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Abstract neering]: Programming Environmentdategrated environ-

High-coverage testing is challenging. Modern objectiuge ~~ MeNts

programs present additional challenges for testing. Oge ke General Terms: Languages, Experimentation

difficulty is the generation of proper method sequences to Keywords: Object-oriented testing, Symbolic execution
construct desired objects as method parameters. In this pa-

per, we cast the problem as an instance of program synthesidl. Introduction

that automa.ti.ca_lly generatmndidate progr_am$o satisfy High-Coverage Testing. An important goal of software

a user-shpedmﬂemtent In ou(rj Zett',ngé c%ndldate programs testing is to achieve full or at least high coverage (either
are metho sequences, and desired o ject states specify tructural coverage such as branch coverage or data flow
!ntent_. Automatic _generaﬂon of desired method sequencescoverage such as def-use coverage) of the code under test,
is difficult due to its large search space—sequences often, pieving high coverage of object-oriented code requites d
involve methods from multiple classes and require Specific ;o g gpject states for the receiver or arguments of a method

pnlrlmct;ve vlflueg. Tn!s palper |r?trodu$1esI a novel aﬁproach’ under test (MUT). These desired object states help cover
calledSeekerto intelligently navigate the large search space. . . . or £a15e branches of the conditional statements (such

Seeker synergis_tically cqmbines static and dynamic analy'aSif statements) in the MUT. For example, consider the two
ses: (1) dynamic analysis generates method Sequences 1Q),qses from the C# QuickGraph [36] library shown in Fig-
cover branches; (2) static analysis uses dynamic analysis i .o 1 A desired object state for covering thewe branch
formation for not-covered branchet generate candidate ¢ giatement 24 (Branch B4) in Figure 1 is that ghaph
sequences; and (3) dynamic analysis explores and elimi-Objectshoulol include at least one edge.

nates statically generated sequences. For evaluatiorawee h There exist two common approaches for producing de-

implemented Seeker and demonstrate its effectiveness Oired object statesequence generatida, 15, 17, 32, 35, 43
four subject applications totalling 28K LOC. We show that 45] anddirect construction[3]. With sequence generation,

Seekﬁr achlgv_es higher ?rr;nch coveragehand def—ulse Ccr)]veﬁesired object states are produced via generating method se
age than existing state-oi-the-art approaches. W,e al3v SN0 yences that create and mutate objects, while with direct
that Seeker detects 34 new defects missed by existing tOOIS'construction, desired object states are produced viatljirec

Categories and Subject DescriptorsD.2.3 [Software En-  setting values to member fields. In this paper, we adopt the
gineering]: Coding Tools and Technique®bject-oriented  general sequence-generation approach since directiggsett
programming D.2.5 [Software Engineering]: Testing and values to member fields such as private fields of a class can
Debugging—Symbolic executignD.2.6 [Software Engi-  easily lead to invalid object states. For example, the ¥ollo
ing method sequence (S1) produces the preceding desired

* The majority of the research reported in this submission waslected object state for thgraph object thereby covering B4.
while the first author was associated with North CarolinaeStiniversity. ’

00: AdjacencyGraph ag = new AdjacencyGraph();
01: Vertex vl = new Vertex(0);
02: ag.AddVertex(vl);

Permission to make digital or hard copies of all or part of this work for personal 03: ag.AddEdge(vl, v1);

classroom use is granted without fee provided that copies are not made outbstrib .
for profit or commercial advantage and that copies bear this notice and the futiitati In this sequencesddvertex should precedaddEdge to

on the first page. To copy otherwise, to republish, to post on servers or ttritedes satisfy the requirement that the vertices passed as arga men
to lists, requires prior specific permission and/or a fee.

OOPSLA11, October 22-27, 2011, Portland, Oregon, USA. should already exist in the graph object (Statements 7 and
Copyright(©) 2011 ACM 978-1-4503-0940-0/11/10. .. $10.00 10).



Client Code:
00: public static void foo (UDFSAlgorithm udfs) {

00:class AdjacencyGraph : IVEListGraph {
01: private Collection edges;

02: private ArraylList vertices; 01: .

03: public void AddVertez (IVertex v){ 02: if (udfs.GetIsComputed()) {

04: vertices.Add(v); //B1 03: ... //B6

05: } 04:  }

06: public Edge AddEdge (IVertex vl, IVertex v2){ 05: // B7

07: if (!vertices.Contains(v1)) 06: }

08: throw new VNotFoundException("");

09: // B2 Figure 2. User-specified intent expressed as a desired object
10: if (!vertices.Contains(v2)) state.

11: throw new VNotFoundException("");

12: // B3

13: // create edge 01: Ve?tex sl = new Vertex(O);.

14: Edge e = new Edge(vl, v2); 02: AdjacencyGraph ag = new AdjacencyGraphQ);
15: edges.Add(e) ; 03: ag.AddVertex(sl);

16: 1 ... 04: ag.AddEdge((IVertex)sl, (IVertex)sl);
17:1 05: UDFSAlgorithm ud = new UDFSAlgorithm(ag) ;

06: ud.Compute((IVertex)null);

//UDFS:UndirectedDepthFirstSearch

18:class UDFSAlgorithm {

19: private IVEListGraph graph;

20: private bool isComputed;

21: public UDFSAlgorithm (IVEListGraph g){
22: ..o}

Figure 3. An example method sequence.

(such as Branch B6 in Statement 2, Figure 2) that describes
a desired object state, the goal of our approach is to automat

23: public void Compute (IVertex s){ ... ically synthesize a method sequence (such as the sequence
24: if (graph.GetEdges() .Size() > 0){ // B4 shown in Figure 3) that produces the desired object state.

25: isComputed = true; . .

26: foreach (Edge e in graph.GetEdges()){ Challenges. A_utomat|_c synthe5|§ of target sequences that
97 . //B5 produce a desired object state, is challenging due to three
28: } major factors. First, target sequences often include naistho

29: 1 from multiple classes, resulting in a large search space of
30: } ... candidate sequences. Second, target sequences require spe

31:} cific primitive values that help exercise desired paths & th
code under analysis. Third, object-oriented programming
features such as encapsulation pose additional challenges
since values cannot be directly set to member fields.

Figure 1. Two classes from C# QuickGraph library [36].

Program Synthesis. In this paper, we cast the problem of
generating method sequences as an instance of gemeral
gram synthesishat automatically generatesndidate pro-  telligently navigates the large search space via synérgist
gramsto satisfy a user-specifieidtent The intent can be  cally combining static and dynamic analyses. We next ex-
expressed in various forms such as high-level specification plain why either pure dynamic or static analysis alone can-
natural language, or input-output examples. Based on the in not address this problem. A major issue with pure dynamic-
tent, synthesizers, unlike compilers that perform tramsée analysis-based approach is that dynamic analysis does not
tions, search for programs that satisfy the user-specified i have the knowledge of methods that are not yet explored.
tent over a space of all possible candidate programs. Furthermore, it is not possible to explore all methods es-
Automatic program synthesis has seen interesting ad-pecially in real-world applications, since real-world &pp
vances in recent years due to the availability of more ad- cations often include classes and methods from system li-
vanced computing resources and better reasoning teclniquebraries such as .NET framework libraries.
such as SMT solvers [47]. In contrast to previous work [12] On the other hand, static analysis alone cannot generate
that focuses on synthesizing algorithms such as sorting ortarget sequences due to imprecision of static analysis. For
bit-manipulation routines, this paper focuses on synthesi example, consider generating the desired object state pro-
ing object-oriented programs that involve method sequence duced by the preceding Sequence S1 using static analysis
In particular, we accept a user-specified intent in the fofm 0 alone. Static analysis, being conservative, identifiesethr
a desired object state and automatically synthesize a mhetho methods {ddVertex, RemoveVertex, andClearVertex Of the
sequence that produces the desired object state. For exanidjacencyGraph class) that modify the fieldertices as can-
ple, given the user-specified intent as a conditional branchdidates for Statement 2. For simplicity, we did not show

Our Approach. To address these preceding challenges, we
propose a novel systematic approach, caBeékerthat in-



methodSRemoveVertex andClearVertex in Figure 1. Simi- ¢ An application of our approach to automatically generate

larly, static analysis identifies six candidates for Stageti3, test inputs for object-oriented programs and a prototype
resulting in a total of 18 (3 * 6) candidate sequences. Among  implementation based on an existing test-generation ap-
these candidates, static analysis alone cannot idenéftath proach [41].

get sequence due to its imprecision. Although dynamic anal-
ysis can be used to identify the target sequence among these
candidates, the number of such candidate sequences could
be quite high in practice. . o )

To address these aforementioned challenges, Seeker in-* Evaluation results on four popular applications (totglin
cludes three steps that form a feedback loop between dy- 28 KLOC) to show the effectiveness of Seeker approach.
namic and static analyses. First, given a desired objeet sta ~ OUr results show that Seeker achieves 12% (653 new
in the form of a conditional branch, dynamic analysis at-  Pranches) and 26% (1571 new branches) higher branch
tempts to generate a target sequence. Second, if dynamic Ccoverage than Pex and Randoop, respectively. Our re-
analysis fails to generate the target sequence, static anal SUltS also show that Seeker achieves 15.7% (428 pairs)
ysis uses information fonot-covered branchefom dy- and 15.3% (416 pairs) higher def-use coverage than
namic analysis to generate candidate sequences. Third, dy- P€x and Randoop, respectively. Seeker also detects 34
namic analysis explores and eliminates statically geadrat new defects, including an infinite loop defect in Quick-
sequences. For example, in Statement 2 of S1, Seeker stat- CraPh [36].

ically identifies three methods\ddvertex, RemoveVertex, The rest of the paper is organized as follows. Section 2
andCle.:arVer.teX) as candidates. Seeker next uses dynamic presents background on existing test-generation appesach
analysis to filter oukemovevertex andClearVertex meth-  gection 3 explains our Seeker approach with illustrative ex
ods that do not help produce the desired object state. This;mples. Section 4 presents formal definitions of terms used
feedback loop between static and dynamic analyses is thejy the paper. Section 5 presents the key algorithms of Seeker
key essence of Seeker and helps systematically explore a posetion 6 describes implementation details of the prottyp
tentially large space of candidate sequences, therebingcal  geyeloped for our approach. Section 7 presents the evalua-
Seeker to large real-world applications. Furthermorek&ee {5 results. Section 8 discusses the limitations of our ap-

stores the knowledge gained regarding individual method rqach. Section 9 presents the related work. Finally, Sec-
calls while generating a target sequence, and reuses thgiqn 10 concludes.

knowledge while generating other target sequences, thereb
increasing efficiency. 2. Background

To handle encapsulation in object-oriented programs, ) ) ]
Seeker includes a novel technique based on method-callln this section, we present two state-of-the-art test gativer
graphs. A method-call graph is a directed graph thatinglude @PProaches Pex [41] and Randoop [35] that are used as repre-
caller-callee relations among methods. This techniqueshel Sentative approaches for systematic and random approaches
synthesize sequences that generate desired values for merh€SPectively, in the rest of the paper.

ber fi(_alds (both primitive and non-primitive) including pri - pgy.  pex [41] is a systematic approach based on a test-
vate fields. generation technique, called Dynamic Symbolic Execution

Evaluati We developed based Seek (DSE) [7, 11, 19, 22, 41]. DSE is a recent state-of-the-att te
valuation. € developed a prototype based on our See ergeneration technique that explores an MUT and generates

approach for objgct—orlented test generation. We COmpamdtest inputs that can achieve high structural coverage of the
our approach with two state-of-the-art test-generation ap MUT. Pex, developed based on DSE, explores an MUT with
prqaches. Pex [.4 1] and Randoop' [35] that are representefault inputs. During exploration, Pex collects consiisi

tative of dynamic-symbolic-execution-based and random ., inputs from the predicates in branch statements. Pex

gpprkoacheﬁ_, respre]_c ta’ ely. Our evaliat'ﬁ n results lsho;v (;ha negates collected constraints and uses a constraint golver
eexer achieves higher coverage.( pt structu.ra an ata{]enerate new inputs that guide future program explorations
flow) than Pex and Randoop. Achieving such higher cover- along different paths. To generate method sequences, Pex

gge Cﬁmp?lred to Pex and Rgr;doap IS S|gn|f|carr11t, since theuses a simple heuristic-based approach that generates fixed
ranches that are not covered by these approaches are genes.réquences based on static information of constructors and

all¥rﬂgite hard to ﬁove; followi . ibutions: other methods (of classes under test) that set values to mem-
Is paper makes the following major contributions: ber fields, hopefully helping produce desired object states

¢ A technique based on method-call graphs to handle en-
capsulation. Our technique also effectively handles pri-
vate member fields that are of non-primitive types.

¢ A novel approach, called Seeker, that accepts a userRandoop. Randoop [35] is a random approach that gener-
specified intent in the form of a desired object state and ates sequences incrementally by randomly selecting method
automatically synthesizes a method sequence that pro<alls. For each randomly selected method call, Randoop uses
duces the desired object state. random values and previously generated sequences for primi



tive and non-primitive arguments, respectively. Foreaaftg cover B6. In particular, the sequence that helps cover B4
erated test input, Randoop avoids reusing or extending-prev can be leveraged to cover B6 as well. Due to imprecision
ously generated sequences that throw uncaught exceptions.of static analysis, Seeker may suggest more than one pre-
target branches and not all those pre-target branches can
3. Exam help cover B6. To address this issue, Seeker applies DSE
. ple . )
on pre-target branches and filters out irrelevant pre-targe
We next explain our approach using the same illustrative ex-pranches. Since DSE alone cannot cover B4, Seeker in turn
amples shown in Figure 1. The figure shows two classes unses static analysis to identify further pre-target brasdbr
der testidjacencyGraph anduDFsAlgorithm fromthe Quick- B4, This feedback loop eventually identifies the pre-target
Graph library [36]AdjacencyGraph represents a graph struc- - pranches as follows: “B& B4 < B3 < B2 < B1". Here,
ture including vertices and edges, which are added usingthe notation “B6< B4” indicates that B4 is a pre-target
AddVertex and AddEdge, respectively.UDFSAlgorithm per- branch for B6.
forms an undirected depth first search on the graph structure  Consider that Seeker successfully covered B3. In this
We added an additional metthCOmpu‘ted for illustrative scenario, Seeker generates the f0||owing sequence:
purposes. Consider theo method (Figure 2), where the
user-specified intent is expressed asiarcondition (State-  01: AdjacencyGraph ag = new AdjacencyGraph();
ment 2), describing the desired object state ikabmputed 02: Vertex vl = new Vertex(0);
should betrue. Here, synthesizing a method sequence that 03: ag.AddVertex(v1);
produces the desired object state can be transformed as 4: ag.AddEdge(vl, v1);
testing problem of generating a test input that covers the
true branch (B6) of Statement 2. A necessary requirement  Seeker next uses this sequence to assist DSE for cover-
to achieve the desired object is that theaph object in ing the next target branch B4 and the process continues. Fig-
UDFSAlgorithm should contain both vertices and edges. ure 3 shows the final target sequence (generated by Seeker)
We first present the branch coverage achieved by Pex andhat covers Branch B6. The sequence includes four classes
Randoop on classes shown in Figures 1 and 2 and next deand six method calls. Using this sequence, Seeker achieved
scribe our Seeker approach. The test inputs generated by34.2% (48 out of 57) branch coverage. The remaining not-
Randoop and Pex achieved branch coverage of 36.8% (2icovered branches are related to the event handling mecha-
out of 57) and 35.1% (20 out of 57), respectively. The rea- nism, which is currently not handled by our implemented
son for low coverage is that neither Randoop nor Pex could prototype. It is quite challenging to generate such segegenc
satisfy the requirement afddedge to successfully add an  either randomly or using heuristics, since these thresetas
edge to the graph object (Branch B3 in Statement 12 of Fig-include 39 methods. However, the feedback loop between
ure 1). Therefore, neither Pex nor Randoop could generatestatic analysis (that suggests candidate methods) and dy-
a sequence that helps cover Branch B6 in Statement 2 (Fighamic analysis (that identifies correct candidate methad an
ure 2). As shown through this example, it is quite challeng- generates data) generates target sequences, thereby-achie
ing to achieve high branch coverage of these classes undemg high structural coverage of the code under test.
test due to the requirement of complex sequences. Such re-
gg:jrg.ment is often encountered when testing object-cetent 4. Problem Formulation
We next present how our Seeker approach achieves highThis section formalizes the problem of method sequence gen-
branch coverage by synthesizing sequences using a combieration and introduces the terminology that we use through-
nation of dynamic and static analyses. In particular, Seeke out the rest of the paper.
leverages DSE for dynamic analysis and applies DSE to gen- For a given applicatiod under test, lef and M denote
erate a target sequence. If DSE cannot generate the target sés sets of classes and methods, respectively. R:gtn Ty
guence, Seeker statically analyzes the branches that are naand Prim Val represent the set of all primitive types, such as
covered by DSE and synthesizes method sequences. Seekant or bool, and primitive values, respectively. Each method
next uses DSE with the assistance of statically synthesizedM € M is represented by the method’s type signature:
sequences. In our approach, we use Pex, which is based o’ x T} x --- x T,, — T, whereC ¢ C is the type of the
DSE, for dynamic analysis. Although we describe our ap- receiver object]; € C U PrimTy denotes the type of the
proach in the context of Pex, our approach is independentth argument foi € [1..n], andT € C U PrimTy U {void}
of Pex and can be used to assist any other DSE-based apdenotes the type of the return value. Sifites C U Prim Ty,
proach [1]. Initially, Seeker applies DSE to explore Branch A{’s arguments can be either primitive values or objects.
B6 in thefoo method. DSE exploreso but fails to generate
a target sequence that covers Branch B6. DEeFINITION 4.1. Method Sequence (MCS)A method se-
Seeker statically analyzes B6 and suggests B4 (in thequenceis a sequence of method calls:q, ..., m,), such
Compute method) as a pre-target branch that could help that fori € [1..r], we have



e m; = o0.M;(ay,...,a,) WhereM > M; : C x T} X DEFINITION 4.4.Method Sequence SynthesisGiven a
.-+ x Ty, — T. In other wordsyn; is well-typed o : C* method under test/ € M and a target brancth within M,
anda; : T; for all j € [1..n]; synthesize a method sequerfee,, . .., m,) that constructs

® 0 = ret(my) for somek € [1..4), and for allj € [1..n], the receiver object and arguments /af and drivesM to
a; € PrimVal V a; = null V a; = ret(m;) for some successfully covetb.

[ € [1..7). In other words, the sequencevigll-formed

with the proper data dependence. 5. Seeker Algorithm

In the preceding definition;et (i) denotes the return  Algorithms 1 and 2 show the two key algorithmsiAnalyzer
value of the methodh;. Also note that for brevity of presen-  (dynamic analysis) angtatAnalyzer (static analysis) of our
tation, we do not explicitly model constructor calls andista  geeker approach. Seeker leverages DSE for dynamic analy-
methods in the preceding definition. To model them, one can gjg tg synthesize sequences that can cover a given target

simply drop the conditions on the receiver object branchtb. In particular, given a target branch, Seeker first
For each method calh; = 0.M;(a1,...,a,)IN@anMCS,  gpplies DSE and checks whether DSE can generate a se-
the receiver objecb should be the return objectt(my,) quence (referred to as target sequence) that covers tie targ

of another method caliu; that precedesn; within the se-  pranch. In case, DSE cannot generate the target sequence,
quence. Furthermore, eaah; in the MCS can have either  seeker uses static analysis to synthesize skeletons aind aga
primitive or non-primitive arguments. For primitive argu- applies DSE to generate data, forminigedbackoop. Here,
ments, the preceding definition requires that the argumentspsg assists static analysis in two major ways. First, DSE
should take on primitive values of the corresponding types, helps generate data for skeletons synthesized by static ana
such agrue for thebool type. For non-primitive arguments,  ysjs. Second, DSE eliminates candidate methods (identified
they must bevull or return values of some preceding method by static analysis) that do not help cover the target branch.
calls within the sequence. For example, in the sample se-The novelty of Seeker is that this feedback loop helps over-
quence shown in Figure 3, the non-primitive argument  come individual limitations of static and dynamic analyses
of AddVertex in Statement 3 is the return value of another nerepy effectively synthesizing sequericéfe next explain
preceding method callev Vertex() in Statement 1. Our  each algorithm in detail using illustrative examples shawn
definition ensures that method sequences are well-formedrigures 1 and 2. Consider that thgnanalyzer is invoked

and executable code can be generated directly from thosejth the target branchb as B6 in Figure 2 andnpseq as

sequences. . ) null. Here, Branch B6 represents theuwe branch of State-
It is helpful to also define the notion ofsequence skele-  ment 2 (Figure 2).

ton. Intuitively, a sequence skeleton is an MCS except that
primitive arguments are not required to take on concrete val 5 1 pynAnalyzer Algorithm

ues. The definition below provides a precise description. )
DynAnalyzer accepts a target brandh and an input se-

DEFINITION 4.2. Skeleton (SKT).A sequence skeletas guenceinpseq as inputs, and generates a target sequence

a sequence of method callsny,...,m,), such that for  that coverstb. Initially, DynAnalyzer identifies the method

i1 € [1..r], we have m that includestb (using GetMethod). DynAnalyzer nNext

e m; = o0.M;(ai,...,a,) WhereM > M; : C x T} X appends the methodr to inpseq using AppendMethod
X T ST (Lines 1 and 2) and generates the skeletompskt. Since

AppendMethod does not know the parameter values for
m, AppendMethod USeS symbolic values as parameters for
m in the skeletontmpskt. If the methodm is a non-
static method and there exists no constructoriripseq,
The definition for SKT is essentially the same as that AppendMethod automatically adds relevant constructors to
for MCS, except that some values of primitive-type argu- tmpskt. For thetb B6, whenDynAnalyzer(B6, null) iS
ments are not requiredi; € PrimVal for MCS versus invoked, AppendMethod returns the skeletorfoo (<sym>),
a; : PrimTy V a; € PrimVal for SKT. where<sym> represents a symbolic variable. Here, no con-
structor is added témpskt, sincefoo is a static method.
DynAnalyzer hext applies DSE (referred to with a func-
tion call pSE in Line 3 of Algorithm 1) to exploresmpskt

In our setting of program synthesis, we use a not-covered for generating a target sequence that cover®SE accepts
target branch to denote the user intent.

® 0 = ret(my,) for somek € [1..7), and for allj € [1..n],
aj : PrimTy Va; € PrimVal Va; = null V a; =
ret(m;) for somel € [1..7).

DEFINITION 4.3. Target Branch (TB). A target branchis
atrue Of false branch of a conditional statemént

I - — ) ) 3 An astute reader can identify that, in a few scenarios, toarsion be-

The notatiorv : C'indicates that the receiver objects of typeC'. tween our two algorithms can result in an infinite loop. Seéketudes
2We model aswitch statement as a series @f-then-else state- techniques for detecting and avoiding such infinite looms. Brevity, we
ments. ignore such details while presenting our algorithms.



two arguments of types SKT and TB as inputs. DSE outputs Algorithm 1 DynAnalyzer (tb, inpseq)

three values described as follows:

® targetseq Of type MCS: MCS that covers the givehof
typeT' B or null

® CovB: Set of covered branches 1:
2: SKT tmpskt = AppendMethodinpseq, m)
3:

® NotCovB: Set of not covered branches

During exploration of DSE, if DSE happens to gener-

ate a target sequence, then DSE returns the target sequencej.

otherwise, it returnawll. Apart from the target sequence, 5

(NotCovB) in the methodn. For example, when DSE is in- 7

Require: tb of type TB
Require: inpseq of type MCS
Ensure: targetseq of type MCS coveringb or null

Methodm = GetMethod{b)

DSE¢mpskt, tb, out targetseq, out CovB, out
NotCovB)
/IScenario 1

: if tb € CovB then
DSE also returns covereddyB) and not-covered branches .

return targetseq

: end if

voked with the skeletodoo(<sym>), DSE generates a se- g

quence that helps cover Branch B7, but not Branch B6. The 9;
reason is that DSE could not generate a target sequence thajg.

can help cover B6. Therefore, DSE retutns1, {B7}, and

/IScenario 2
if tb € NotCovB then

return StatAnalyzerb, inpseq)
end if

11:
{B6} for targetseq, CovB, andNotCovB, respectively. Note 12:
that the setovB U NotCovB does not represent the entire set 13
of branches in the methodh. The primary reason is that 14

DSE, being a pure dynamic analysis technique, does not 5.
have the knowledge of those branches where both the branchyg.

and its alternative branétare not explored by DSE.

/IScenario 3
if tb ¢ NotCovB then
List<TB> tblist = ComputeDominantsf)

‘ . . 17: forall TB domtb € tblist do
After exploration using DSE, there can be three possible 1g. inpseq = DynAnalyzerflomtb, inpseq)
scenarios for the target branch. 19: if inpseq == null then
e Scenario 1: The target brane¢his covered. In this sce- 20 Break
nario,DynAnalyzer returnStargetsegq. 2L: end if
0 2 Th . 22: end for
e Scenario 2: The target bra_ndb is not covered and if inpseq # null then
th € NotCovB. This scenario happens when DSE suc- ,,. return  DynAnalyzer(b, inpseq)
cessfully covers the alternative branch#bfand could 25 end if
not cover tb. In this scenario,DynAnalyzer invokes 26 end if

StatAnalyzer t0 generate a sequence that can help cover

tb.
e Scenario 3: The target brandt is not covered and

27: return null

tb ¢ NotCovB. This scenario happens when DSE could help covertb. We first explain the two major functions

not cover all the dominant branchesbfn the methodn.
In this scenariopynAnalyzer invokeSComputeDominants
to identify dominant branches. In particulargmpute

DetectField (Line 1) andSuggestTargets (Line 2) used
by statAnalyzer. Since examples shown in Figures 1 and 2
are complex, we use a simple example shown in Figure 4

Dominants first identifies the dominant branch, referred g explainpetectFie1ld andsuggestTargets. Consider that

to asprime dominantwhose alternative branch is cov-

ered by DSEComputeDominants next identifies all other
dominant branches @b between the prime dominant and
tb. DynAnalyzer next recursively invokes itself for each

StatAnalyzer iS invoked withtb as Branch B8 andnpseq
asSnull.

DetectField. Given atb, the functionDetectField pre-

such dominant branch starting from the prime dominant cisely identifies the target member fieldield that needs

branch.DynAnalyzer returns a method sequence if all
dominant branches are covered along withotherwise,
it returnsnull.

5.2 StatAnalyzer Algorithm

StatAnalyzer analyzes a target brancth and identifies
other branches (referred to pee-targetbranches) that can

4Given a branctb (such as thecrue branch) of a conditional statement,
we usealternative brancho refer to the other branch (such as frel se
branch) of that conditional statement.

to be modified to produce a desired object state for cov-
ering tb. It is trivial to identify tfield for branches such

as if(stack.size == 10), where tfield (such assize)

is directly included in the branch. However, in object-
oriented code, branches often involve method calls such
asif(!vertices.Contains(v1)) in Statement 7 (Figure 1)
rather than fields. It is challenging to identify target feeld

the presence of method calls, since the return statements in
these method calls may in turn can include further method
calls, where the actual member field is returned.



Algorithm 2 Stat Analyzer(tb, inpseq)
Require: A target branchb

Require: A sequencénpseq

Ensure: A sequenceéargetseq coveringtb

1: Fieldtfield = DetectField{b)

2: List<TB> thlist = SuggestTargets(ield)
3: forall TB pretb € tblist do

4 MCS targetseq = DynAnalyzerpretb, inpseq)
5: if targetseq # null then
6: targetseq = DynAnalyzer(b, targetseq)
7 if targetseq # null then
8: return targetseq
9: end if
10: end if
11: /[Try other alternative target branches
12: end for

13: return null

To address this issue, the functi®atectField uses

an inter-procedural execution trace (hereby referred to as

trace), gathered during the runtime exploration with DSE.

00: public class IntStack {

01: private Stack stack;

02: public IntStack() {

03: this.stack = new Stack; }
04: public void Push(int item) {
05: stack.Push(item); }

06: public bool HasElements() {
07: if (stack.size() > 0) { return true; }
08: else { return false; }
09: }

10: }

11: public class MyCls {

12: private IntStack ints;

13: public MyCls(IntStack ints) {
14: this.ints = ints; }

15: public void MyFoo() {

16: if (ints.HasElements()) {
17: ...// B8

18: }

19: }

20: }

Figure 4. An integer stack class.

This trace includes the statements executed in each method.

DetectField performs backward analysis of the trace start-
ing from the method call involved ith. We useretvar to
refer to the variable or value associated with the retunesta
ment in a method calbetectField uses the following five
steps with respect teetvar to identify ¢t field.

1. If retvar is a member field,DetectField identifies
retvar ast field. This scenario can happen with methods
such agetter methods.

. If retvar is data-dependent on a member field, the func-
tion DetectField identifies that member field agield.

. If retvar is data-dependent on the return of a nested
method call, the functionetectField repeats these five
steps with the nested method call to identifiield.

. If retvar is control-dependent on a member figlgtect
Field identifies that member field agfield. This sce-

DetectField analyzes the methothtStack.HasElements.
Since the executed return statement (Statement 8) is ¢ontro
dependent on a nested method 8edlck. size, DetectField
analyzes thetack.size method. EventuallypetectField
reaches the getter method that retugize member field of
ArrayList, and thereby identifiesize ast field. Note that,
in a few scenarios, there can be multiplgelds for cover-
ing tb. However, currently we handle only tho&ethat can
be covered by achieving desired value for a singléeld.
We plan to handle multipleéfields in our future work.
Along with identifying ¢ field, DetectField also cap-
tures two other pieces of information. FirsktectField
identifies the condition onfield that is not satisfied. For
example,DetectField identifies “size > 0" (Statement
7) as the condition that should be satisfied to cotéer

nario can happen when DSE failed to generate other ob-DetectField applies a constraint solver on the preced-

ject states for that member field.

. If retvar is control-dependent on the return of a nested
method call,DetectField repeats these five steps with
that nested method call to identifyfield. The method
HasElements (Lines 6-9 in Figure 4) shows an example
of this scenario, whereetvar is control-dependent on
the return of another nested method calick.size().

In this scenarioDetectField repeats the preceding five
scenarios with that method callack.size ().

To illustrate these five steps, consider Branch B8tas
Given thistb, DetectField applies the preceding steps and
detects_size (in ArrayList) as tfield. Here, Stack in-
cludes a member fieldist of type ArrayList. Initially,

ing condition to get a desired value fofield. Second,
DetectField also captures the hierarchy of fields, referred
to as field hierarchy, that includes all objects startingrfro
the object enclosingp to t field. For Branch B8 asb, the
identified field hierarchy is as follows:F'H: MyCls root

= IntStack is = Stack stack = ArrayList list = int _siz€'
This field hierarchy describes thatize of type int is con-
tained in the objectist of typeArrayList, which is in turn
contained in the objecttack of typestack and so on. Here,
root represents the object of typgcis. This field hierarchy

is used bysuggestTargets discussed next. In our setting, in-
heritance is not an issue, sinbetectField analyzes the
execution trace produced by dynamic analysis, where actual
objects are described.



tion SuggestTargets identifies pre-target branches that need

SuggestTargets. Given a target field field such assize,
its current and desired values, and field hierarchy, the-func

Arraylist list
to be covered to cover the original target branhnitially, L1

SuggestTargets traverses the field hierarchy and identifies Stack stack

the objecttobject (in the field hierarchy) that can be mod- @ @ L2

ified to achieve a desired value fofield. The objective IntStack is.
of this traversal is to identify theobject that is nearest
to ¢ field and can be modified by either assigning a value
directly or by invoking its public methods. The reason is Figure 5. A sample method-call graph.
that the shorter the distance betwehject and ¢ field,

the smaller the amount of code that needs to be explored

L3

to achieve a desired value fofield. For example, consider SuggestTargets constructs the method-call graph on de-
the preceding field hierarchiy H . Here, the objecarrayList mand based on the field hierarchy identifiebbyectField.
list is near_size (tfield) compared tantStack stack. How- Figure 5 shows a sample method-call graph constructed

ever, thelist object cannot béobject, sincelist, a private for the field hierarchyF'H. The root node of the graph in-
member field, cannot be modified directly or by invoking its cludestfield. The first level of the graph includes the meth-
public methods. ods (in the declaring class) that modifiggield. Initially,

To identify tobject, SuggestTargets traverses the field  suggestTargets statically analyzes all public methods of
hierarchy fromroot and considers the object whose next the declaring class affield to identify the target methods
object cannot be modified either directly or through public that modifyt field. In particular,SuggestTargets identifies
methods asobject. For exampleroot is not considered as  assignment statements, wheyécld is on the left hand side.
tobject, sinceints can be modified asnts is set through For examplesuggestTargets identifies the methods such as

the constructor. For this field hierarchguggestTargets Add, Insert, andReset Of ArrayList as target methods for
identifiesints astobject, sincestack cannot be modified  thetfield _size. From the second level, the graph includes
outside theints object. the methods from the declaring classes of fields in the field

After identifyingtobject, SuggestTargets identifies meth-  hierarchy. The graph includes an edge from a methdn
ods (and pre-target branches within those methods) that hel one level to a method/,. in the next level, ifM, is called by
produce a desired value foifield. Identifying the meth- M. For examplegtack.Push invokes theList . Add method
ods oftobject that modifyt field is non-trivial, since there  and the corresponding edge is shown from Levels L1 to L2.

can be intermediate objects betwegbject and tfield, SuggestTargets next traverses constructed graph from
as identified by the field hierarchy. To address this issue,the top to bottom to identify methods that can be invoked on
SuggestTargets USes a novel technique based method-  tobject to achieve a desired value fofield. Furthermore,

call graphs SuggestTargets identifies pre-target branches within each

method that need to be covered to invoke the method call of
the preceding level. For exampBggestTargets identifies
that theIntStack.Push method can help achieve a desired
value for tfield. FurthermoreSuggestTargets identifies

Yihe pre-target branch imntStack.Push that helps invoke
Stack.Push method. This pre-target branch is considered as
a new target branch that needs to be covered, so as to cover
the original target branctb. SuggestTargets returns several
candidate pre-target branches.

DEFINITION 5.1.Method-Call Graph. A method-call
graphis a stratified-directed grap@@ = (V, E), whereV
and E represent the set of all nodes and edges, respectivel
such that

oV ={root} UVL U...UV,. Here,root represents the
node corresponding ttield, and for alli € [1..n], V;

={M,,..., M,} represents all nodes at levelFor all
j € [1.r], M; € Mand all methods\/; in V; belongs  giatanalyzer. We next describe thetatAnalyzer algo-
to the same class or its parent classes; rithm. Given a target branchb, StatAnalyzer first iden-
* E={(root,M,) | My € V1} U tifies other pre-target branches that need to be covered
Uiep.neg {(Mp, Me) | My € Vi A M, € Viga}. In using DetectField and SuggestTargets. Due to impreci-

essence, there can be two kinds of edges. The first kindsjon of static analysis, not every pre-target branch identi
of edges represent the edges fromot to nodes at level  fied by suggestTargets can help covertb. For example,
1. An edge betweenoot and M, € Vi (nodes at level  zjong with IntStack.Push, SuggestTargets can also iden-
1) represent thab/, modifiestfield. The second type tify that IntStack.Pop can help coverth. To address this
of edges represent the edges between the nodes in anjssye statAnalyzer invokesbynAnalyzer to generate a se-
two successive levels. An edge betwely) € V; and  quence that covers these pre-target branchegnkhalyzer
M. € Vi11 represent thad!. invokes,,. successfully covers any pre-target branshatAnalyzer



0o7:
06:
05:

DynAnalyzer(B1, null)
StatAnalyzer (B2, null)
DynAnalyzer (B2, null)

04: DynAnalyzer (B3, null)
03: StatAnalyzer (B4, null)
02: DynAnalyzer(B4, null)
01: StatAnalyzer(B6, null)
00: DynAnalyzer(B6, null)

Figure 6. A snapshot of the execution stack.
[Subject  [Version[# Classef Method§KLOC [# Downloads
QuickGraphi 1.0 88 634 5.1 62,734
Dsa 0.6 27 308 3.3 6,724
XUnit 16.1| 151 1267 | 11.9 86,702
NUnit 257 | 225 2344 8.1 193,563
ITOTAL [ [ 491 [ 4553 [ 28.4[ 349,723 ‘

Table 1. Subjects and their characteristics.

6. Implementation

We implemented a prototype of Seeker using Pex 0.92 [41]
for dynamic analysis. Pex provides extensible Application
Programming Interfaces (APIs) that can be overridden to
add new functionalities. Given &, Seeker launches Pex
multiple times to synthesize target sequences. Seeker uses
a file-based repository to cache information across maltipl
launches of Pex. After each launch, Pex returns branches tha
are not yet covered due to lack of desired method sequences.
Seeker analyzes those not-yet-covered branches staticall
and generates skeletons.

Seeker persists these generated skeletons in the regositor
and reuses them during the next launch of Pex. Seeker re-
launches Pex with new skeletons to generate primitive data
for the method calls in the skeletons. Due to these multiple
launches of Pex and using a file-based repository, our durren
prototype has high runtime overhead. We expect that the run-
time performance of our prototype can be significantly im-
proved by implementing Seeker within Pex or by adopting
a memory-based repository, which is left as our immediate
future work.

uses the generated sequence to cover the original target OUr DynAnalyzer algorithm assumes that DSE (shown

branchtb.

5.3 Example

We next describe how Seeker generates the sequence shown

in Figure 3 for thetb B6 in Figure 2. Initially, Seeker in-
vokes DynAnalyzer (B6, null). Since B6 € NotCovB
after exploration with DSEpynAnalyzer(B6, null) in-
vokes StatAnalyzer(B6, null). StatAnalyzer analyzes
B6 and identifies B4 in theompute method as a pre-
target branch. Therefor@tatAnalyzer(B6, null) invokes
DynAnalyzer (B4, null). This process continues and even-
tually reaches a stage whegeatAnalyzer (B2, null) in-
vokesDynAnalyzer (B1, null). Figure 6 shows the contents
of the execution stack whedynAnalyzer(B1, null) is in-
voked. At this pointpynAnalyzer (B1, null) covers Branch
B1, and returns the following sequence, say S2:

01: Vertex sl = new Vertex(0);
02: AdjacencyGraph ag = new AdjacencyGraph();
03: ag.AddVertex(sl);

StatAnalyzer (B2, null) next invokeynAnalyzer (B2,

s2), which successfully generates a sequence that covers B2

resulting in the following sequence, say S3:

01:
02:
03:
04:

Vertex s1 = new Vertex(0);

AdjacencyGraph ag = new AdjacencyGraph();
ag.AddVertex(sl);

ag.AddEdge(s1, null);

in Step 3) could not cover the target branghdue to the

lack of proper sequence. However, in practice, there can be
other issues such as environment dependency due to which
DSE could not covetb. Seeker identifies such other issues
and returns from Step 3 @fynAnalyzer. Our current open-
source prototype can be downloaded frotitp: //pexase.
codeplex.com/releases/view/50822.

7. Evaluation

To show the effectiveness of our Seeker approach, we ap-
plied Seeker to automatically generate test inputs forathje
oriented programs. We also compared our approach with
two categories of approachesindomand DSE-based ap-
proaches We used two state-of-the-art tools Randoop [35]
and Pex [41] as representative tools for random and DSE-
based approaches, respectively. We applied all three ap-
proaches on four popular real-world applications. Along
with these two approaches, we compared our results with
the results of existing manually written tests availabléhwi

the subject applications. We also compared Seeker with our
previous approach, called MSeqgGen [40]. MSeqGen, unlike
Seeker, generates method sequences based on how method
calls are used in practice. Since Seeker and MSeqGen com-
plement each other, this comparison helps show the benefits
and limitations of Seeker, MSeqGen, and their combined ap-
proach. More details of the subjects and results of our evalu
ations are available atttp://research.csc.ncsu.edu/

Seeker continues further and eventually covers the orig-ase/projects/seeker/. All evaluations were conducted
inal target branch B6, thereby synthesizing the method se-on a machine with 3.33GHz Intel Core 2 Duo processor with
guence shown in Figure 3. 4 GB RAM.



Subject Namespace |# Branche Randoop Pex Seeker Manual
# Test§CoV|Time}# Test$Cov[Timel# TestsCov|Timel# Test3Cov

QuickGrapfOVERALL 1119 (1014051.2 0.2 | 334 |31.4 4.4| 1923|68.2 3.2| 21 |26
Algorithms 572 - 138.1 - - 1248 - - 521 - - |24.8
Collections 269 - 1877 - - |117.8 - - 940 - - [11.2
... (5 more)

Dsa OVERALL 665 1049314.9 1.0 | 552 |83.8 3.7| 961 | 90| 0.9 | 298 [93.2
Algorithms 198 - 1419 - - |100] - - |100] - - 188.3
DataStructurgs 433 - 0| - - |76.7 - - 864 - - 190.8
... (2 more)

xUnit OVERALL 2379 11014824.9 6.1 | 1265|38.6 4.5| 1360|41.1 2.0 | 282 |62.7
Gui 432 - 1343 - - 140.8 - - |46.1 - - |17.8
Sdk 706 - 1251 - - 135§ - - |40.2 - - 186.3
... (6 more)

[NUnit  [util | 1810 [1012916.1 1.7] 816 [35.9 7.5] 180443.5 3.7] 319 [63.9

[TOTAL | | 5973 [40910 26]9.0] 2967[41.320.1] 6048]52.3 9.8 920 [59.2

Table 2. Branch coverage achieved by Randoop, Pex, Seeker, and lyamagen tests.

7.1 Research Questions ing those from the .NET framework. xURitand NUnif

In our evaluation, we addressed the following research-ques &€ Widely used open source unit testing frameworks for

tions. all .NET languages. For NUnit, we focused on applying all
three approaches on its core componentythe namespace

RQ1:  How much higher percentage of branch coverage is (including 8.1 KLOC). We used these applications as subject

achieved by Seeker compared to Randoop and Pex, respegpplications, since these applications are popularly (sed

tively? This research question helps show that Seeker pershown by their total downloads count ashMérch 2011in

forms better than Randoop and Pex in achieving high struc-Column “Downloads”) and also by previous work [40]. The
tural coverage such as branch coverage of the code undegsypjects include a total of 28 KLOC.

test.
. . 7.3 Evaluation Setup
RQ2: How much higher percentage of def-use coverage is

achieved by Seeker compared to Randoop and Pex, respe(\,/ye ne>§t describe our evaluatipn setup for addressing the
tively? This research question helps show that Seeker perprecedlng .four res_earch questions. Seeker and Pex accept
forms better than Randoop and Pex in achieving high data_Paramej[erlzed l.Jmt Tests (.P UTs) [42] as mput. and generate
flow coverage [10] such as def-use coverage of the code unSonventional unit tests. Unlike conventional unittestsTB
der test. accept parameters. Since PUTs are not available with our
subjects, we automatically generated PUTs for each public
RQ3: How many new defects are detected by Seeker com-method by using thBexWizardool, which is provided with
pared to Randoop and Pex, respectively? This researchPex. A PUT generated for thempute method in Figure 1
question helps address whether Seeker has higher defectising PexWizard is shown below.

detection capabilities compared to Randoop and Pex, respec
tively. 00: [PexMethod]

01:public void ComputeO1(
RQ4: How high percentage of branch coverage is achieved 02: [PexAssumeUnderTest]UDFAlgorithm target,

by Seeker, MSeqGen [40], and their combination? 03: [PexAssumeUnderTest]IVertex s) {
04:  target.Compute(s);

7.2 Subjects 05: Assert.Inconclusive("this test needs review");
06:}

We used four popular applications as subjects in our evalu-
ations. Table 1 shows their various characteristics, ssch a  We first applied Seeker on PUTs generated for each sub-
the number of classes and methods, their site, and numbeject application. We measured four metrics for generated
of downloads. QuickGraph [36] is a popular C# graph li- test inputs: the branch coverage, def-use coverage, num-
brary that provides various graph data structures and algober of distinct defects detected, and the time taken. For
rithms such as depth-first search. Data structures and algobranch coveragewe used a coverage measurement tool,
rithms (Dsaj provides various data structures, complement-

Snttp://xunit.codeplex.com/

Shttp://dsa.codeplex.com/ "http://www.nunit.org/



called NCoveft, to measure the branch coverage achieved Subject Randoop Pex Seeker
by generated test inputs. Avg.| SD[Max|Avg.[SDiMax/Avg.|SD[Max
For def-use coverageve developed a tool for C#, called QuickGraph21.621.6191] 4.4]3.00 14 [5.6]2.9 17
DUCover, based on the technigues described in previous Dsa 3.0/25]20|2.7[2.0 12 |3.2]1.9 12
work [31, 34]. The reason for developing this new tool is xUnit 6.1/5.8| 65|3.3|4.9 58|2.42.0 37
that, to the best of our knowledge, there exist no def-use cov NUnit 4.715.0]121]4.1]3.0 20| 4.3|2.9 19
erage measurement tool for C#. In object-oriented code, def
initions and uses for member fields can occur in different Table 3. Statistics of generated sequences.

member methods of classes under analysis. DUCover auto-

matically measures coverage of such def-use pairs based ON & Used sequences extracted by MSeaGen as input to Seeker
method sequences among generated test inputsiefects d y d P '

we measured distinct defects, since multiple failing tast i In this setting, Seeker enhances the sequences extracted by

puts could detect the same defect. Section 7.6 presents morg/lsquen to generate more sequences that could help pro-

details on how we identify defects from failing test inputs. duce desired object states.
As mentioned in Section 6, our implementation has run- 7 4 RQ1: Coverage
time performance overhead, since we launch Pex multiple
times. To ensure that our results are not biased by the limi-
tations of our implementation, we used customized settings )
for Pex and Randoop rather than using their default settings 10 SPce constraint, we show results for a few selected rames
respectively. These customized settings allow Pex and RanPaces (Column “Namespace”) that help provide insights de-
doop to run for the same or higher amount of time compared scribed |“n subseqtient sections, instead of all namespaces.
to Seeker. In essence, our settings favor Pex and Randoo olu'mn. Branches” shows th'e.number of branches in ea“ch
compared to Seeker. We used the following customized set2PPlication. Among the remaining columns, subcolumns *#

tings for Pex and measured the three metrics for the test in-1 €St » “Cov", and “Time” show the number of test inputs
puts generated by Pex. generated by each approach (Randoop, Pex, Seeker, and

manually written tests), branch coverage achieved, ang tim

We next address the first research question. Table 2 shows
our results for all subject applications. For each subphot,

Timeout = 500 sec. (default:120) taken in hours, respectively. Table 3 shows further deteails
MaxConstraintSolverTime = 10 sec. (default:2) garding the sequences generated by each approach. Columns
MaxRunsWithoutNewTests = 2147483647 (default:100) “Avg.”, “SD”, and “Max” show the average lengths, standard

MaxRuns = 2147483647 (default:100) deviation, and maximum lengths of sequences generated by

The values in brackets represent the default values. Foréach approach, respectively. We next summarize our results

example, the default value of the timeout parameter is 120 Randoop. Our results show that Randoop achieved the
seconds. Instead, we used 500 segonds for the tmeout g, et coverage among all approaches for all applications,
rameter._ For Randoop, Fhe default timeout value is 120 Sec'except for Quickgraph. For QuickGraph, Randoop achieved
onds, Smge, R.andoop IS a randqm appr_oach, we ran Ranhigher coverage than Pex. Randoop could not achieve any
doop multiple times (each time with the timeout parameter coverage for th@atastructures namespace of Dsa, since

as 120 seconds) for each subject so that the total time isl;equaRandoop cannot handle generics. Furthermore, Table 3

or Q_igher than the amoznt of t(ijmﬁ taken gy Seeker for that g s that sequences generated by Randoop are often longer
subject. However, we observed that Randoop may generatqy . the sequences generated by other approaches. In sum-

th_ou_san_ds of test_ inputs that are too many to be compiled mary, our results show that target sequences cannot be gen-
Wlthl.n \_/|sual Studio for measuring metric vglues. Therefor erated by combining method calls randomly to form longer
we limited the number of generated test inputsl@o000. sequences.
For one subject under analysis, although we tried compil-
ing remaining test inputs into several other Visual Studio Pexand Seeker. Our results show that Pex, which is a DSE-
projects and measured coverage, we found that there was ndased approach, can effectively handle generation of primi
increase in the branch coverage. tive data, but cannot generate target sequences. For exam-
To compare Seeker with MSeqGen, we first applied MSe- ple, Pex achieved 100% coverage for shgorithms names-
gGen alone on QuickGraph, which is the only subject pre- pace of Dsa. This hamespace does not require sequences
viously used for evaluating MSeqGen (integrated with Pex), and includes implementations of various sorting algorghm
and measured the three metfidsor the combined approach, such as mergesort. On the other hand, Pex achieved only
s 31.6% for QuickGraph, which requires complex sequences
ghttp‘//”‘""nc""er'c"m/ . o for achieving high coverage. In our evaluations, we used cus
We could not apply MSeqGen on other subject applicationstddack 1764 settings for Pex instead of default values, thereby
of usage information currently with us for these subject @ggibns. In . .
favoring Pex compared to Seeker. For example, our settings

future, we plan to collect this usage information and compaek&r with g
MSeqGen on the remaining subjects as well. help Pex run for 20 hours (for all subjects) compared to




Subject  |# Def-Use pairg Randoop Pex Seeker Manual

# Coveredl % [# Covered % [# Covered % [# Coveredl %
QuiCkGrapIﬁ 892 402 [45.1 198 |22.2 447 |50.1 152 |17.0
Dsa 583 0 0 96 16.5 222 |38.1 185 |[31.7
xUnit 1256 196 |15.6 316 [25.2 357 |284 24 1.9
TOTAL 2731 598 (21.9 610 |[22.3 1026 |37.6 361 |[13.2

Table 4. Def-Use coverage achieved by Randoop, Pex, Seeker, andattyantitten tests.

9.8 hours for Seeker. Still, Seeker achieved 12% (653 new00:public class Deque<T> {

branches) higher branch coverage than Pex. Indeed, allow01:
ing Seeker to run for longer time could help achieve more 92:
coverage. Therefore, our results show that it is difficult to °3f
achieve higher coverage by letting Pex run for longer time,
showing the significance of our Seeker approach. 06:

Although Seeker achieved higher coverage than Randoop07;
and Pex, the coverage achieved is still not close to 100%.qg.

05:

private DoublyLinkedList<T> m_deque;

public override void Add(T item) {
EnqueueBack (item) ;
¥

public override void Clear() {
m_deque.Clear();

Count = 0;
Moreover, coverage achieved by Seeker is lower than manugg:  }
ally written tests for all subjects, except for QuickGrapiia  10:  public override T DequeFront() {
Gui namespace of xUnit. Section 8 discusses limitations on 11: Guard.InvalidOperation(Count == O,
why Seeker could not achieve coverage close to 100%. Resources.DequeDequeueEmpty) ;
12: T item = m_deque.Head.Value;
7.5 RQ2: Def-Use Coverage 13: m_deque . RemoveFirst () ;
Count-—-;

We next address the second research question on Whethe}:;
Seeker achieves higher def-use coverage compared to Pexs. )
and Randoop. Table 4 shows the def-use coverage achievedy.
by Randoop, Pex, Seeker, and manually written tests, respecis: }
tively. We could not apply our DUCover tool on test inputs
generated for NUnit, due to a technical limitation of execut
ing NUnit tests using NUnit. Along with def-use coverage,
we also measure all-defs coverage to provide more insights.
All-defs criteria describe that for each definition in theleo  constructing inter-procedural control-flow graphs and &y u
under test, some use of this definition is being exercised bying constraint solving to detect infeasible paths. Deterti
a test input. Table 5 shows the all-defs coverage achieved bysuch inter-procedural infeasible paths helps detect sithée
all approaches for each subject. def-use pairs. Second, Seeker, which is developed around
Our results show that Seeker achieved higher def-use and”eX, is primarily intended for achieving higher branch cov-
all-defs coverage Compared to both Pex and Randoop’ reerage rather than def-use coverage. In future WOTk, we plan
spectively, for all subjects. The results also show thak&ee to develop a new search strategy for Seeker that guides Pex
achieved higher def-use coverage than manually written to achieve higher def-use coverage along with higher branch
tests. A primary reason could be that programmers may coverage.
not write tests to achieve high def-use coverage. Although
Seeker achieved higher def-use coverage than Pex and Rarf-8 RQ3: Defects
doop, the coverage achieved by Seeker is not close to 100%\e next address the third research question regarding com-
There are two major reasons. First, some of the def-use pairgparing defect-detection capabilities of Randoop, Pex, and
are infeasible. For example, consider thque class shown Seeker. Table 6 shows our results. Subcolumns “AT”, “FT”,
in Figure 7. In this class, thedeque field is defined in State-  and “D” show the total number of generated test inputs, num-
ment 7 in theclear method. On the other hand, theleque ber of failing test inputs, and number of distinct defects de
field is accessed in Statement 12 in th@ueFront method, tected, respectively, by each approach. For Randoop, due to
forming a def-use pair. However, this def-use pair is ananfe the large number of failing test inputs, we regeneratedriest
sible pair, since thelear method sets the value of theunt puts with its default parameters, instead of analyzingest t
field to zero (Statement 8) and tbequeFront method in- inputs generated with the setting described in Section 7.4.
cludes an additional condition check (in Statement 11) that Furthermore, all our test inputs are automatically geeerat
throws an exception if the value of tlieunt field is zero. and do not include test oracles. Therefore, we used uncaught
In future work, we plan to identify such infeasible pairs by exceptions as test oracles with focus on robustness issues.

return item;

Figure 7. TheDeque class from Dsa.



Subject ‘# All Defs| Randoop Pex Seeker Manual

# Coveredl % [# Covered % [# Coveredl % [# Covered %
[QuickGraph 136 | 97 [71.9 65 [47.§ 109 [80.1 31 [22.
[Dsa | 1122 | 0 [o] 3 [30§ 59 [527 59 [52.7
[XUnit [ 922 | 97 [i0§ 144 154 156 [16.9 13 [14|
[TOTAL | 1170 [ 194 [16.§ 243 [20.§ 324 [27.7 103 [8.8]

Table 5. All defs coverage achieved by Randoop, Pex, Seeker, andathamuitten tests.

Subject Randoop Pex Seeker 00: BidirectionalGraph bidGraph;

AT [FT|D| AT [FT|D[ AT [FT|D 01: Random random;
QuICkGraphB956456 10 334|14]11102311734 02: VerteXAnd%dgiPr‘;"Z‘ézr ;0 o o
Dsa 687| 17| 3| 552|34[15 961 6120 03: Vortos of o penye & ()If“’l eris
XUnit 112) 0 |0/126312)5)1360 121 5 04: bidGraph = new BidirectionalGraph
NUnit 528 76]3|816|10] 7|1804 16|13 ((IVEProvider)s0, PexSafeHelpers.
[Total [828354911]296770[38604§20672 ByteToBoolean((byte)16));

AT: All Tests, FT: Failing Tests, D: Defects

Table 6. Defects detected by all approaches.

05:
06:
o7:

bidirectionalGraph.AddVertex ((IVertex)sl);

random = new Random();

RandomGraph.Graph ( (IEdgeMutableGraph)bidGraph,
0, 1, random, false);

In particular, we considered the test inputs that throw ex- Figure 8. A test input (generated by Seeker) that detected

ceptions as failing test inputs. However, we considered the an
failing test inputs that throexpectedexceptions as passing
test inputs. Furthermore, we ignored the defects related to

infinite loop in QuickGraph.

NullReferenceExceptions that are thrown by passingil Zg:ﬁ;ﬁge # B':;;hesgf)é 2'\7/| 45281'\‘::2
values to arguments of public methods. The primary reason Collections 569 17:863:294:0 95:6
is that often open source applications do not cheak val- Concepts 51 39374 574 5745
ues for the arguments of public methods, and can also be Exceptions 5 80.080.080.080.0
fixed by automatically adding®#u11 check on arguments of Predicates 58 193.193.110098.3
all public methods. To classify a failing test as a defecter e Providers 5 60.080.080.080.0
pected exception, we inspected the source code of subjects Representatiof)s 159  |52.464.867.967.3
under analysis and its associated Javadocs and comments. [TOTAL [ 1119 [31.647.368.464.3

Since manually written tests of these subjects do not ireclud
any failing tests, we consider all defects detected by Ran-
doop, Pex, and Seeker as new defects.

Our results show that Randoop, Pex, and Seeker de
tected 11, 38, and 72 distinct defects, respectively. We re-
ported detected defects on hosting websites of our sub-skeleton generated by Seeker, the values “0” and “1” gener-
ject applications. In all subjects, defects detected by-Ran ated by Pex in Statement 7 helped trigger the infinite loop
doop are related toullReferenceExceptions. Similarly, in the RandomGraph.Graph method. In summary, our results
except for Dsa, all defects detected by Pex are also re-show that Seeker has higher defect-detection capabilities
lated toNullReferenceExceptions. In Dsa, Pex detected compared to Randoop and Pex.
two and five defects related tOverflowException and )
IndexOutOfRange exceptions, respectively. Seeker detected -/ RQ4: MSeqGen Comparison
all defects detected by Randoop and Pex, and also deWe next address the fourth research question regarding com-
tected new defects related t@validOperationException paring branch coverage achieved by Seeker with MSegGen.
in QuickGraph. This exception is thrown when an attemptto MSeqGen took 1.3 hours to generate test inputs for Quick-
modify a collection is made after an enumerator is created Graph. Table 7 shows our results. Columns “Pex”, “M”, and
on that collection. It requires specific method sequences t0“S” show branch coverage achieved by Pex, MSeqgGen, and
cause this exception. Furthermore, Seeker detected at defecSeeker, respectively. Column “M + S” shows branch cover-
related to an infinite loop in QuickGraph. Figure 8 shows age achieved by combining MSegGen and Seeker. In par-
the test input that detected the infinite loop. The test input ticular, we used the sequences extracted by MSeqGen as
includes five classes and six method calls. Along with the beginning sequences for Seeker rather than starting Seeker

Table 7. Branch coverage achieved by MSeqGen (M) and
Seeker (S) for QuickGraph.



from the scratch. Although MSeqGen achieved higher cov- Path explosion. Although Seeker suggests shorter skele-
erage than Pex, our results show that Seeker achieved muclons (as shown in Table 3), we identify that skeletons sug-
higher coverage than MSeqGen, especially for complex gested by Seeker increase the number of paths to be explored
namespaces such asgorithms and Collections. There by Pex. Note that Seeker helps reduce the number of can-
are two major reasons for the lower coverage of MSe- didate sequences by using a combination of static and dy-
gGen compared to Seeker. First, sequences extracted byamic analyses, but do not reduce the number of paths to be
MSeqGen from the existing code bases do not include se-explored within a suggested candidate sequence. For exam-
guences for many classes under test. For example, althougtple, for thealgorithms namespace of QuickGraph, Seeker
we used 3.85MB of .NET assembly code for extracting se- achieved 52.1%. Although Seeker suggested desired skele-
guences, none of these code bases include sequences for thens to Pex, Pex could not generate test inputs using those
EdgeDoubleDictionary OF EdgeStringDictionary classes.  skeletons for this namespace. The primary reason is that
Therefore, MSeqGen could not achieve any coverage forPex, by default, attempts to cover all feasible paths among
these classes. On the other hand, Seeker achieved 100% comethod calls within the suggested sequences. In future,work
erage for these two classes. Second, MSeqGen-extracteave plan to address this issue by developing a search strategy
sequences are different from desired sequences required fothat can guide Pex. The insight for our future work is that
producing desired object states. not all paths in the method calls of suggested skeletons need
In contrast to our original expectation, “M + S” achieved to be explored for producing desired object states.

lower coverage than Seeker alone, except for the namespacg ..o dependency. A primary reason for the low

C?,llecuons Thro.th our inspection, we founq that M coverage achieved by Seeker for xUnit and NUnit is their
S” often resulted in more sequences, thereby increasing the

, ~ . _dependency on environments; dealing with such dependen-
exploration space for Pex. Although we can address this is-_. " .
. . ) I cies is currently beyond the scope of Seeker. For exam-
sue by using customized settings for Pex (similar to those

used for RQ1), the limitations of the current Seeker proto- ple, n XUnit, majority of_the glass_es requires assemblyfile
X . . that include tests or project files in XML formats. However,
type prevents from using such customized settings. In fu-

. 0 .
ture work, we plan to combine both these approaches bySeeker achieved 28.3% (121 new branches) higher coverage

: : than manually written tests for themi namespace, which
improving the performance of Seeker. In summary, Seeker. .

: . . includes some classes that require sequences and do not de-
achieved higher branch coverage than MSeqGen, and unlike

MSeqGen, Seeker does not require any additional informa—pend on the environment. In future work, we plan to address
tion such als usage information this issue by combining Seeker with other approaches [30]

that mock environments, thereby isolating the environment
) . dependency.

8. Discussion and Future Work

In our evaluation, we used code coverage as a criterion for
showing the effectiveness of Seeker compared to other ap\We next describe two major limitations of our Seeker ap-
proaches. Our criterion is based on a recent case study [33]proach.

which showed that field defects reduce with increased test
coverage. This case study helps show that achieving high

coverage can help imprqve the quality of code under teSt'different classes as well). Figure 8 shows an example se-
Furthermore, our evaluation showed results for def-use cov quence that includes six method calls from four different

erage, which is a stronger criterion compared to branch COV-(|asses. However, Seeker faces challenges in generating

erage. The reason is that achleylng higher coverage with re'sequences that require method calls to be repeated mul-
spect to a stronger coverage criterion such as def-use-cover,

further helos to show the effecti f Seek tiple times to produce the desired object state. For exam-
age further neips to snow the ENIeCliveness ot seeker Com'ple, consider th@ntstack class shown in Figure 4. Seeker
pared to other existing approaches.

; R . can easily handle target branches with conditions such as
We next summarize major limitations due to which if (stack.count > 0), which requires theush method to
Seeker .CO.U|d. not achieve branch coverage _close 0 100%be invoked only once. Instead, consider the following targe
These limitations can be broadly classified into two cate- branch B9.
gories: general limitations of DSE and limitations spedific
our Seeker approach. These general limitations of DSE also00: public static void fool(IntStack ints) {

8.2 Specific limitations of Seeker

Loop-based Sequences. Seeker is effective in generating
sequences that involve multiple methods (that can be from

affect Seeker, since Seeker inherently uses DSE for dynamicOt: if (ints.size() > 3) {
analysis. 02: ... //B9

03: }
8.1 General limitations of DSE 04: }

We next describe general limitations of DSE that also apply ~ To cover the target branch B9, the target sequence should
for our Seeker approach. invoke thepush method at least four times. However, our Al-



gorithms 1 and 2 cannot handle this scenario. In particular, | mplementation-based approaches. These approaches use

when StatAnalyzer (B9, null) iS invoked, StatAnalyzer the implementation information of classes under test for ge
identifies the pre-target @ash. After DynAnalyzer Success-  erating test inputs. These approaches can further be classi
fully covers this pre-target (Line 4 of Algorithm 2¥tat fied into two sub-categoriestirect constructiof3] and se-
Analyzer invOKeSDynAnalyzer (B9, IntStack.Push). How- guence generatiof8, 15, 17, 32, 35, 43, 45].

ever, DynAnalyzer Still cannot cover B9, sinceush is in- The direct construction approaches such as Korat [3]

voked only once in the suggested sequence. To address thisonstruct desired object states by directly assigningegalu
issue, Seeker includes the a heuristic-based technique deo member fields of classes under test. However, these ap-
scribed next. proaches require specifications such as class invaria@is [2
Along with suggesting a method (and a pre-target in that which are rarely documented by developers. In contrast,
method), Seeker also observes how the suggested metho&eeker is a sequence-generation approach and does not re-
such aspush modifies the target field field. We refer to quire class invariants.
this information as side-effect information. Using theides Among sequence-generation approaches, Buy et al. [5]
value fort field and the side-effect information, Seeker com- proposed an approach that generates sequences for exer-
putes the number of times the suggested method has to beising the def-use pairs associated with member fields of
invoked to produce a desired value fgiield. For example,  classes under test. Their approach can be used for testing
the desired value for théfield _size is four for covering classes in isolation to achieve def-use cover&minded-
the target branch B9. Therefore, Seeker identifies rhst exhaustivapproaches [45] generate sequences exhaustively
method has to be invoked for four times in the suggested up to a small bound of sequence length. However, target se-
sequence, since each invocatiorra@éh increases the value  quences involving classes from real-world applicationsrof
of thetfield _size by one. Our technique can handle only require longer sequences beyond the small bound handled by
a limited set of scenarios and cannot handle all scenariosbounded-exhaustive approaches.
that require method calls to be repeated multiple times. For  Another category of approaches, called evolutionary ap-
example, our technigque cannot handle the scenario whereproaches [2, 14, 15, 24, 43], accept an initial set of se-
more than one method has to be repeated multiple times. Inquences and evolve those sequences to produce new se-
future work, we plan to address this issue by developing a quences that can generate desired object states. Two ef thes
fithess-based approach, where a fitness function incremenapproaches [15, 43] can be used to test individual classes
tally guides the number of times suggested methods have toonly and cannot generate target sequences that involve meth
be invoked to achieve a desired value f@ield. ods from multiple classes (as shown in their evaluations).
Testful [2] addressed some of the issues faced by these
two approaches and proposed a semi-automated approach,
where the user has to provide data to augment the efficiency.
Fiarman and McMinn [14] further presented a theoretical
and empirical analysis of a global search technique used in
evolutionary approaches. Based on their empirical results

plications to provide such implementations. For example, . .
. ) they proposed a hybrid global-local search (a memetic)algo
Dsa provides three abstract classes suchm®nBinaryTree. . . . .
rithm. Although a direct comparison of Seeker with these

Without these abstract classes, Seeker achieved 94.3% cov-

. ; approaches helps show the benefits of Seeker, we could
erage (higher than manually written tests) for the namespac . -
e - not perform such comparison due to language restrictions.
DataStructures Of Dsa. Similarly, xUnit includes methods

. In particular, prototypes developed for these evolutignar
(such askExecutorCallback.Wrap) that require a callback
. . : : approaches target C or Java programs, whereas Seeker tar-
method. We identify that manually written tests achieved :
. ; . ets .NET (C#) programs. Nevertheless, Lakhaotia et al. [24]

higher coverage than Seeker, since those tests include nec: 2.

X : conducted an empirical study that compares a search-based
essary implementations. In future work, we plan to address

this issue by developing a technique similar to mockin en-teSt generation approach, called AUSTIN [23], with a DSE-
vironmentsy ping q 9 based approach, called CUTE [22]. Their study on testing

C code shows that both the approaches achieved similar

branch coverages. Their study also shows that neither of the
9. Related Work approaches achieved more than 50% branch coverage. A
Our Seeker approach is related to three major research areagajor issue identified by their study for the DSE-based ap-
to be discussed next. proach is related to the path exploration strategy useddy th
approach. In particular, CUTE could not achieve high cover-
age due to unbounded depth-first search strategy that often
Existing approaches for object-oriented test generat&on ¢ cannot handle programs with loops effectively. Recent ap-

be broadly classified into two major categoriesplementation- proaches such as Fitnex [46] integrated within Pex [41] can
basedandusage-basedpproaches.

Abstract classes, interfaces, and callback methods. All

our subjects are libraries or frameworks that include ele-
ments such as abstract classes or interfaces, whose impl
mentations are often not available within those libraries o

frameworks. These libraries or frameworks expect client ap

9.1 Object-oriented Test Generation



help address those issues. Based on this empirical study, wévases using class Furthermore, mined sequences may not
expect that our Seeker approach can perform better than evoinclude all necessary method calls required for producing
lutionary approaches too, since our evaluation resulter'sho desired object states.
that Seeker performs better than Pex. Jaygarl et al. proposed OCAT [16] that captures object
Randoop [35] is a random approach that generates sestates dynamically during program executions and reuses
guences by randomly combining method calls. Zheng et captured object states to assist a random approach. Simi-
al. [48] proposed a heuristic approach that assists a randomiarly, another approach, called DyGen [38], mines dynamic
approach with sequences that mutate member fields accessetlaces recorded during program executions and generates
by a method under test. However, due to the large searchregression test inputs from mined sequences. A major is-
space of possible sequences, there is often a low probabilsue with OCAT and DyGen is that these approaches re-
ity for randomly generating target sequences. In contrastt quire system test inputs for capturing object states and se-
these approaches, ours is a systematic approach that geneguences, respectively. Furthermore, captured objectsstat
ates sequences incrementally based on the branches that a@ sequences can be different from desired ones. Although
not yet covered, thereby significantly reducing the number OCAT includes a mutation technique, the mutation tech-
of candidate target sequences. nigue requires class invariants to effectively mutategiav
Korel [20, 21] proposed a chaining approach that iden- member fields. Seeker complements these approaches and
tifies alternate target branches that need to be covered tadoes not require any additional information. Furthermore,
cover a given target branch. Seeker also uses a similar techSeeker can also effectively handle private member fields
nigue. However, their approach can handle only procedural through method-call graphs.
code such as C code and cannot handle object-oriented cod
that includes additional challenges such as inheritande an
nested classes. McMinn and Holcombe [32] proposed an ex-Earlier research in program synthesis focused on program-
tended chaining approach that identifies a sequence of methming by demonstration [9, 25], where programs are synthe-
ods that need to be executed to cover a target branch. Ousized automatically by observing the manual actions per-
approach significantly differs from their approach in two-ma formed by the user. Further efforts in end-user program-
jor aspects. First, similar to Korel's approach, their mgmh ~ Ming attempted to bridge the gap between natural languages
can handle only procedural code. Second, their approach reand programming languages by developing structured edi-
quires users to provide a bound on the length of the desiredtors [18] or providing semantics to natural-language inter
sequence and method calls that can be included in that sefaces [28]. In contrast to these approaches, Seeker tagets
quence. In contrast, our approach does not require any manteducing efforts of programmers rather than end users.
ual effort and automatically synthesizes sequence that pro  Little and Miller [27] proposed an approach that allows
duces desired object states. end users to leverage scripting interfaces provided byi-appl
A recent approach, called Covana [44], precisely iden- cations such as Microsoft Word. In particular, their apfoa
tifies the problems that prevent tools from achieving high allows end users to specify a task, such as formatting a docu-
structural coverage. Covana focuses on two major problemsiment, using keywords. Their approach attempts to map those
(1) external-method-call problem; (2) object- creationlpr keywords to APIs of particular system. In contrast to thpir a
lem. Covana reports these problems to developers, so thaProach that focuses on identifying APIs, Seeker focuses on
developers can provide guidance to tools in achieving high generating method sequences that produce a desired object
structural coverage. Similar to Covana, Seeker focuses onstate. However, in future work, we plan to adopt a similar
object-creation problem. However, in contrast to Covama th ~ strategy of accepting desired object states in the formwf ke
reports problems to reduce effort of developers in guiding Words and automatically generate method sequences.
tools, Seeker automatically synthesizes sequences @hat a Gulwani [12] proposed a framework that describes three

sist tools such as Pex) and does not require any manual efdimensions of program synthesis: a user-specified inteat, t
fort. space of candidate programs, and the search technique. Our

Seeker approach can be formulated based on this framework.
Usage-based approaches. In our previous work, we pro-  Gulwani et al. [13] also proposed another approach for syn-
posed a mining-based approach, called MSeqGen [40],thesizing loop-free programs. In contrast to these apbesac
which statically mines method-call sequences based on thei that focus on synthesizing algorithms such as sorting or
usages from existing code bases. MSeqGen uses mined séit-manipulation routines, Seeker focuses on synthesizin
guences to assist random and DSE-based approaches. A mabject-oriented programs that involve method sequences.
jor issue with MSeqGen is that it is not effective in the sce-  There exist two other approaches [29, 39] accept queries
narios where no code bases that use classes required for taof the form “Source= Destinatiori. These approaches gen-
get sequences are available or code bases include sequencesate method sequences that accept an object oSgpece
that are different from target sequences. For example, if aas input and produce an object of typestination In con-
classc is newly introduced, it is not possible to find code trast to these approaches that generate some object of the

5.2 Program Synthesis



Destinationtype, Seeker focuses on generating a desired ob- [5] U. Buy, A. Orso, and M. Pezze. Automated testing of classes.

ject state of thd®estinationtype. In Proc. ISSTApages 39-48, 2000.

[6] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and auto-
matic generation of high-coverage tests for complex systems

Seeker uses a combination of static and dynamic analy-  programs. IfProc. OSD) pages 209—224, 2008.

ses to intelligently navigate through a large search space. [7] L. Clarke. A system to generate test data and symbolically

9.3 Static and Dynamic Analyses

Similar to Seeker, there exist other dynamic-analysis ap-  execute programsIEEE Trans. Softw. Eng2(3):215-222,
proaches [4, 6, 37] that also leverage static analysis. How-  1976.
ever, static analysis used in Seeker differs significaméynf [8] C. Csallner and Y. Smaragdakis. JCrasher: An automatic

the static analysis used in these approaches. In particular  ropustness tester for Javaoftw. Pract. Exper34(11):1025—
these existing approaches analyze control-flow, data-flow, 1050, 2004.

or program-dependence graphs to assist dynamic ar1‘5‘|y5i5-[9] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,
In contrast to these approaches, Seeker uses method-call  p. Maulsby, B. A. Myers, and A. Turransky, editorsVatch

graphs. Furthermore, these approaches handle procedural  what | do: Programming by demonstratioMIT Press, Cam-
code such as C, whereas Seeker handles object-oriented  bridge, MA, USA, 1993.

code. [10] P. G. Frankl and E. J. Weyuker. An applicable family of data
. flow testing criteria. IEEE Trans. Softw. Eng14(10):1483—
10. Conclusion 1498, 1988.

Over the past decade, program synthesis has gained focugll] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
due to the recent advances in computing and reasoning  automated random testing. Rroc. PLDI, pages 213-223,
techniques. In this paper, we proposed an approach, called ~ 2005.

Seeker, that accepts a user-specified intent as a desired olft2] S. Gulwani. Dimensions in program synthesisPhoc. PPDP
ject state and synthesizes programs in the form of method pages 13-24, 2010.

sequences that produce the desired object state. We hav@l3] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
shown the effectiveness of Seeker by applying it to the prob- of loop-free programs. IRroc. PLDI (to appear)2011.

lem of object-oriented test generation. In our evaluation, [14] M. Harman and P. McMinn. A theoretical and empirical
we have shown that Seeker achieved higher coverage (both  study of search-based testing: Local, global, and hybrid search.
structural and data-flow coverage) than existing statdwef- IEEE Trans. Softw. Eng36:226-247, March 2010.

art DSE-based and random approaches on four subject applif15] K. Inkumsah and T. Xie. Improving structural testing of
cations (totalling 28KLOC). We have also shown that Seeker object-oriented programs via integrating evolutionary testing
detected 34 new defects. In future work, we plan to extend and symbolic execution. IRroc. ASE pages 297-306, 2008.

Seeker to accept a user-specified intent in the form of natu-[16] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT: object

ral language. In particular, we plan to transform the intent capture-based automated testing Phoc. ISSTApages 159—
into a series of desired object states and leverage Seeker to 170, 2010.
automatically synthesize programs. [17] Parasoft. Jtest manuals version 5.1. Online manual, 2006.

http://www.parasoft.com.
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