible if the underlying language
has the required bells and whistles, like the ability to pass
functions as arguments. Furthermore, this approach limits
the degree of freedom of the client to intervene at the
specific point after visit is called in the function. Any other
functionality would still be unsupported. Realistically, the
caller may want to use the DFS code to find back-edges in the
graph, which requires more changes to DFS than just being
able to pass the callback that would be run on every visit.

Nevertheless, the original author has not provided us with
this functionality. We are stuck with a decision to copy and
paste the DFS source code or modify it in-place.

There are a number of problems with explicit copying and
pasting. First, the programmer needs to figure out where to
paste the copied code. If the code is pasted in the caller
context, it will not compile, because its identifiers refer
to dependencies that are meaningless in the caller’s scope.
Therefore, the programmer needs to manually resolve the
references, if possible. It is not always possible due to private
identifiers within packages.

Pasting the code in the callee context is essentially fork-
ing the function into two. The first downside is doing that
means you are essentially forking the dependency library and
updates to the dependency will not be as straightforward to
use from then on. Second, even with a good version control
system, the updates and bug fixes to the original DFS would
not propagate to the cloned implementation.

Modifying the code in-place has the obvious downside of
potentially breaking the existing clients who are relying on
the subtleties of the existing behavior of the function.

With our system, this problem is easily fixable by right-
clicking on the DFS identifier in the programming environ-
ment. The system will let you specialize DFS function for
that specific call site. That way, you can modify the body at
will and add appropriate statements wherever needed. The
language does not even need to support function pointers.

If the original library changes upstream, the system will
automatically try to merge the specialized versions of the
functions with the updates to them fetched from the upstream
package source. Should the merge succeed automatically, the
update would be seamlessly applied to all of the specialized
versions of DFS.

Importantly, the visual footprint of the specialized DFS is
confined to that particular caller only. It would not be visible
when browsing the source code of the dependency package.

Syntax Tree Visitor Programming language toolchains of-
ten provide procedures that parse the program text into a tree
data structure representing the program. Scanning the abstract
syntax tree has many use cases from pretty-printing to en-
abling editor refactorings and compiler optimization and code
generation. Since this is a common operation, the libraries
defining the AST structure usually provide an explicit API
to help visit the nodes in the tree. Nonetheless, due to many
node types in the AST, implementation of a visitor is tedious
and one can end up with a long switch-case construct.

Indeed, the structure of various visit procedures are usually
the same, reflecting the structure of the AST, as opposed to
the nature of the specific process, making this problem a
prime candidate to leverage program refinement.

One could start by calling the pretty-printing procedure of-
ten shipped with the language library, passing in an AST rep-
resentation. To get to the more specialized use case in mind,
the programmer makes the programming environment–likely
by right clicking on the function invocation and selecting
“Specialize” in a visual environment–aware of their intent to
customize the body of the callee for their own purpose. The
programming environment then provides them with the ex-
isting callee source code as the basis for modification. When
the changes are saved, the programming environment asks
for a summary of changes, analogous to a commit message
in a revision control system.

The message is made visible at the specialized call site to
make the user aware that the callee is in fact modified and
would potentially exhibit different behavior at run time.

When a modification is more generally usable, the pro-
grammer may want to give it a unique name, so it can be
used from multiple call sites. This is possible by simply re-
naming the function when editing the initial template. The
new function act as if it were a separate function declarared
adjacent to the original template in terms of access to the
variables in its scope, without requiring source-level changes
to the original library. The existence of this function would be
dependent upon continued existence of the original template
and changes to the original are propagated to the specialized
versions as well.

3. Design and Realization
To experiment with building abstractions by program refine-
ments, we designed a prototype system, GOCLR (pronounced
“go clear”). In this section, we describe some of the design



challenges we faced and how we tackled them and the ratio-
nales behind our choices.

3.1 Programming Environment

GOCLR has its own custom programming environment that
is based on the Go programming language [2] and Git
version control system [1] internally. Go was chosen as
the programming language for the following technical and
conventional reasons:

• Go is designed to understand the need for external pack-
ages and tools for package management.

• Go packages are conventionally distributed as source code
and dependencies are often compiled in a static binary at
build time.

• Go is a simple language and lacks many of the conven-
tional mechanisms to build abstractions, like generics,
making it a particularly suitable testbed for building ab-
stractions with program refinement, due to a more acute
need for alternate abstraction mechanisms, and minimal
potential complexity arising from interference with exist-
ing language features.

• The Go community seems to strongly prefer lightweight
abstractions and has a tendency to more strongly resist
overengineering relative to the communities of more com-
mon languages. Specifically, this helps statically resolve
the callees in invocations, as refining dynamically dis-
patched procedures is confusing and unsupported.

3.2 Projects and Build Strategy

For simplicity, the initial version of GOCLR is not designed
to actively interoperate with other development environments.
GOCLR normally stores program pieces as separate Git
objects and generates textual Go source files to be fed to the
actual compiler toolchain only when the project is going to be
built. For practical purposes, and for seamless working with
dependencies, an import mechanism is provided. Importing
existing Go source packages will parse and transform them
to the internal data format, while preserving the connection
between the original location of tokens and the abstract syntax
tree. This connection is necessary to identify and propagate
changes to the program when a dependency is updated, for
instance.

3.3 Merging

A necessary feature for realization of our vision is support
for propagation of changes when a piece of code that serves
as the base for one or more refined specializations changes,
either at the source code level in an external code repository
serving the dependency, or within the current project. Proper

merging is critical to providing a great user experience when
relying on program refinement-induced abstractions.

Mechanics of a Merge For a refinement-oriented program-
ming system to provide effective abstractions at scale, a mech-
anism to propagate updates to the upstream procedures that
serve as templates is essential. Merging is performed by dif-
ferencing an specialized code snippet from its original base
and storing the information. The system also needs to keep
an index of code snippets that are derived from the original
template.

When a change in an upstream repository is detected, the
index is looked-upon to see if there are any derivatives of
that upstream change in the codebase. If such derivatives
exist, the system tries to automatically apply the stored
difference for that particular derivation to the new version of
the function. Theoretically, this process can be done manually
or automatically. In its primitive form, the programmer is
asked to observe the differences and either keep the existing
derivation, refusing further propagation of upstream changes,
or to rewrite the derivation manually based on the new
upstream function. In the latter case, the system would
compute the new delta and update the internal propagation
link to the new upstream version, to accomodate for future
upstream changes.

It is, however, conceivable that systems that rely solely
on manual changes would be tedious to operate at scale.
Therefore, at least some level of automatic merge seems
necessary.

Automerging A difference between an upstream procedure
and its refined specializations is an expression of programmer
intent. A programming system, by observing the difference,
can capture what the programmer intends to express in the
form of “like X, but with Y.”

Distillation and store the difference information between a
code snippet and its refinement can be done at various levels:
at the low level, a purely string based approach without any
understanding of the programming language can be used. At
a higher level, programming language syntax can be taken
into account, and changes would be stored as something
along the lines of “surrounded the function body with an
if statement”. This level of understanding of the program
meaning is helpful in avoiding uncompilable code generation
by the merge process.

More sophisticated analyses, perhaps with the help of
statistical techniques and machine, can be used to capture the
meaning of more sophisticated changes, like fixing an out-of-
bound-access bug that may require reordering of control flow
within the function that can be impractical with a syntax-level
differencing engine.



Of course, it is possible for automatic merge tools to fail.
When that happens, the user has the option to manually per-
form the merge — by effectively rewriting the specialization
on a new base —, or disentangle the specialization from the
base piece of code, thus creating a new copy of the code.
Obviously, future changes to the base piece will not be prop-
agated to the distinct specialized copy anymore and the new
piece takes on its own independent life.

Merging in GOCLR The prototype implementation of GO-
CLR only supports simple automatic syntactic merges by
piggy-backing on Git itself. While accurate and sensible au-
tomerging is a distinct problem from the general idea of
abstraction with program refinement, a smart merge subsys-
tem is critical for a good programmer experience, especially
as the project and as a result, the quantity of specializations
grow. To help solve this problem, we envision providing API
hooks for smart mergers that can understand semantics of
the differences and the programmer intent behind changesets.
Such smart merge tools can then automatically reapply the
modifications inferred on the new base version.

3.4 User Interface

The user interface is a critical piece of the solution. Special-
ized versions of the code should be hidden from the pro-
grammer except when they are explicitly looking for them
or they are interested in a particular specialization relevant
to a specific call site. Otherwise, the clutter caused by the
visibility of many variations of a single procedure will make
the system unbearable: imagine C++ programmers having to
see template expansions for each specialized type.

It is also of utmost importance to properly highlight and
indicate that a callee is specialized for a particular call
site. GOCLR will let you provide a short comment when
specializing a base template that will be visible to the reader
under a specialized function name in the call site.

4. Applications
Building abstractions by program refinement is helpful in
various ways to the programmer. In this section, we discuss a
select few of its potential applications.

Debugging Aid Often in debugging scenarios, the program-
mer might be interested in temporarily customizing the func-
tionality of a procedure in a specific invocation, without hav-
ing it behave differently for the program at large. GOCLR lets
the programmer do exactly the customization they need per
individual call site. The programmer can choose to customize
a specific procedure when called from a specific location and
add diagnostics and print statements to aid debugging, for
instance.

The changes will affect only calls originated from a
specific call site and the rest of the program executes as
it normally would.

This debugging technique can be applied even if the pro-
grammer does not expect to specialize the function perma-
nently. To get back to the original functionality, the program-
mer can just revert the specialization within the programming
environment.

Customizing Generated Code Automatic program synthe-
sis tools and code generation tools expect the generated code
file to not be edited manually, because the edits would be lost
if the code generation tool is run again. Therefore, generated
code is usually kept in a separate file and maintains a clean,
minimal, interface to the other pieces of the program that
are non-generated. This style may make sense for tools like
parser generators, that have a very clear, isolated, function-
ality, but they effectively discourage the use of a class of
automatic programming tools that require more customiza-
tion on the output produced and are more entangled with the
host program.

Naturally, we can simply consider the generated code a
separate dependency and propagate changes in the output of
the code generator to specialized versions of functions that
are based on pieces of the generated output.

Exposing Hidden State in Dependencies There are times
when excessive focus on encapsulation cause problems. For
instance, a concrete problem with the TLS package in older
versions of the Go runtime library was the lack of an exposed
connection identifier. In order to perform meaningful authen-
tication over an established but unauthenticated TLS channel,
while preventing man-in-the-middle attacks, you need a way
to bind the underlying TLS channel to the higher level authen-
tication sequence. There used to be no easy way to extract a
connection identifier from the Go runtime library’s TLS pack-
age. Forking that piece of the library and manually adding
a method that exposes the internal state variable is a way to
accomplish it, and it is a huge burden. Luckily, with a simple
program refinement technique, a method can be effectively
added to the package that reads the connection ID from the
internal state variables and returns the value for use by the
caller, effectively circumventing the overly strict encapsula-
tion policies of the package, for good reason.

Lightweight Forking Considering the vast variety of freely
available source code on the web, sometimes all the program-
mer wants is to write a program whose functionality can
leverage a subset of another program, with minor additions
and differences. For instance, a static analysis tool might be
based on a compiler toolchain that was not intended to be
used as a library. GOCLR can be used to help the program-



mer extend and manage the fork without severing the ties to
the original program, i.e. future changes and bug fixes in the
original program can still propagate through the derivative.

5. Open Issues
Refining programs is fundamentally a new way to define ab-
stractions. The GOCLR is in prototype stage and work should
to be done to ensure seamless cohabitation of this concept
with other language features present in more featureful lan-
guages. Furthermore, we must assess its utility and usability,
work to identify the applications for which it is most useful
and effective and how to ensure we maintain a delightful user
experience.

Effectiveness The utility of programming languages, tech-
niques, paradigms, and tools are often subjective and diffi-
cult to evaluate. This is especially true for new paradigms
and ideas that have not been widely applied. Established
paradigms like Object-Oriented Programming and Aspect-
Oriented Programming [11] faced a similar issue. In section 4,
we follow their footsteps [4, 11] and illustrate the utility of
using program refinements to infer abstractions with a few
case studies.

Empirical studies are needed to quantify the impact of
availability of different ways to build abstractions on pro-
grammer productivity. Unfortunately, a meaningful empirical
study is hard to do before widespread adoption of a paradigm.
While we believe there are compelling use cases for build-
ing abstractions on top of program refinements, there are
concerns about syntactic modifications leading to the prolifi-
cation of divergent specialized versions of a procedure that
hardly resemble their original base and it may prove to be
hard to reason about them as a general, unified, thing, which
might lead to adverse effects on programmer productivity.
Quantifying such effects is an open issue.

Interaction with External Editors In order to capture re-
finements, propagate changes, and present the appropriate
code specializations in their right context, the programming
environment needs to store some metadata. In our implemen-
tation of GOCLR, this metadata and the associated code is
not meant to be modified outside the environment, therefore
the developer is mostly confined to the GOCLR editor. In
order to resolve this problem, a standard format for persisting
the specializations and the appropriate links and metadata
should be developed. Even with such standard format that
could be supported in alternative editors, some programmers
strongly prefer sticking to their favorite plain text editors
without additional functionality. It is conceivable that a use-
ful implementation of the concepts presented in this paper
would require a smart editor to be effect. Not supporting plain

text editors can hinder its adoption among some program-
ming circles, therefore research into adapting the techniques
to a text editor and command line tool-based environment
remains an open issue.

Merge Conflicts While syntax oriented merges can work
well when the changes are spread away, as they become more
granular, too many conflicts start to emerge. The burden of
resolving conflicts is enough that if they are frequent, it will
discourage people from using the system.

Programming language-aware merge tools can help alle-
viate this problem because they can take a more semantic
oriented view at the language and do a better job at merging.
That said, the merge problem is definitely one that has a lot
of room for improvements.

6. Related Work
Kiczales [10] identifies the issue of leaky abstractions and
the necessity for being able to reach into them at times. He
observes that in practice, the implementation cannot always
be hidden, citing performance characteristics show through
in significant ways as an example of how abstractions can
leak. This work discusses the deficiencies in mainstream ab-
straction frameworks and suggest application of a metaobject
protocol technology to resolve the problems. The metaobject
protocol is a reflection mechanism that lets the client reach
into an abstraction and alter its behavior. In dynamic envi-
ronments like Ruby and JavaScript, the “monkey patching”
technique is commonly used to swap a value of an object
property or a method body at run time to achieve the desired
results. Reflection is often limited in its power in more static
environments and commonly these all the prior techniques
operate at the granularity of a method at best. In comparison,
program refinement can work by syntactic manipulation of
statements within method bodies. Since it is a syntactic tool,
its power is effectively only limited by the expressivity of the
host language itself.

Domain specific languages [16] provide an alternative
path to managing complexity without the need to build a deep
hierarchy of abstractions. Domain specific languages that are
implemented as code generators synergize well with program
refinements.

Embedded domain specific languages [5] are basically
language extensions for which the parsing is handled by some
of the objects used in the program, depending on the context.
These languages increase expressiveness and concision of
programs, but still require careful upfront thinking by the
library author. Of course, program refinement is not confined
to any particular language, so in principle, the domain specific
parts of a program can also be refined and specialized.



There is a body of work related to detecting cloned
code [9, 12], automatically propagating patches through
them [15], and. One distinction of these systems from our
work is that we do not increase the footprint of the codebase,
whereas copying-and-pasting excessively increases the code
size and visually cluttering to the programmer.

7. Conclusion
In this work, we have introduced a new, generic, way to build
abstractions by program refinements. Program refinement
is a powerful tool for building many forms of abstractions
because it is limited only by the expressiveness of the host
language.

The key insight about basing abstractions on modifications
at the syntactic level is interpreting such changes in the
context of the original definition, as opposed to the caller’s
scope, while the effect would be limited to a specific call
site. This gives the programmer implementing the caller an
easy way to reach into the implementation and customize the
concrete code behind an abstraction to achieve the desired
effect that is executed when necessary.

We believe that the ability of building custom abstractions
via arbitrary syntactic manipulation of code is a powerful tool
that can alleviate the need for narrower, more specific, ab-
straction tools that exist in some programming languages, and
liberates the programmer from fighting with abstractions that
confuse the programmer down the line and hinder program
understanding and programmer agility.

References
[1] Git. https://git-scm.com/.

[2] Go programming language. https://golang.org/.

[3] H. Abelson and G. J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, MA, 2nd edition,
1996.

[4] M. Afshari, E. T. Barr, and Z. Su. Liberating the programmer
with prorogued programming. In Proceedings of the ACM
International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software, Onward! 2012,
pages 11–26, 2012.

[5] M. Bravenboer and E. Visser. Concrete syntax for objects:
Domain-specific language embedding and assimilation without
restrictions. In Proceedings of the ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’04, pages 365–383, 2004.

[6] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Some features
of the SIMULA 67 language. In Proceedings of the Second
Conference on Applications of Simulations, pages 29–31, 1968.

[7] A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. 1983.

[8] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, IJCAI
’73, pages 235–245, 1973.

[9] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In
Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 96–105, 2007.

[10] G. Kiczales. Towards a new model of abstraction in the
engineering of software, 1992.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In Proceedings of the 11th European Conference on Object-
Oriented Programming, ECOOP ’97, pages 220–242, 1997.

[12] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical
study of code clone genealogies. SIGSOFT Softw. Eng. Notes,
30(5):187–196, Sept. 2005.

[13] B. Liskov and S. Zilles. Programming with abstract data types.
In Proceedings of the ACM SIGPLAN Symposium on Very High
Level Languages, pages 50–59, 1974.

[14] J. Locke. An essay concerning human understanding. 1689.

[15] M. Toomim, A. Begel, and S. L. Graham. Managing duplicated
code with linked editing. In 2004 IEEE Symposium on Visual
Languages and Human Centric Computing, pages 173–180,
Sept 2004.

[16] A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: An annotated bibliography. SIGPLAN Not., 35
(6), June 2000.

https://git-scm.com/
https://golang.org/

	Introduction
	Abstraction by Refinement
	Main Contributions
	Paper Outline

	Illustrating Examples
	Design and Realization
	Programming Environment
	Projects and Build Strategy
	Merging
	User Interface

	Applications
	Open Issues
	Related Work
	Conclusion

