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Abstract
High-coverage testing is challenging. Modern object-oriented
programs present additional challenges for testing. One key
difficulty is the generation of proper method sequences to
construct desired objects as method parameters. In this pa-
per, we cast the problem as an instance of program synthesis
that automatically generatescandidate programsto satisfy
a user-specifiedintent. In our setting, candidate programs
are method sequences, and desired object states specify an
intent. Automatic generation of desired method sequences
is difficult due to its large search space—sequences often
involve methods from multiple classes and require specific
primitive values. This paper introduces a novel approach,
calledSeeker, to intelligently navigate the large search space.
Seeker synergistically combines static and dynamic analy-
ses: (1) dynamic analysis generates method sequences to
cover branches; (2) static analysis uses dynamic analysis in-
formation for not-covered branchesto generate candidate
sequences; and (3) dynamic analysis explores and elimi-
nates statically generated sequences. For evaluation, we have
implemented Seeker and demonstrate its effectiveness on
four subject applications totalling 28K LOC. We show that
Seeker achieves higher branch coverage and def-use cover-
age than existing state-of-the-art approaches. We also show
that Seeker detects 34 new defects missed by existing tools.

Categories and Subject Descriptors:D.2.3 [Software En-
gineering]: Coding Tools and Techniques—Object-oriented
programming; D.2.5 [Software Engineering]: Testing and
Debugging—Symbolic execution; D.2.6 [Software Engi-
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neering]: Programming Environments—Integrated environ-
ments;

General Terms:Languages, Experimentation

Keywords: Object-oriented testing, Symbolic execution

1. Introduction
High-Coverage Testing. An important goal of software
testing is to achieve full or at least high coverage (either
structural coverage such as branch coverage or data flow
coverage such as def-use coverage) of the code under test.
Achieving high coverage of object-oriented code requires de-
sired object states for the receiver or arguments of a method
under test (MUT). These desired object states help cover
true or false branches of the conditional statements (such
asif statements) in the MUT. For example, consider the two
classes from the C# QuickGraph [36] library shown in Fig-
ure 1. A desired object state for covering thetrue branch
of Statement 24 (Branch B4) in Figure 1 is that thegraph

object should include at least one edge.
There exist two common approaches for producing de-

sired object states:sequence generation[8, 15, 17, 32, 35, 43,
45] anddirect construction[3]. With sequence generation,
desired object states are produced via generating method se-
quences that create and mutate objects, while with direct
construction, desired object states are produced via directly
setting values to member fields. In this paper, we adopt the
general sequence-generation approach since directly setting
values to member fields such as private fields of a class can
easily lead to invalid object states. For example, the follow-
ing method sequence (S1) produces the preceding desired
object state for thegraph object, thereby covering B4.

00: AdjacencyGraph ag = new AdjacencyGraph();

01: Vertex v1 = new Vertex(0);

02: ag.AddVertex(v1);

03: ag.AddEdge(v1, v1);

In this sequence,AddVertex should precedeAddEdge to
satisfy the requirement that the vertices passed as arguments
should already exist in the graph object (Statements 7 and
10).



00:class AdjacencyGraph : IVEListGraph {
01: private Collection edges;

02: private ArrayList vertices;

03: public void AddVertex (IVertex v){
04: vertices.Add(v); // B1
05: }
06: public Edge AddEdge (IVertex v1, IVertex v2){
07: if (!vertices.Contains(v1))

08: throw new VNotFoundException("");

09: // B2
10: if (!vertices.Contains(v2))

11: throw new VNotFoundException("");

12: // B3
13: // create edge

14: Edge e = new Edge(v1, v2);

15: edges.Add(e);

16: } ...

17:}

//UDFS:UndirectedDepthFirstSearch

18:class UDFSAlgorithm {
19: private IVEListGraph graph;

20: private bool isComputed;

21: public UDFSAlgorithm (IVEListGraph g){
22: ... }
23: public void Compute (IVertex s){ ...

24: if(graph.GetEdges().Size() > 0){ // B4
25: isComputed = true;

26: foreach (Edge e in graph.GetEdges()){
27: ... // B5
28: }
29: }
30: } ...

31:}

Figure 1. Two classes from C# QuickGraph library [36].

Program Synthesis. In this paper, we cast the problem of
generating method sequences as an instance of generalpro-
gram synthesisthat automatically generatescandidate pro-
grams to satisfy a user-specifiedintent. The intent can be
expressed in various forms such as high-level specifications,
natural language, or input-output examples. Based on the in-
tent, synthesizers, unlike compilers that perform transforma-
tions, search for programs that satisfy the user-specified in-
tent over a space of all possible candidate programs.

Automatic program synthesis has seen interesting ad-
vances in recent years due to the availability of more ad-
vanced computing resources and better reasoning techniques
such as SMT solvers [47]. In contrast to previous work [12]
that focuses on synthesizing algorithms such as sorting or
bit-manipulation routines, this paper focuses on synthesiz-
ing object-oriented programs that involve method sequences.
In particular, we accept a user-specified intent in the form of
a desired object state and automatically synthesize a method
sequence that produces the desired object state. For exam-
ple, given the user-specified intent as a conditional branch

Client Code:

00: public static void foo (UDFSAlgorithm udfs) {
01: ...

02: if(udfs.GetIsComputed()) {
03: ... // B6
04: }
05: // B7
06: }

Figure 2. User-specified intent expressed as a desired object
state.

01: Vertex s1 = new Vertex(0);

02: AdjacencyGraph ag = new AdjacencyGraph();

03: ag.AddVertex(s1);

04: ag.AddEdge((IVertex)s1, (IVertex)s1);

05: UDFSAlgorithm ud = new UDFSAlgorithm(ag);

06: ud.Compute((IVertex)null);

Figure 3. An example method sequence.

(such as Branch B6 in Statement 2, Figure 2) that describes
a desired object state, the goal of our approach is to automat-
ically synthesize a method sequence (such as the sequence
shown in Figure 3) that produces the desired object state.

Challenges. Automatic synthesis of target sequences that
produce a desired object state, is challenging due to three
major factors. First, target sequences often include methods
from multiple classes, resulting in a large search space of
candidate sequences. Second, target sequences require spe-
cific primitive values that help exercise desired paths in the
code under analysis. Third, object-oriented programming
features such as encapsulation pose additional challenges,
since values cannot be directly set to member fields.

Our Approach. To address these preceding challenges, we
propose a novel systematic approach, calledSeeker, that in-
telligently navigates the large search space via synergisti-
cally combining static and dynamic analyses. We next ex-
plain why either pure dynamic or static analysis alone can-
not address this problem. A major issue with pure dynamic-
analysis-based approach is that dynamic analysis does not
have the knowledge of methods that are not yet explored.
Furthermore, it is not possible to explore all methods es-
pecially in real-world applications, since real-world appli-
cations often include classes and methods from system li-
braries such as .NET framework libraries.

On the other hand, static analysis alone cannot generate
target sequences due to imprecision of static analysis. For
example, consider generating the desired object state pro-
duced by the preceding Sequence S1 using static analysis
alone. Static analysis, being conservative, identifies three
methods (AddVertex, RemoveVertex, andClearVertex of the
AdjacencyGraph class) that modify the fieldvertices as can-
didates for Statement 2. For simplicity, we did not show



methodsRemoveVertex andClearVertex in Figure 1. Simi-
larly, static analysis identifies six candidates for Statement 3,
resulting in a total of 18 (3 * 6) candidate sequences. Among
these candidates, static analysis alone cannot identify the tar-
get sequence due to its imprecision. Although dynamic anal-
ysis can be used to identify the target sequence among these
candidates, the number of such candidate sequences could
be quite high in practice.

To address these aforementioned challenges, Seeker in-
cludes three steps that form a feedback loop between dy-
namic and static analyses. First, given a desired object state
in the form of a conditional branch, dynamic analysis at-
tempts to generate a target sequence. Second, if dynamic
analysis fails to generate the target sequence, static anal-
ysis uses information fornot-covered branchesfrom dy-
namic analysis to generate candidate sequences. Third, dy-
namic analysis explores and eliminates statically generated
sequences. For example, in Statement 2 of S1, Seeker stat-
ically identifies three methods (AddVertex, RemoveVertex,
andClearVertex) as candidates. Seeker next uses dynamic
analysis to filter outRemoveVertex andClearVertex meth-
ods that do not help produce the desired object state. This
feedback loop between static and dynamic analyses is the
key essence of Seeker and helps systematically explore a po-
tentially large space of candidate sequences, thereby scaling
Seeker to large real-world applications. Furthermore, Seeker
stores the knowledge gained regarding individual method
calls while generating a target sequence, and reuses the
knowledge while generating other target sequences, thereby
increasing efficiency.

To handle encapsulation in object-oriented programs,
Seeker includes a novel technique based on method-call
graphs. A method-call graph is a directed graph that includes
caller-callee relations among methods. This technique helps
synthesize sequences that generate desired values for mem-
ber fields (both primitive and non-primitive) including pri-
vate fields.

Evaluation. We developed a prototype based on our Seeker
approach for object-oriented test generation. We compared
our approach with two state-of-the-art test-generation ap-
proaches: Pex [41] and Randoop [35] that are represen-
tative of dynamic-symbolic-execution-based and random
approaches, respectively. Our evaluation results show that
Seeker achieves higher coverage (both structural and data-
flow) than Pex and Randoop. Achieving such higher cover-
age compared to Pex and Randoop is significant, since the
branches that are not covered by these approaches are gener-
ally quite hard to cover.

This paper makes the following major contributions:

• A novel approach, called Seeker, that accepts a user-
specified intent in the form of a desired object state and
automatically synthesizes a method sequence that pro-
duces the desired object state.

• An application of our approach to automatically generate
test inputs for object-oriented programs and a prototype
implementation based on an existing test-generation ap-
proach [41].

• A technique based on method-call graphs to handle en-
capsulation. Our technique also effectively handles pri-
vate member fields that are of non-primitive types.

• Evaluation results on four popular applications (totalling
28 KLOC) to show the effectiveness of Seeker approach.
Our results show that Seeker achieves 12% (653 new
branches) and 26% (1571 new branches) higher branch
coverage than Pex and Randoop, respectively. Our re-
sults also show that Seeker achieves 15.7% (428 pairs)
and 15.3% (416 pairs) higher def-use coverage than
Pex and Randoop, respectively. Seeker also detects 34
new defects, including an infinite loop defect in Quick-
Graph [36].

The rest of the paper is organized as follows. Section 2
presents background on existing test-generation approaches.
Section 3 explains our Seeker approach with illustrative ex-
amples. Section 4 presents formal definitions of terms used
in the paper. Section 5 presents the key algorithms of Seeker.
Section 6 describes implementation details of the prototype
developed for our approach. Section 7 presents the evalua-
tion results. Section 8 discusses the limitations of our ap-
proach. Section 9 presents the related work. Finally, Sec-
tion 10 concludes.

2. Background
In this section, we present two state-of-the-art test generation
approaches Pex [41] and Randoop [35] that are used as repre-
sentative approaches for systematic and random approaches,
respectively, in the rest of the paper.

Pex. Pex [41] is a systematic approach based on a test-
generation technique, called Dynamic Symbolic Execution
(DSE) [7, 11, 19, 22, 41]. DSE is a recent state-of-the-art test
generation technique that explores an MUT and generates
test inputs that can achieve high structural coverage of the
MUT. Pex, developed based on DSE, explores an MUT with
default inputs. During exploration, Pex collects constraints
on inputs from the predicates in branch statements. Pex
negates collected constraints and uses a constraint solverto
generate new inputs that guide future program explorations
along different paths. To generate method sequences, Pex
uses a simple heuristic-based approach that generates fixed
sequences based on static information of constructors and
other methods (of classes under test) that set values to mem-
ber fields, hopefully helping produce desired object states.

Randoop. Randoop [35] is a random approach that gener-
ates sequences incrementally by randomly selecting method
calls. For each randomly selected method call, Randoop uses
random values and previously generated sequences for primi-



tive and non-primitive arguments, respectively. For each gen-
erated test input, Randoop avoids reusing or extending previ-
ously generated sequences that throw uncaught exceptions.

3. Example
We next explain our approach using the same illustrative ex-
amples shown in Figure 1. The figure shows two classes un-
der testAdjacencyGraph andUDFSAlgorithm from the Quick-
Graph library [36].AdjacencyGraph represents a graph struc-
ture including vertices and edges, which are added using
AddVertex and AddEdge, respectively.UDFSAlgorithm per-
forms an undirected depth first search on the graph structure.
We added an additional methodIsComputed for illustrative
purposes. Consider thefoo method (Figure 2), where the
user-specified intent is expressed as anif condition (State-
ment 2), describing the desired object state thatisComputed

should betrue. Here, synthesizing a method sequence that
produces the desired object state can be transformed as a
testing problem of generating a test input that covers the
true branch (B6) of Statement 2. A necessary requirement
to achieve the desired object is that thegraph object in
UDFSAlgorithm should contain both vertices and edges.

We first present the branch coverage achieved by Pex and
Randoop on classes shown in Figures 1 and 2 and next de-
scribe our Seeker approach. The test inputs generated by
Randoop and Pex achieved branch coverage of 36.8% (21
out of 57) and 35.1% (20 out of 57), respectively. The rea-
son for low coverage is that neither Randoop nor Pex could
satisfy the requirement ofAddEdge to successfully add an
edge to the graph object (Branch B3 in Statement 12 of Fig-
ure 1). Therefore, neither Pex nor Randoop could generate
a sequence that helps cover Branch B6 in Statement 2 (Fig-
ure 2). As shown through this example, it is quite challeng-
ing to achieve high branch coverage of these classes under
test due to the requirement of complex sequences. Such re-
quirement is often encountered when testing object-oriented
code.

We next present how our Seeker approach achieves high
branch coverage by synthesizing sequences using a combi-
nation of dynamic and static analyses. In particular, Seeker
leverages DSE for dynamic analysis and applies DSE to gen-
erate a target sequence. If DSE cannot generate the target se-
quence, Seeker statically analyzes the branches that are not
covered by DSE and synthesizes method sequences. Seeker
next uses DSE with the assistance of statically synthesized
sequences. In our approach, we use Pex, which is based on
DSE, for dynamic analysis. Although we describe our ap-
proach in the context of Pex, our approach is independent
of Pex and can be used to assist any other DSE-based ap-
proach [1]. Initially, Seeker applies DSE to explore Branch
B6 in thefoo method. DSE exploresfoo but fails to generate
a target sequence that covers Branch B6.

Seeker statically analyzes B6 and suggests B4 (in the
Compute method) as a pre-target branch that could help

cover B6. In particular, the sequence that helps cover B4
can be leveraged to cover B6 as well. Due to imprecision
of static analysis, Seeker may suggest more than one pre-
target branches and not all those pre-target branches can
help cover B6. To address this issue, Seeker applies DSE
on pre-target branches and filters out irrelevant pre-target
branches. Since DSE alone cannot cover B4, Seeker in turn
uses static analysis to identify further pre-target branches for
B4. This feedback loop eventually identifies the pre-target
branches as follows: “B6⇐ B4 ⇐ B3 ⇐ B2 ⇐ B1”. Here,
the notation “B6⇐ B4” indicates that B4 is a pre-target
branch for B6.

Consider that Seeker successfully covered B3. In this
scenario, Seeker generates the following sequence:

01: AdjacencyGraph ag = new AdjacencyGraph();

02: Vertex v1 = new Vertex(0);

03: ag.AddVertex(v1);

04: ag.AddEdge(v1, v1);

Seeker next uses this sequence to assist DSE for cover-
ing the next target branch B4 and the process continues. Fig-
ure 3 shows the final target sequence (generated by Seeker)
that covers Branch B6. The sequence includes four classes
and six method calls. Using this sequence, Seeker achieved
84.2% (48 out of 57) branch coverage. The remaining not-
covered branches are related to the event handling mecha-
nism, which is currently not handled by our implemented
prototype. It is quite challenging to generate such sequences
either randomly or using heuristics, since these three classes
include 39 methods. However, the feedback loop between
static analysis (that suggests candidate methods) and dy-
namic analysis (that identifies correct candidate method and
generates data) generates target sequences, thereby achiev-
ing high structural coverage of the code under test.

4. Problem Formulation
This section formalizes the problem of method sequence gen-
eration and introduces the terminology that we use through-
out the rest of the paper.

For a given applicationA under test, letC andM denote
its sets of classes and methods, respectively. LetPrimTy

andPrimVal represent the set of all primitive types, such as
int or bool, and primitive values, respectively. Each method
M ∈ M is represented by the method’s type signature:
C × T1 × · · · × Tn → T , whereC ∈ C is the type of the
receiver object,Ti ∈ C ∪ PrimTy denotes the type of thei-
th argument fori ∈ [1..n], andT ∈ C ∪ PrimTy ∪ {void}
denotes the type of the return value. SinceTi ∈ C ∪ PrimTy ,
M ’s arguments can be either primitive values or objects.

DEFINITION 4.1. Method Sequence (MCS).A method se-
quenceis a sequence of method calls(m1, . . . ,mr), such
that fori ∈ [1..r], we have



• mi = o.Mi(a1, . . . , an) whereM ∋ Mi : C × T1 ×
· · · × Tn → T . In other words,mi is well-typed: o : C1

andaj : Tj for all j ∈ [1..n];
• o = ret(mk) for somek ∈ [1..i), and for allj ∈ [1..n],
aj ∈ PrimVal ∨ aj = null ∨ aj = ret(ml) for some
l ∈ [1..i). In other words, the sequence iswell-formed
with the proper data dependence.

In the preceding definition,ret(mk) denotes the return
value of the methodmk. Also note that for brevity of presen-
tation, we do not explicitly model constructor calls and static
methods in the preceding definition. To model them, one can
simply drop the conditions on the receiver objecto.

For each method callmi = o.Mi(a1, . . . , an) in an MCS,
the receiver objecto should be the return objectret(mk)
of another method callmk that precedesmi within the se-
quence. Furthermore, eachmi in the MCS can have either
primitive or non-primitive arguments. For primitive argu-
ments, the preceding definition requires that the arguments
should take on primitive values of the corresponding types,
such astrue for thebool type. For non-primitive arguments,
they must benull or return values of some preceding method
calls within the sequence. For example, in the sample se-
quence shown in Figure 3, the non-primitive arguments1

of AddVertex in Statement 3 is the return value of another
preceding method callnew Vertex() in Statement 1. Our
definition ensures that method sequences are well-formed,
and executable code can be generated directly from those
sequences.

It is helpful to also define the notion of asequence skele-
ton. Intuitively, a sequence skeleton is an MCS except that
primitive arguments are not required to take on concrete val-
ues. The definition below provides a precise description.

DEFINITION 4.2. Skeleton (SKT).A sequence skeletonis
a sequence of method calls(m1, . . . ,mr), such that for
i ∈ [1..r], we have

• mi = o.Mi(a1, . . . , an) whereM ∋ Mi : C × T1 ×
· · · × Tn → T .

• o = ret(mk) for somek ∈ [1..i), and for allj ∈ [1..n],
aj : PrimTy ∨ aj ∈ PrimVal ∨ aj = null ∨ aj =
ret(ml) for somel ∈ [1..i).

The definition for SKT is essentially the same as that
for MCS, except that some values of primitive-type argu-
ments are not required:aj ∈ PrimVal for MCS versus
aj : PrimTy ∨ aj ∈ PrimVal for SKT.

DEFINITION 4.3. Target Branch (TB). A target branchis
atrue or false branch of a conditional statement2.

In our setting of program synthesis, we use a not-covered
target branch to denote the user intent.

1 The notationo : C indicates that the receiver objecto is of typeC.
2 We model aswitch statement as a series ofif-then-else state-
ments.

DEFINITION 4.4. Method Sequence Synthesis.Given a
method under testM ∈ M and a target branchtb within M ,
synthesize a method sequence(m1, . . . ,mr) that constructs
the receiver object and arguments ofM and drivesM to
successfully covertb.

5. Seeker Algorithm
Algorithms 1 and 2 show the two key algorithmsDynAnalyzer

(dynamic analysis) andStatAnalyzer (static analysis) of our
Seeker approach. Seeker leverages DSE for dynamic analy-
sis to synthesize sequences that can cover a given target
branchtb. In particular, given a target branch, Seeker first
applies DSE and checks whether DSE can generate a se-
quence (referred to as target sequence) that covers the target
branch. In case, DSE cannot generate the target sequence,
Seeker uses static analysis to synthesize skeletons and again
applies DSE to generate data, forming afeedbackloop. Here,
DSE assists static analysis in two major ways. First, DSE
helps generate data for skeletons synthesized by static anal-
ysis. Second, DSE eliminates candidate methods (identified
by static analysis) that do not help cover the target branch.
The novelty of Seeker is that this feedback loop helps over-
come individual limitations of static and dynamic analyses,
thereby effectively synthesizing sequences3. We next explain
each algorithm in detail using illustrative examples shownin
Figures 1 and 2. Consider that theDynAnalyzer is invoked
with the target branchtb as B6 in Figure 2 andinpseq as
null. Here, Branch B6 represents thetrue branch of State-
ment 2 (Figure 2).

5.1 DynAnalyzer Algorithm

DynAnalyzer accepts a target branchtb and an input se-
quenceinpseq as inputs, and generates a target sequence
that coverstb. Initially, DynAnalyzer identifies the method
m that includestb (using GetMethod). DynAnalyzer next
appends the methodm to inpseq using AppendMethod

(Lines 1 and 2) and generates the skeletontmpskt. Since
AppendMethod does not know the parameter values for
m, AppendMethod uses symbolic values as parameters for
m in the skeletontmpskt. If the methodm is a non-
static method and there exists no constructor ininpseq,
AppendMethod automatically adds relevant constructors to
tmpskt. For the tb B6, whenDynAnalyzer(B6, null) is
invoked, AppendMethod returns the skeletonfoo(<sym>),
where<sym> represents a symbolic variable. Here, no con-
structor is added totmpskt, sincefoo is a static method.

DynAnalyzer next applies DSE (referred to with a func-
tion call DSE in Line 3 of Algorithm 1) to exploretmpskt
for generating a target sequence that coverstb. DSE accepts

3 An astute reader can identify that, in a few scenarios, the recursion be-
tween our two algorithms can result in an infinite loop. Seekerincludes
techniques for detecting and avoiding such infinite loops. For brevity, we
ignore such details while presenting our algorithms.



two arguments of types SKT and TB as inputs. DSE outputs
three values described as follows:

• targetseq of type MCS: MCS that covers the giventb of
typeTB or null

• CovB: Set of covered branches

• NotCovB: Set of not covered branches

During exploration of DSE, if DSE happens to gener-
ate a target sequence, then DSE returns the target sequence;
otherwise, it returnsnull. Apart from the target sequence,
DSE also returns covered (CovB) and not-covered branches
(NotCovB) in the methodm. For example, when DSE is in-
voked with the skeletonfoo(<sym>), DSE generates a se-
quence that helps cover Branch B7, but not Branch B6. The
reason is that DSE could not generate a target sequence that
can help cover B6. Therefore, DSE returnsnull, {B7}, and
{B6} for targetseq, CovB, andNotCovB, respectively. Note
that the setCovB ∪ NotCovB does not represent the entire set
of branches in the methodm. The primary reason is that
DSE, being a pure dynamic analysis technique, does not
have the knowledge of those branches where both the branch
and its alternative branch4 are not explored by DSE.

After exploration using DSE, there can be three possible
scenarios for the target branch.

• Scenario 1: The target branchtb is covered. In this sce-
nario,DynAnalyzer returnstargetseq.

• Scenario 2: The target branchtb is not covered and
tb ∈ NotCovB. This scenario happens when DSE suc-
cessfully covers the alternative branch oftb and could
not cover tb. In this scenario,DynAnalyzer invokes
StatAnalyzer to generate a sequence that can help cover
tb.

• Scenario 3: The target branchtb is not covered and
tb /∈ NotCovB. This scenario happens when DSE could
not cover all the dominant branches oftb in the methodm.
In this scenario,DynAnalyzer invokesComputeDominants
to identify dominant branches. In particular,Compute
Dominants first identifies the dominant branch, referred
to asprime dominant, whose alternative branch is cov-
ered by DSE.ComputeDominants next identifies all other
dominant branches oftb between the prime dominant and
tb. DynAnalyzer next recursively invokes itself for each
such dominant branch starting from the prime dominant
branch.DynAnalyzer returns a method sequence if all
dominant branches are covered along withtb; otherwise,
it returnsnull.

5.2 StatAnalyzer Algorithm

StatAnalyzer analyzes a target branchtb and identifies
other branches (referred to aspre-targetbranches) that can

4 Given a branchb (such as thetrue branch) of a conditional statement,
we usealternative branchto refer to the other branch (such as thefalse
branch) of that conditional statement.

Algorithm 1 DynAnalyzer(tb, inpseq)

Require: tb of type TB
Require: inpseq of type MCS
Ensure: targetseq of type MCS coveringtb or null

1: Methodm = GetMethod(tb)
2: SKT tmpskt = AppendMethod(inpseq, m)
3: DSE(tmpskt, tb, out targetseq, out CovB, out

NotCovB)
4: //Scenario 1
5: if tb ∈ CovB then
6: return targetseq
7: end if
8:

9: //Scenario 2
10: if tb ∈ NotCovB then
11: return StatAnalyzer(tb, inpseq)
12: end if
13:

14: //Scenario 3
15: if tb /∈ NotCovB then
16: List<TB> tblist = ComputeDominants(tb)
17: for all TB domtb ∈ tblist do
18: inpseq = DynAnalyzer(domtb, inpseq)
19: if inpseq == null then
20: Break
21: end if
22: end for
23: if inpseq 6= null then
24: return DynAnalyzer(tb, inpseq)
25: end if
26: end if
27: return null

help covertb. We first explain the two major functions
DetectField (Line 1) andSuggestTargets (Line 2) used
by StatAnalyzer. Since examples shown in Figures 1 and 2
are complex, we use a simple example shown in Figure 4
to explainDetectField andSuggestTargets. Consider that
StatAnalyzer is invoked withtb as Branch B8 andinpseq
asnull.

DetectField. Given a tb, the functionDetectField pre-
cisely identifies the target member fieldtfield that needs
to be modified to produce a desired object state for cov-
ering tb. It is trivial to identify tfield for branches such
as if(stack.size == 10), where tfield (such assize)
is directly included in the branch. However, in object-
oriented code, branches often involve method calls such
asif(!vertices.Contains(v1)) in Statement 7 (Figure 1)
rather than fields. It is challenging to identify target fields in
the presence of method calls, since the return statements in
these method calls may in turn can include further method
calls, where the actual member field is returned.



Algorithm 2 StatAnalyzer(tb, inpseq)

Require: A target branchtb
Require: A sequenceinpseq
Ensure: A sequencetargetseq coveringtb

1: Field tfield = DetectField(tb)
2: List<TB> tblist = SuggestTargets(tfield)
3: for all TB pretb ∈ tblist do
4: MCS targetseq = DynAnalyzer(pretb, inpseq)
5: if targetseq 6= null then
6: targetseq = DynAnalyzer(tb, targetseq)
7: if targetseq 6= null then
8: return targetseq
9: end if

10: end if
11: //Try other alternative target branches
12: end for
13: return null

To address this issue, the functionDetectField uses
an inter-procedural execution trace (hereby referred to as
trace), gathered during the runtime exploration with DSE.
This trace includes the statements executed in each method.
DetectField performs backward analysis of the trace start-
ing from the method call involved intb. We useretvar to
refer to the variable or value associated with the return state-
ment in a method call.DetectField uses the following five
steps with respect toretvar to identify tfield.

1. If retvar is a member field,DetectField identifies
retvar astfield. This scenario can happen with methods
such asgetter methods.

2. If retvar is data-dependent on a member field, the func-
tion DetectField identifies that member field astfield.

3. If retvar is data-dependent on the return of a nested
method call, the functionDetectField repeats these five
steps with the nested method call to identifytfield.

4. If retvar is control-dependent on a member field,Detect

Field identifies that member field astfield. This sce-
nario can happen when DSE failed to generate other ob-
ject states for that member field.

5. If retvar is control-dependent on the return of a nested
method call,DetectField repeats these five steps with
that nested method call to identifytfield. The method
HasElements (Lines 6-9 in Figure 4) shows an example
of this scenario, whereretvar is control-dependent on
the return of another nested method callstack.size().
In this scenario,DetectField repeats the preceding five
scenarios with that method callstack.size().

To illustrate these five steps, consider Branch B8 astb.
Given thistb, DetectField applies the preceding steps and
detects size (in ArrayList) as tfield. Here, Stack in-
cludes a member fieldlist of type ArrayList. Initially,

00: public class IntStack {
01: private Stack stack;

02: public IntStack() {
03: this.stack = new Stack; }
04: public void Push(int item) {
05: stack.Push(item); }
06: public bool HasElements() {
07: if(stack.size() > 0) { return true; }
08: else { return false; }
09: }
10: }
11: public class MyCls {
12: private IntStack ints;

13: public MyCls(IntStack ints) {
14: this.ints = ints; }
15: public void MyFoo() {
16: if(ints.HasElements()) {
17: ...// B8
18: }
19: }
20: }

Figure 4. An integer stack class.

DetectField analyzes the methodIntStack.HasElements.
Since the executed return statement (Statement 8) is control-
dependent on a nested method callStack.size, DetectField
analyzes theStack.size method. Eventually,DetectField
reaches the getter method that returnssize member field of
ArrayList, and thereby identifiessize astfield. Note that,
in a few scenarios, there can be multipletfields for cover-
ing tb. However, currently we handle only thosetb that can
be covered by achieving desired value for a singletfield.
We plan to handle multipletfields in our future work.

Along with identifying tfield, DetectField also cap-
tures two other pieces of information. First,DetectField
identifies the condition ontfield that is not satisfied. For
example,DetectField identifies “ size > 0” (Statement
7) as the condition that should be satisfied to covertb.
DetectField applies a constraint solver on the preced-
ing condition to get a desired value fortfield. Second,
DetectField also captures the hierarchy of fields, referred
to as field hierarchy, that includes all objects starting from
the object enclosingtb to tfield. For Branch B8 astb, the
identified field hierarchy is as follows: “FH: MyCls root
⇒ IntStack is ⇒ Stack stack⇒ ArrayList list ⇒ int size”.
This field hierarchy describes thatsize of typeint is con-
tained in the objectlist of typeArrayList, which is in turn
contained in the objectstack of typeStack and so on. Here,
root represents the object of typeMyCls. This field hierarchy
is used bySuggestTargets discussed next. In our setting, in-
heritance is not an issue, sinceDetectField analyzes the
execution trace produced by dynamic analysis, where actual
objects are described.



SuggestTargets. Given a target fieldtfield such assize,
its current and desired values, and field hierarchy, the func-
tion SuggestTargets identifies pre-target branches that need
to be covered to cover the original target branchtb. Initially,
SuggestTargets traverses the field hierarchy and identifies
the objecttobject (in the field hierarchy) that can be mod-
ified to achieve a desired value fortfield. The objective
of this traversal is to identify thetobject that is nearest
to tfield and can be modified by either assigning a value
directly or by invoking its public methods. The reason is
that the shorter the distance betweentobject and tfield,
the smaller the amount of code that needs to be explored
to achieve a desired value fortfield. For example, consider
the preceding field hierarchyFH. Here, the objectArrayList
list is near size (tfield) compared toIntStack stack. How-
ever, thelist object cannot betobject, sincelist, a private
member field, cannot be modified directly or by invoking its
public methods.

To identify tobject, SuggestTargets traverses the field
hierarchy fromroot and considers the object whose next
object cannot be modified either directly or through public
methods astobject. For example,root is not considered as
tobject, sinceints can be modified asints is set through
the constructor. For this field hierarchy,SuggestTargets
identifiesints as tobject, sincestack cannot be modified
outside theints object.

After identifyingtobject, SuggestTargets identifies meth-
ods (and pre-target branches within those methods) that help
produce a desired value fortfield. Identifying the meth-
ods oftobject that modifytfield is non-trivial, since there
can be intermediate objects betweentobject and tfield,
as identified by the field hierarchy. To address this issue,
SuggestTargets uses a novel technique based onmethod-
call graphs.

DEFINITION 5.1. Method-Call Graph. A method-call
graph is a stratified-directed graphG = (V,E), whereV
andE represent the set of all nodes and edges, respectively,
such that

• V = {root} ∪ V1 ∪ . . . ∪ Vn. Here,root represents the
node corresponding totfield, and for all i ∈ [1..n], Vi

= {M1, . . . ,Mr} represents all nodes at leveli. For all
j ∈ [1..r], Mj ∈ M and all methodsMj in Vi belongs
to the same class or its parent classes;

• E = {(root,Ma) | Ma ∈ V1} ∪⋃
i∈[1...n−1] {(Mb,Mc) | Mb ∈ Vi ∧ Mc ∈ Vi+1}. In

essence, there can be two kinds of edges. The first kind
of edges represent the edges fromroot to nodes at level
1. An edge betweenroot andMa ∈ V1 (nodes at level
1) represent thatMa modifiestfield. The second type
of edges represent the edges between the nodes in any
two successive levels. An edge betweenMb ∈ Vi and
Mc ∈ Vi+1 represent thatMc invokesMb.

Figure 5. A sample method-call graph.

SuggestTargets constructs the method-call graph on de-
mand based on the field hierarchy identified byDetectField.
Figure 5 shows a sample method-call graph constructed
for the field hierarchyFH. The root node of the graph in-
cludestfield. The first level of the graph includes the meth-
ods (in the declaring class) that modifiestfield. Initially,
SuggestTargets statically analyzes all public methods of
the declaring class oftfield to identify the target methods
that modifytfield. In particular,SuggestTargets identifies
assignment statements, wheretfield is on the left hand side.
For example,SuggestTargets identifies the methods such as
Add, Insert, andReset of ArrayList as target methods for
the tfield size. From the second level, the graph includes
the methods from the declaring classes of fields in the field
hierarchy. The graph includes an edge from a methodMb in
one level to a methodMc in the next level, ifMb is called by
Mc. For example,Stack.Push invokes theList.Add method
and the corresponding edge is shown from Levels L1 to L2.

SuggestTargets next traverses constructed graph from
the top to bottom to identify methods that can be invoked on
tobject to achieve a desired value fortfield. Furthermore,
SuggestTargets identifies pre-target branches within each
method that need to be covered to invoke the method call of
the preceding level. For example,SuggestTargets identifies
that theIntStack.Push method can help achieve a desired
value for tfield. Furthermore,SuggestTargets identifies
the pre-target branch inIntStack.Push that helps invoke
Stack.Push method. This pre-target branch is considered as
a new target branch that needs to be covered, so as to cover
the original target branchtb. SuggestTargets returns several
candidate pre-target branches.

StatAnalyzer. We next describe theStatAnalyzer algo-
rithm. Given a target branchtb, StatAnalyzer first iden-
tifies other pre-target branches that need to be covered
using DetectField and SuggestTargets. Due to impreci-
sion of static analysis, not every pre-target branch identi-
fied by SuggestTargets can help covertb. For example,
along withIntStack.Push, SuggestTargets can also iden-
tify that IntStack.Pop can help covertb. To address this
issue,StatAnalyzer invokesDynAnalyzer to generate a se-
quence that covers these pre-target branches. IfDynAnalyzer

successfully covers any pre-target branch,StatAnalyzer



07: DynAnalyzer(B1, null)

06: StatAnalyzer(B2, null)

05: DynAnalyzer(B2, null)

04: DynAnalyzer(B3, null)

03: StatAnalyzer(B4, null)

02: DynAnalyzer(B4, null)

01: StatAnalyzer(B6, null)

00: DynAnalyzer(B6, null)

Figure 6. A snapshot of the execution stack.

Subject Version # Classes# MethodsKLOC # Downloads

QuickGraph 1.0 88 634 5.1 62,734
Dsa 0.6 27 308 3.3 6,724
XUnit 1.6.1 151 1267 11.9 86,702
NUnit 2.5.7 225 2344 8.1 193,563

TOTAL 491 4553 28.4 349,723

Table 1. Subjects and their characteristics.

uses the generated sequence to cover the original target
branchtb.

5.3 Example

We next describe how Seeker generates the sequence shown
in Figure 3 for thetb B6 in Figure 2. Initially, Seeker in-
vokes DynAnalyzer(B6, null). Since B6 ∈ NotCovB
after exploration with DSE,DynAnalyzer(B6, null) in-
vokes StatAnalyzer(B6, null). StatAnalyzer analyzes
B6 and identifies B4 in theCompute method as a pre-
target branch. Therefore,StatAnalyzer(B6, null) invokes
DynAnalyzer(B4, null). This process continues and even-
tually reaches a stage whereStatAnalyzer(B2, null) in-
vokesDynAnalyzer(B1, null). Figure 6 shows the contents
of the execution stack whenDynAnalyzer(B1, null) is in-
voked. At this point,DynAnalyzer(B1, null) covers Branch
B1, and returns the following sequence, say S2:

01: Vertex s1 = new Vertex(0);

02: AdjacencyGraph ag = new AdjacencyGraph();

03: ag.AddVertex(s1);

StatAnalyzer(B2, null) next invokesDynAnalyzer(B2,
S2), which successfully generates a sequence that covers B2,
resulting in the following sequence, say S3:

01: Vertex s1 = new Vertex(0);

02: AdjacencyGraph ag = new AdjacencyGraph();

03: ag.AddVertex(s1);

04: ag.AddEdge(s1, null);

Seeker continues further and eventually covers the orig-
inal target branch B6, thereby synthesizing the method se-
quence shown in Figure 3.

6. Implementation
We implemented a prototype of Seeker using Pex 0.92 [41]
for dynamic analysis. Pex provides extensible Application
Programming Interfaces (APIs) that can be overridden to
add new functionalities. Given atb, Seeker launches Pex
multiple times to synthesize target sequences. Seeker uses
a file-based repository to cache information across multiple
launches of Pex. After each launch, Pex returns branches that
are not yet covered due to lack of desired method sequences.
Seeker analyzes those not-yet-covered branches statically
and generates skeletons.

Seeker persists these generated skeletons in the repository
and reuses them during the next launch of Pex. Seeker re-
launches Pex with new skeletons to generate primitive data
for the method calls in the skeletons. Due to these multiple
launches of Pex and using a file-based repository, our current
prototype has high runtime overhead. We expect that the run-
time performance of our prototype can be significantly im-
proved by implementing Seeker within Pex or by adopting
a memory-based repository, which is left as our immediate
future work.

Our DynAnalyzer algorithm assumes that DSE (shown
in Step 3) could not cover the target branchtb due to the
lack of proper sequence. However, in practice, there can be
other issues such as environment dependency due to which
DSE could not covertb. Seeker identifies such other issues
and returns from Step 3 ofDynAnalyzer. Our current open-
source prototype can be downloaded fromhttp://pexase.
codeplex.com/releases/view/50822.

7. Evaluation
To show the effectiveness of our Seeker approach, we ap-
plied Seeker to automatically generate test inputs for object-
oriented programs. We also compared our approach with
two categories of approaches:randomand DSE-based ap-
proaches. We used two state-of-the-art tools Randoop [35]
and Pex [41] as representative tools for random and DSE-
based approaches, respectively. We applied all three ap-
proaches on four popular real-world applications. Along
with these two approaches, we compared our results with
the results of existing manually written tests available with
the subject applications. We also compared Seeker with our
previous approach, called MSeqGen [40]. MSeqGen, unlike
Seeker, generates method sequences based on how method
calls are used in practice. Since Seeker and MSeqGen com-
plement each other, this comparison helps show the benefits
and limitations of Seeker, MSeqGen, and their combined ap-
proach. More details of the subjects and results of our evalu-
ations are available athttp://research.csc.ncsu.edu/
ase/projects/seeker/. All evaluations were conducted
on a machine with 3.33GHz Intel Core 2 Duo processor with
4 GB RAM.



Subject Namespace # Branches Randoop Pex Seeker Manual
# TestsCov Time# TestsCov Time# TestsCov Time# TestsCov

QuickGraphOVERALL 1119 1014051.2 0.2 334 31.6 4.4 1923 68.2 3.2 21 26
Algorithms 572 - 38.1 - - 24.8 - - 52.1 - - 24.8
Collections 269 - 87.7 - - 17.8 - - 94.0 - - 11.2
... (5 more)

Dsa OVERALL 665 1049314.9 1.0 552 83.8 3.7 961 90 0.9 298 93.2
Algorithms 198 - 41.9 - - 100 - - 100 - - 88.3
DataStructures 433 - 0 - - 76.7 - - 86.4 - - 90.8
... (2 more)

xUnit OVERALL 2379 1014824.9 6.1 1265 38.6 4.5 1360 41.1 2.0 282 62.7
Gui 432 - 34.3 - - 40.8 - - 46.1 - - 17.8
Sdk 706 - 25.1 - - 35.6 - - 40.2 - - 86.3
... (6 more)

NUnit Util 1810 1012916.1 1.7 816 35.3 7.5 1804 43.5 3.7 319 63.9

TOTAL 5973 40910 26 9.0 2967 41.3 20.1 6048 52.3 9.8 920 59.2

Table 2. Branch coverage achieved by Randoop, Pex, Seeker, and manually written tests.

7.1 Research Questions

In our evaluation, we addressed the following research ques-
tions.

RQ1: How much higher percentage of branch coverage is
achieved by Seeker compared to Randoop and Pex, respec-
tively? This research question helps show that Seeker per-
forms better than Randoop and Pex in achieving high struc-
tural coverage such as branch coverage of the code under
test.

RQ2: How much higher percentage of def-use coverage is
achieved by Seeker compared to Randoop and Pex, respec-
tively? This research question helps show that Seeker per-
forms better than Randoop and Pex in achieving high data-
flow coverage [10] such as def-use coverage of the code un-
der test.

RQ3: How many new defects are detected by Seeker com-
pared to Randoop and Pex, respectively? This research
question helps address whether Seeker has higher defect-
detection capabilities compared to Randoop and Pex, respec-
tively.

RQ4: How high percentage of branch coverage is achieved
by Seeker, MSeqGen [40], and their combination?

7.2 Subjects

We used four popular applications as subjects in our evalu-
ations. Table 1 shows their various characteristics, such as
the number of classes and methods, their site, and number
of downloads. QuickGraph [36] is a popular C# graph li-
brary that provides various graph data structures and algo-
rithms such as depth-first search. Data structures and algo-
rithms (Dsa)5 provides various data structures, complement-

5http://dsa.codeplex.com/

ing those from the .NET framework. xUnit6 and NUnit7

are widely used open source unit testing frameworks for
all .NET languages. For NUnit, we focused on applying all
three approaches on its core component, theutil namespace
(including 8.1 KLOC). We used these applications as subject
applications, since these applications are popularly used(as
shown by their total downloads count as ofMarch 2011in
Column “Downloads”) and also by previous work [40]. The
subjects include a total of 28 KLOC.

7.3 Evaluation Setup

We next describe our evaluation setup for addressing the
preceding four research questions. Seeker and Pex accept
Parameterized Unit Tests (PUTs) [42] as input and generate
conventional unit tests. Unlike conventional unit tests, PUTs
accept parameters. Since PUTs are not available with our
subjects, we automatically generated PUTs for each public
method by using thePexWizardtool, which is provided with
Pex. A PUT generated for theCompute method in Figure 1
using PexWizard is shown below.

00:[PexMethod]

01:public void Compute01(

02: [PexAssumeUnderTest]UDFAlgorithm target,

03: [PexAssumeUnderTest]IVertex s) {
04: target.Compute(s);

05: Assert.Inconclusive("this test needs review");

06:}

We first applied Seeker on PUTs generated for each sub-
ject application. We measured four metrics for generated
test inputs: the branch coverage, def-use coverage, num-
ber of distinct defects detected, and the time taken. For
branch coverage, we used a coverage measurement tool,

6http://xunit.codeplex.com/
7http://www.nunit.org/



called NCover8, to measure the branch coverage achieved
by generated test inputs.

For def-use coverage, we developed a tool for C#, called
DUCover, based on the techniques described in previous
work [31, 34]. The reason for developing this new tool is
that, to the best of our knowledge, there exist no def-use cov-
erage measurement tool for C#. In object-oriented code, def-
initions and uses for member fields can occur in different
member methods of classes under analysis. DUCover auto-
matically measures coverage of such def-use pairs based on
method sequences among generated test inputs. Fordefects,
we measured distinct defects, since multiple failing test in-
puts could detect the same defect. Section 7.6 presents more
details on how we identify defects from failing test inputs.

As mentioned in Section 6, our implementation has run-
time performance overhead, since we launch Pex multiple
times. To ensure that our results are not biased by the limi-
tations of our implementation, we used customized settings
for Pex and Randoop rather than using their default settings,
respectively. These customized settings allow Pex and Ran-
doop to run for the same or higher amount of time compared
to Seeker. In essence, our settings favor Pex and Randoop
compared to Seeker. We used the following customized set-
tings for Pex and measured the three metrics for the test in-
puts generated by Pex.

Timeout = 500 sec. (default:120)

MaxConstraintSolverTime = 10 sec. (default:2)

MaxRunsWithoutNewTests = 2147483647 (default:100)

MaxRuns = 2147483647 (default:100)

The values in brackets represent the default values. For
example, the default value of the timeout parameter is 120
seconds. Instead, we used 500 seconds for the timeout pa-
rameter. For Randoop, the default timeout value is 120 sec-
onds. Since, Randoop is a random approach, we ran Ran-
doop multiple times (each time with the timeout parameter
as 120 seconds) for each subject so that the total time is equal
or higher than the amount of time taken by Seeker for that
subject. However, we observed that Randoop may generate
thousands of test inputs that are too many to be compiled
within Visual Studio for measuring metric values. Therefore,
we limited the number of generated test inputs to10, 000.
For one subject under analysis, although we tried compil-
ing remaining test inputs into several other Visual Studio
projects and measured coverage, we found that there was no
increase in the branch coverage.

To compare Seeker with MSeqGen, we first applied MSe-
qGen alone on QuickGraph, which is the only subject pre-
viously used for evaluating MSeqGen (integrated with Pex),
and measured the three metrics9. For the combined approach,

8http://www.ncover.com/
9 We could not apply MSeqGen on other subject applications dueto lack
of usage information currently with us for these subject applications. In
future, we plan to collect this usage information and compare Seeker with
MSeqGen on the remaining subjects as well.

Subject Randoop Pex Seeker
Avg. SD Max Avg. SDMax Avg. SDMax

QuickGraph21.621.6 191 4.4 3.0 14 5.6 2.9 17
Dsa 3.0 2.5 20 2.7 2.0 12 3.2 1.9 12
xUnit 6.1 5.8 65 3.3 4.9 58 2.4 2.0 37
NUnit 4.7 5.0 121 4.1 3.0 20 4.3 2.9 19

Table 3. Statistics of generated sequences.

we used sequences extracted by MSeqGen as input to Seeker.
In this setting, Seeker enhances the sequences extracted by
MSeqGen to generate more sequences that could help pro-
duce desired object states.

7.4 RQ1: Coverage

We next address the first research question. Table 2 shows
our results for all subject applications. For each subject,due
to space constraint, we show results for a few selected names-
paces (Column “Namespace”) that help provide insights de-
scribed in subsequent sections, instead of all namespaces.
Column “Branches” shows the number of branches in each
application. Among the remaining columns, subcolumns “#
Tests”, “Cov”, and “Time” show the number of test inputs
generated by each approach (Randoop, Pex, Seeker, and
manually written tests), branch coverage achieved, and time
taken in hours, respectively. Table 3 shows further detailsre-
garding the sequences generated by each approach. Columns
“Avg.”, “SD”, and “Max” show the average lengths, standard
deviation, and maximum lengths of sequences generated by
each approach, respectively. We next summarize our results.

Randoop. Our results show that Randoop achieved the
lowest coverage among all approaches for all applications,
except for Quickgraph. For QuickGraph, Randoop achieved
higher coverage than Pex. Randoop could not achieve any
coverage for theDataStructures namespace of Dsa, since
Randoop cannot handle generics. Furthermore, Table 3
shows that sequences generated by Randoop are often longer
than the sequences generated by other approaches. In sum-
mary, our results show that target sequences cannot be gen-
erated by combining method calls randomly to form longer
sequences.

Pex and Seeker. Our results show that Pex, which is a DSE-
based approach, can effectively handle generation of primi-
tive data, but cannot generate target sequences. For exam-
ple, Pex achieved 100% coverage for thealgorithms names-
pace of Dsa. This namespace does not require sequences
and includes implementations of various sorting algorithms
such as mergesort. On the other hand, Pex achieved only
31.6% for QuickGraph, which requires complex sequences
for achieving high coverage. In our evaluations, we used cus-
tomized settings for Pex instead of default values, thereby
favoring Pex compared to Seeker. For example, our settings
help Pex run for 20 hours (for all subjects) compared to



Subject # Def-Use pairs Randoop Pex Seeker Manual
# Covered % # Covered % # Covered % # Covered %

QuickGraph 892 402 45.1 198 22.2 447 50.1 152 17.0
Dsa 583 0 0 96 16.5 222 38.1 185 31.7
xUnit 1256 196 15.6 316 25.2 357 28.4 24 1.9
TOTAL 2731 598 21.9 610 22.3 1026 37.6 361 13.2

Table 4. Def-Use coverage achieved by Randoop, Pex, Seeker, and manually written tests.

9.8 hours for Seeker. Still, Seeker achieved 12% (653 new
branches) higher branch coverage than Pex. Indeed, allow-
ing Seeker to run for longer time could help achieve more
coverage. Therefore, our results show that it is difficult to
achieve higher coverage by letting Pex run for longer time,
showing the significance of our Seeker approach.

Although Seeker achieved higher coverage than Randoop
and Pex, the coverage achieved is still not close to 100%.
Moreover, coverage achieved by Seeker is lower than manu-
ally written tests for all subjects, except for QuickGraph and
Gui namespace of xUnit. Section 8 discusses limitations on
why Seeker could not achieve coverage close to 100%.

7.5 RQ2: Def-Use Coverage

We next address the second research question on whether
Seeker achieves higher def-use coverage compared to Pex
and Randoop. Table 4 shows the def-use coverage achieved
by Randoop, Pex, Seeker, and manually written tests, respec-
tively. We could not apply our DUCover tool on test inputs
generated for NUnit, due to a technical limitation of execut-
ing NUnit tests using NUnit. Along with def-use coverage,
we also measure all-defs coverage to provide more insights.
All-defs criteria describe that for each definition in the code
under test, some use of this definition is being exercised by
a test input. Table 5 shows the all-defs coverage achieved by
all approaches for each subject.

Our results show that Seeker achieved higher def-use and
all-defs coverage compared to both Pex and Randoop, re-
spectively, for all subjects. The results also show that Seeker
achieved higher def-use coverage than manually written
tests. A primary reason could be that programmers may
not write tests to achieve high def-use coverage. Although
Seeker achieved higher def-use coverage than Pex and Ran-
doop, the coverage achieved by Seeker is not close to 100%.
There are two major reasons. First, some of the def-use pairs
are infeasible. For example, consider theDeque class shown
in Figure 7. In this class, them deque field is defined in State-
ment 7 in theClear method. On the other hand, them deque

field is accessed in Statement 12 in theDequeFront method,
forming a def-use pair. However, this def-use pair is an infea-
sible pair, since theClear method sets the value of theCount
field to zero (Statement 8) and theDequeFront method in-
cludes an additional condition check (in Statement 11) that
throws an exception if the value of theCount field is zero.
In future work, we plan to identify such infeasible pairs by

00:public class Deque<T> {
01: private DoublyLinkedList<T> m deque;

02: ...

03: public override void Add(T item) {
04: EnqueueBack(item);

05: }
06: public override void Clear() {
07: m deque.Clear();

08: Count = 0;

09: }
10: public override T DequeFront() {
11: Guard.InvalidOperation(Count == 0,

Resources.DequeDequeueEmpty);

12: T item = m deque.Head.Value;

13: m deque.RemoveFirst();

14: Count--;

15: return item;

16: }
17: ...

18:}

Figure 7. TheDeque class from Dsa.

constructing inter-procedural control-flow graphs and by us-
ing constraint solving to detect infeasible paths. Detecting
such inter-procedural infeasible paths helps detect infeasible
def-use pairs. Second, Seeker, which is developed around
Pex, is primarily intended for achieving higher branch cov-
erage rather than def-use coverage. In future work, we plan
to develop a new search strategy for Seeker that guides Pex
to achieve higher def-use coverage along with higher branch
coverage.

7.6 RQ3: Defects

We next address the third research question regarding com-
paring defect-detection capabilities of Randoop, Pex, and
Seeker. Table 6 shows our results. Subcolumns “AT”, “FT”,
and “D” show the total number of generated test inputs, num-
ber of failing test inputs, and number of distinct defects de-
tected, respectively, by each approach. For Randoop, due to
the large number of failing test inputs, we regenerated testin-
puts with its default parameters, instead of analyzing all test
inputs generated with the setting described in Section 7.4.
Furthermore, all our test inputs are automatically generated
and do not include test oracles. Therefore, we used uncaught
exceptions as test oracles with focus on robustness issues.



Subject # All Defs Randoop Pex Seeker Manual
# Covered % # Covered % # Covered % # Covered %

QuickGraph 136 97 71.3 65 47.8 109 80.1 31 22.8

Dsa 112 0 0 34 30.3 59 52.7 59 52.7

xUnit 922 97 10.5 144 15.6 156 16.9 13 1.4

TOTAL 1170 194 16.6 243 20.8 324 27.7 103 8.8

Table 5. All defs coverage achieved by Randoop, Pex, Seeker, and manually written tests.

Subject Randoop Pex Seeker
AT FT D AT FT D AT FT D

QuickGraph695645610 334 14 11192311734
Dsa 687 17 3 552 34 15 961 61 20
xUnit 112 0 0 126512 5 1360 12 5
NUnit 528 76 3 816 10 7 1804 16 13

Total 828354911296770 38604820672

AT: All Tests, FT: Failing Tests, D: Defects

Table 6. Defects detected by all approaches.

In particular, we considered the test inputs that throw ex-
ceptions as failing test inputs. However, we considered the
failing test inputs that throwexpectedexceptions as passing
test inputs. Furthermore, we ignored the defects related to
NullReferenceExceptions that are thrown by passingnull
values to arguments of public methods. The primary reason
is that often open source applications do not checknull val-
ues for the arguments of public methods, and can also be
fixed by automatically adding anull check on arguments of
all public methods. To classify a failing test as a defect or ex-
pected exception, we inspected the source code of subjects
under analysis and its associated Javadocs and comments.
Since manually written tests of these subjects do not include
any failing tests, we consider all defects detected by Ran-
doop, Pex, and Seeker as new defects.

Our results show that Randoop, Pex, and Seeker de-
tected 11, 38, and 72 distinct defects, respectively. We re-
ported detected defects on hosting websites of our sub-
ject applications. In all subjects, defects detected by Ran-
doop are related toNullReferenceExceptions. Similarly,
except for Dsa, all defects detected by Pex are also re-
lated to NullReferenceExceptions. In Dsa, Pex detected
two and five defects related toOverflowException and
IndexOutOfRange exceptions, respectively. Seeker detected
all defects detected by Randoop and Pex, and also de-
tected new defects related toInvalidOperationException
in QuickGraph. This exception is thrown when an attempt to
modify a collection is made after an enumerator is created
on that collection. It requires specific method sequences to
cause this exception. Furthermore, Seeker detected a defect
related to an infinite loop in QuickGraph. Figure 8 shows
the test input that detected the infinite loop. The test input
includes five classes and six method calls. Along with the

00: BidirectionalGraph bidGraph;

01: Random random;

02: VertexAndEdgeProvider s0 =

new VertexAndEdgeProvider();

03: Vertex s1 = new Vertex();

04: bidGraph = new BidirectionalGraph

((IVEProvider)s0, PexSafeHelpers.

ByteToBoolean((byte)16));

05: bidirectionalGraph.AddVertex((IVertex)s1);

06: random = new Random();

07: RandomGraph.Graph((IEdgeMutableGraph)bidGraph,

0, 1, random, false);

Figure 8. A test input (generated by Seeker) that detected
an infinite loop in QuickGraph.

Namespace # BranchesPex M S M+S
Algorithms 572 24.827.452.1 44.2
Collections 269 17.863.294.0 95.6
Concepts 51 39.274.574.5 74.5
Exceptions 5 80.080.080.0 80.0
Predicates 58 93.193.1 100 98.3
Providers 5 60.080.080.0 80.0
Representations 159 52.264.867.9 67.3

TOTAL 1119 31.647.368.2 64.3

Table 7. Branch coverage achieved by MSeqGen (M) and
Seeker (S) for QuickGraph.

skeleton generated by Seeker, the values “0” and “1” gener-
ated by Pex in Statement 7 helped trigger the infinite loop
in theRandomGraph.Graph method. In summary, our results
show that Seeker has higher defect-detection capabilities
compared to Randoop and Pex.

7.7 RQ4: MSeqGen Comparison

We next address the fourth research question regarding com-
paring branch coverage achieved by Seeker with MSeqGen.
MSeqGen took 1.3 hours to generate test inputs for Quick-
Graph. Table 7 shows our results. Columns “Pex”, “M”, and
“S” show branch coverage achieved by Pex, MSeqGen, and
Seeker, respectively. Column “M + S” shows branch cover-
age achieved by combining MSeqGen and Seeker. In par-
ticular, we used the sequences extracted by MSeqGen as
beginning sequences for Seeker rather than starting Seeker



from the scratch. Although MSeqGen achieved higher cov-
erage than Pex, our results show that Seeker achieved much
higher coverage than MSeqGen, especially for complex
namespaces such asAlgorithms and Collections. There
are two major reasons for the lower coverage of MSe-
qGen compared to Seeker. First, sequences extracted by
MSeqGen from the existing code bases do not include se-
quences for many classes under test. For example, although
we used 3.85MB of .NET assembly code for extracting se-
quences, none of these code bases include sequences for the
EdgeDoubleDictionary or EdgeStringDictionary classes.
Therefore, MSeqGen could not achieve any coverage for
these classes. On the other hand, Seeker achieved 100% cov-
erage for these two classes. Second, MSeqGen-extracted
sequences are different from desired sequences required for
producing desired object states.

In contrast to our original expectation, “M + S” achieved
lower coverage than Seeker alone, except for the namespace
Collections. Through our inspection, we found that “M +
S” often resulted in more sequences, thereby increasing the
exploration space for Pex. Although we can address this is-
sue by using customized settings for Pex (similar to those
used for RQ1), the limitations of the current Seeker proto-
type prevents from using such customized settings. In fu-
ture work, we plan to combine both these approaches by
improving the performance of Seeker. In summary, Seeker
achieved higher branch coverage than MSeqGen, and unlike
MSeqGen, Seeker does not require any additional informa-
tion such as usage information.

8. Discussion and Future Work
In our evaluation, we used code coverage as a criterion for
showing the effectiveness of Seeker compared to other ap-
proaches. Our criterion is based on a recent case study [33],
which showed that field defects reduce with increased test
coverage. This case study helps show that achieving high
coverage can help improve the quality of code under test.
Furthermore, our evaluation showed results for def-use cov-
erage, which is a stronger criterion compared to branch cov-
erage. The reason is that achieving higher coverage with re-
spect to a stronger coverage criterion such as def-use cover-
age further helps to show the effectiveness of Seeker com-
pared to other existing approaches.

We next summarize major limitations due to which
Seeker could not achieve branch coverage close to 100%.
These limitations can be broadly classified into two cate-
gories: general limitations of DSE and limitations specificto
our Seeker approach. These general limitations of DSE also
affect Seeker, since Seeker inherently uses DSE for dynamic
analysis.

8.1 General limitations of DSE

We next describe general limitations of DSE that also apply
for our Seeker approach.

Path explosion. Although Seeker suggests shorter skele-
tons (as shown in Table 3), we identify that skeletons sug-
gested by Seeker increase the number of paths to be explored
by Pex. Note that Seeker helps reduce the number of can-
didate sequences by using a combination of static and dy-
namic analyses, but do not reduce the number of paths to be
explored within a suggested candidate sequence. For exam-
ple, for thealgorithms namespace of QuickGraph, Seeker
achieved 52.1%. Although Seeker suggested desired skele-
tons to Pex, Pex could not generate test inputs using those
skeletons for this namespace. The primary reason is that
Pex, by default, attempts to cover all feasible paths among
method calls within the suggested sequences. In future work,
we plan to address this issue by developing a search strategy
that can guide Pex. The insight for our future work is that
not all paths in the method calls of suggested skeletons need
to be explored for producing desired object states.

Environment dependency. A primary reason for the low
coverage achieved by Seeker for xUnit and NUnit is their
dependency on environments; dealing with such dependen-
cies is currently beyond the scope of Seeker. For exam-
ple, in xUnit, majority of the classes requires assembly files
that include tests or project files in XML formats. However,
Seeker achieved 28.3% (121 new branches) higher coverage
than manually written tests for theGui namespace, which
includes some classes that require sequences and do not de-
pend on the environment. In future work, we plan to address
this issue by combining Seeker with other approaches [30]
that mock environments, thereby isolating the environment
dependency.

8.2 Specific limitations of Seeker

We next describe two major limitations of our Seeker ap-
proach.

Loop-based Sequences. Seeker is effective in generating
sequences that involve multiple methods (that can be from
different classes as well). Figure 8 shows an example se-
quence that includes six method calls from four different
classes. However, Seeker faces challenges in generating
sequences that require method calls to be repeated mul-
tiple times to produce the desired object state. For exam-
ple, consider theIntStack class shown in Figure 4. Seeker
can easily handle target branches with conditions such as
if(stack.count > 0), which requires thePush method to
be invoked only once. Instead, consider the following target
branch B9.

00: public static void foo1(IntStack ints) {
01: if(ints.size() > 3) {
02: ... // B9
03: }
04: }

To cover the target branch B9, the target sequence should
invoke thePush method at least four times. However, our Al-



gorithms 1 and 2 cannot handle this scenario. In particular,
when StatAnalyzer(B9, null) is invoked,StatAnalyzer
identifies the pre-target asPush. After DynAnalyzer success-
fully covers this pre-target (Line 4 of Algorithm 2),Stat
Analyzer invokesDynAnalyzer(B9, IntStack.Push). How-
ever, DynAnalyzer still cannot cover B9, sincePush is in-
voked only once in the suggested sequence. To address this
issue, Seeker includes the a heuristic-based technique de-
scribed next.

Along with suggesting a method (and a pre-target in that
method), Seeker also observes how the suggested method
such asPush modifies the target fieldtfield. We refer to
this information as side-effect information. Using the desired
value fortfield and the side-effect information, Seeker com-
putes the number of times the suggested method has to be
invoked to produce a desired value fortfield. For example,
the desired value for thetfield size is four for covering
the target branch B9. Therefore, Seeker identifies thatPush

method has to be invoked for four times in the suggested
sequence, since each invocation ofPush increases the value
of the tfield size by one. Our technique can handle only
a limited set of scenarios and cannot handle all scenarios
that require method calls to be repeated multiple times. For
example, our technique cannot handle the scenario where
more than one method has to be repeated multiple times. In
future work, we plan to address this issue by developing a
fitness-based approach, where a fitness function incremen-
tally guides the number of times suggested methods have to
be invoked to achieve a desired value fortfield.

Abstract classes, interfaces, and callback methods. All
our subjects are libraries or frameworks that include ele-
ments such as abstract classes or interfaces, whose imple-
mentations are often not available within those libraries or
frameworks. These libraries or frameworks expect client ap-
plications to provide such implementations. For example,
Dsa provides three abstract classes such asCommonBinaryTree.
Without these abstract classes, Seeker achieved 94.3% cov-
erage (higher than manually written tests) for the namespace
DataStructures of Dsa. Similarly, xUnit includes methods
(such asExecutorCallback.Wrap) that require a callback
method. We identify that manually written tests achieved
higher coverage than Seeker, since those tests include nec-
essary implementations. In future work, we plan to address
this issue by developing a technique similar to mocking en-
vironments.

9. Related Work
Our Seeker approach is related to three major research areas
to be discussed next.

9.1 Object-oriented Test Generation

Existing approaches for object-oriented test generation can
be broadly classified into two major categories:implementation-
basedandusage-basedapproaches.

Implementation-based approaches. These approaches use
the implementation information of classes under test for gen-
erating test inputs. These approaches can further be classi-
fied into two sub-categories:direct construction[3] and se-
quence generation[8, 15, 17, 32, 35, 43, 45].

The direct construction approaches such as Korat [3]
construct desired object states by directly assigning values
to member fields of classes under test. However, these ap-
proaches require specifications such as class invariants [26],
which are rarely documented by developers. In contrast,
Seeker is a sequence-generation approach and does not re-
quire class invariants.

Among sequence-generation approaches, Buy et al. [5]
proposed an approach that generates sequences for exer-
cising the def-use pairs associated with member fields of
classes under test. Their approach can be used for testing
classes in isolation to achieve def-use coverage.Bounded-
exhaustiveapproaches [45] generate sequences exhaustively
up to a small bound of sequence length. However, target se-
quences involving classes from real-world applications often
require longer sequences beyond the small bound handled by
bounded-exhaustive approaches.

Another category of approaches, called evolutionary ap-
proaches [2, 14, 15, 24, 43], accept an initial set of se-
quences and evolve those sequences to produce new se-
quences that can generate desired object states. Two of these
approaches [15, 43] can be used to test individual classes
only and cannot generate target sequences that involve meth-
ods from multiple classes (as shown in their evaluations).
Testful [2] addressed some of the issues faced by these
two approaches and proposed a semi-automated approach,
where the user has to provide data to augment the efficiency.
Harman and McMinn [14] further presented a theoretical
and empirical analysis of a global search technique used in
evolutionary approaches. Based on their empirical results,
they proposed a hybrid global-local search (a memetic) algo-
rithm. Although a direct comparison of Seeker with these
approaches helps show the benefits of Seeker, we could
not perform such comparison due to language restrictions.
In particular, prototypes developed for these evolutionary
approaches target C or Java programs, whereas Seeker tar-
gets .NET (C#) programs. Nevertheless, Lakhotia et al. [24]
conducted an empirical study that compares a search-based
test generation approach, called AUSTIN [23], with a DSE-
based approach, called CUTE [22]. Their study on testing
C code shows that both the approaches achieved similar
branch coverages. Their study also shows that neither of the
approaches achieved more than 50% branch coverage. A
major issue identified by their study for the DSE-based ap-
proach is related to the path exploration strategy used by the
approach. In particular, CUTE could not achieve high cover-
age due to unbounded depth-first search strategy that often
cannot handle programs with loops effectively. Recent ap-
proaches such as Fitnex [46] integrated within Pex [41] can



help address those issues. Based on this empirical study, we
expect that our Seeker approach can perform better than evo-
lutionary approaches too, since our evaluation results show
that Seeker performs better than Pex.

Randoop [35] is a random approach that generates se-
quences by randomly combining method calls. Zheng et
al. [48] proposed a heuristic approach that assists a random
approach with sequences that mutate member fields accessed
by a method under test. However, due to the large search
space of possible sequences, there is often a low probabil-
ity for randomly generating target sequences. In contrast to
these approaches, ours is a systematic approach that gener-
ates sequences incrementally based on the branches that are
not yet covered, thereby significantly reducing the number
of candidate target sequences.

Korel [20, 21] proposed a chaining approach that iden-
tifies alternate target branches that need to be covered to
cover a given target branch. Seeker also uses a similar tech-
nique. However, their approach can handle only procedural
code such as C code and cannot handle object-oriented code
that includes additional challenges such as inheritance and
nested classes. McMinn and Holcombe [32] proposed an ex-
tended chaining approach that identifies a sequence of meth-
ods that need to be executed to cover a target branch. Our
approach significantly differs from their approach in two ma-
jor aspects. First, similar to Korel’s approach, their approach
can handle only procedural code. Second, their approach re-
quires users to provide a bound on the length of the desired
sequence and method calls that can be included in that se-
quence. In contrast, our approach does not require any man-
ual effort and automatically synthesizes sequence that pro-
duces desired object states.

A recent approach, called Covana [44], precisely iden-
tifies the problems that prevent tools from achieving high
structural coverage. Covana focuses on two major problems:
(1) external-method-call problem; (2) object- creation prob-
lem. Covana reports these problems to developers, so that
developers can provide guidance to tools in achieving high
structural coverage. Similar to Covana, Seeker focuses on
object-creation problem. However, in contrast to Covana that
reports problems to reduce effort of developers in guiding
tools, Seeker automatically synthesizes sequences (that as-
sist tools such as Pex) and does not require any manual ef-
fort.

Usage-based approaches. In our previous work, we pro-
posed a mining-based approach, called MSeqGen [40],
which statically mines method-call sequences based on their
usages from existing code bases. MSeqGen uses mined se-
quences to assist random and DSE-based approaches. A ma-
jor issue with MSeqGen is that it is not effective in the sce-
narios where no code bases that use classes required for tar-
get sequences are available or code bases include sequences
that are different from target sequences. For example, if a
classc is newly introduced, it is not possible to find code

bases using classc. Furthermore, mined sequences may not
include all necessary method calls required for producing
desired object states.

Jaygarl et al. proposed OCAT [16] that captures object
states dynamically during program executions and reuses
captured object states to assist a random approach. Simi-
larly, another approach, called DyGen [38], mines dynamic
traces recorded during program executions and generates
regression test inputs from mined sequences. A major is-
sue with OCAT and DyGen is that these approaches re-
quire system test inputs for capturing object states and se-
quences, respectively. Furthermore, captured object states
or sequences can be different from desired ones. Although
OCAT includes a mutation technique, the mutation tech-
nique requires class invariants to effectively mutate private
member fields. Seeker complements these approaches and
does not require any additional information. Furthermore,
Seeker can also effectively handle private member fields
through method-call graphs.

9.2 Program Synthesis

Earlier research in program synthesis focused on program-
ming by demonstration [9, 25], where programs are synthe-
sized automatically by observing the manual actions per-
formed by the user. Further efforts in end-user program-
ming attempted to bridge the gap between natural languages
and programming languages by developing structured edi-
tors [18] or providing semantics to natural-language inter-
faces [28]. In contrast to these approaches, Seeker targetsat
reducing efforts of programmers rather than end users.

Little and Miller [27] proposed an approach that allows
end users to leverage scripting interfaces provided by appli-
cations such as Microsoft Word. In particular, their approach
allows end users to specify a task, such as formatting a docu-
ment, using keywords. Their approach attempts to map those
keywords to APIs of particular system. In contrast to their ap-
proach that focuses on identifying APIs, Seeker focuses on
generating method sequences that produce a desired object
state. However, in future work, we plan to adopt a similar
strategy of accepting desired object states in the form of key-
words and automatically generate method sequences.

Gulwani [12] proposed a framework that describes three
dimensions of program synthesis: a user-specified intent, the
space of candidate programs, and the search technique. Our
Seeker approach can be formulated based on this framework.
Gulwani et al. [13] also proposed another approach for syn-
thesizing loop-free programs. In contrast to these approaches
that focus on synthesizing algorithms such as sorting or
bit-manipulation routines, Seeker focuses on synthesizing
object-oriented programs that involve method sequences.

There exist two other approaches [29, 39] accept queries
of the form “Source⇒ Destination”. These approaches gen-
erate method sequences that accept an object of typeSource
as input and produce an object of typeDestination. In con-
trast to these approaches that generate some object of the



Destinationtype, Seeker focuses on generating a desired ob-
ject state of theDestinationtype.

9.3 Static and Dynamic Analyses

Seeker uses a combination of static and dynamic analy-
ses to intelligently navigate through a large search space.
Similar to Seeker, there exist other dynamic-analysis ap-
proaches [4, 6, 37] that also leverage static analysis. How-
ever, static analysis used in Seeker differs significantly from
the static analysis used in these approaches. In particular,
these existing approaches analyze control-flow, data-flow,
or program-dependence graphs to assist dynamic analysis.
In contrast to these approaches, Seeker uses method-call
graphs. Furthermore, these approaches handle procedural
code such as C, whereas Seeker handles object-oriented
code.

10. Conclusion
Over the past decade, program synthesis has gained focus
due to the recent advances in computing and reasoning
techniques. In this paper, we proposed an approach, called
Seeker, that accepts a user-specified intent as a desired ob-
ject state and synthesizes programs in the form of method
sequences that produce the desired object state. We have
shown the effectiveness of Seeker by applying it to the prob-
lem of object-oriented test generation. In our evaluation,
we have shown that Seeker achieved higher coverage (both
structural and data-flow coverage) than existing state-of-the-
art DSE-based and random approaches on four subject appli-
cations (totalling 28KLOC). We have also shown that Seeker
detected 34 new defects. In future work, we plan to extend
Seeker to accept a user-specified intent in the form of natu-
ral language. In particular, we plan to transform the intent
into a series of desired object states and leverage Seeker to
automatically synthesize programs.
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