
Finding Deep Compiler Bugs via Guided
Stochastic Program Mutation

Vu Le Chengnian Sun Zhendong Su
Department of Computer Science, University of California, Davis, USA

{vmle, cnsun, su}@ucdavis.edu

Abstract
Compiler testing is important and challenging. Equivalence
Modulo Inputs (EMI) is a recent promising approach for
compiler validation. It is based on mutating the unexecuted
statements of an existing program under some inputs to
produce new equivalent test programs w.r.t. these inputs.
Orion is a simple realization of EMI by only randomly
deleting unexecuted statements. Despite its success in finding
many bugs in production compilers, Orion’s effectiveness is
still limited by its simple, blind mutation strategy.

To more effectively realize EMI, this paper introduces
a guided, advanced mutation strategy based on Bayesian
optimization. Our goal is to generate diverse programs to
more thoroughly exercise compilers. We achieve this with
two techniques: (1) the support of both code deletions and
insertions in the unexecuted regions, leading to a much larger
test program space; and (2) the use of an objective function
that promotes control-flow-diverse programs for guiding
Markov Chain Monte Carlo (MCMC) optimization to explore
the search space.

Our technique helps discover deep bugs that require elab-
orate mutations. Our realization, Athena, targets C compilers.
In 19 months, Athena has found 72 new bugs — many of
which are deep and important bugs — in GCC and LLVM.
Developers have confirmed all 72 bugs and fixed 68 of them.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—testing tools; D.3.2
[Programming Languages]: Language Classifications—C;
H.3.4 [Programming Languages]: Processors—compilers

Keywords Compiler testing, equivalent program variants,
automated testing, Markov Chain Monte Carlo

1. Introduction
Compiler bugs are serious because they potentially affect all
programs. They may cause compilers to silently miscompile a
program, leading to its incorrect executions and even security
vulnerabilities in the miscompiled program. Because bugs
in production compilers are relatively rare and only trigger
under specific circumstances, they may go unnoticed during
software development and surface only after deployment.
Thus, compiler bugs can have catastrophic consequences,
especially for safety-critical software; it is critical to make
compilers reliable.

One approach is to develop verified compilers, which
guarantee that the compiled executable behaves exactly as
defined by its source program’s semantics. A notable example
in this direction is CompCert [11, 12], a verified compiler
for Clight, a subset of the C language. CompCert’s semantic
preservation is mechanically verified using the Coq proof
assistant. However, traditional compilers, such as GCC and
LLVM, are still dominant as CompCert is designed for use
mostly in the safety-critical domains, where people are more
receptive to trading performance and language expressivity
for stronger correctness guarantees.

Testing remains the major method to validate mainstream
compilers. In particular, random program generators (fuzzers)
have been developed and demonstrated effective in practice.
For instance, jsfunfuzz [8], a popular JavaScript fuzzer, has
revealed thousands of bugs in Mozilla Firefox’s JavaScript
engine. Another example is Csmith [30], which has found
hundreds of bugs in production C compilers such as GCC and
LLVM. Because the semantics of a fuzzer-generated program
is difficult to control, this approach requires the program to
be compiled with multiple compiler implementations/config-
urations to find possible discrepancies (unless the goal is to
simply crash a compiler).

To complement existing compiler testing methods, we
have introduced Equivalence Modulo Inputs (EMI) [9], a
general approach for constructing valid test programs from
existing code. Given an existing program and some of its
input, we profile the execution of the program under the given
input. We then generate additional test programs (henceforth
referred to as variants) by randomly pruning unexecuted code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3689-5/15/10...$15.00

http://dx.doi.org/10.1145/2814270.2814319

386

EMI does not require different compiler implementations
because the semantics of the variants is known — they must
behave exactly the same as the original program under the
same profiling input. Orion, our realization of EMI, has found
147 new bugs, mostly miscompilations, in GCC and LLVM.

Orion’s Limitations Although Orion is effective, it has
several technical limitations which mainly concern its simple
strategy for generating variants — it only randomly prunes
unexecuted statements.

First, Orion can only generate a limited number of variants
from an existing program because there are only a bounded
number of possible ways to remove unexecuted statements
from a program. This becomes more problematic when a
seed program does not contain much dead code. Indeed, it is
possible to exhaust all possible variants for almost all the few
thousand test cases in GCC’s torture test suite.

Second, the control- and data-flow diversity of the Orion-
generated variants can be limited. This is again particularly
true when the seed program does not contain many unexe-
cuted statements. As EMI’s effectiveness depends on having
variants with different control- and data-flow to help exercise
a compiler’s various optimization strategies, this limitation of
Orion hinders its capability to thoroughly test the compiler.

Third, Orion’s generation process is purely random. While
this simple strategy has been effective, its detected bugs
may saturate because Orion’s strategy may help reveal only
shallow bugs that are within close proximity to the seed
program. It is unlikely to find deep bugs that only trigger after
a sequence of sophisticated mutations on the seed program.

Guided EMI Mutation This paper proposes effective tech-
niques to address these limitations. First, besides deletion,
we support code insertion into unexecuted program regions.
Because we can potentially insert an unlimited number of
statements into these regions, we can generate an enormous
number of variants. More importantly, the generated variants
have substantial different control- and data-flow, therefore
helping exercise the compiler much more thoroughly. Our
experimental results show that the increased variation and
complexity are crucial in revealing more compiler bugs.

Second, we introduce a novel method to guide the gener-
ation process to uncover deep bugs. We formulate our bug
finding process as an optimization problem whose goal is
to maximize the difference between a variant and the seed
program. By generating substantially diverse variants, we aim
at testing more optimization strategies that may not be exer-
cised otherwise. We realize this process using Markov Chain
Monte Carlo (MCMC) techniques, which help effectively
sample the program space to allow diverse programs. Our
evaluation results show that this approach is very effective in
finding deep bugs that require long sequences of sophisticated
mutations on the seed program. Our results also demonstrate
that most of these bugs could not be discovered by Orion,
which only uses a much simpler, blind mutation strategy.

Contributions We make the following main contributions:

• We implement a new EMI mutation strategy that allows
inserting code into unexecuted regions. This helps gener-
ate more diverse variants that have substantially different
control- and data-flow.

• We propose a novel guided bug-finding process that uses
MCMC sampling to find more diverse test variants to
trigger deep bugs that otherwise could not be triggered
using existing techniques.

• We realize our technique as the Athena tool for validating
C compilers. In 19 months, Athena has found 72 new
bugs in GCC and LLVM. Developers have confirmed all
of our reported bugs and fixed 68 of them. Furthermore,
17 of our 40 GCC bugs were marked as P1, the most
severe, release-blocking type of bugs. A number of our
reported bugs are linked to real-world programs. Our
results also demonstrate the effectiveness of our MCMC
guided algorithm in finding deep bugs.

• We provide further evidence to demonstrate the effec-
tiveness of the general EMI technique and insight into
developing effective EMI mutation strategies.

We structure the remainder of this paper as follows. Sec-
tion 2 illustrates our approach via two of our reported bugs.
Section 3 introduces necessary background. We then present
our MCMC-guided compiler testing methodology in Sec-
tion 4, and discuss the implementation of Athena in Section 5.
Section 6 discusses our experimental results. We survey re-
lated work in Section 7 and conclude in Section 8.

2. Illustrative Examples
This section uses two concrete bug examples to motivate and
illustrate Athena: one LLVM bug and one GCC bug. Both
bugs start from seed programs generated by Csmith [30], and
trigger by a sequence of mutations, i.e., inserting and deleting
statements derived from the seeds.

2.1 LLVM Crashing Bug 18615
Figure 1a shows the reduced EMI variant that triggers the
bug. Initially, clang compiles the seed program successfully
at all optimization levels. However, after Athena replaces
the original statement f[0].f0 = b; in the seed program
with another statement f[0] = f[b]; (which is derived from
the seed program), it causes clang to crash at optimization
-O1 and above. The bug happens because an assertion is
violated. LLVM assumes that array indices used in memory
copy operations are non-negative. At line 9 of Figure 1a,
the variable b is −1, making the array access f[b] illegal.
However, this should not matter because the code is never
executed. The compiler should not crash.

Athena extracts candidate statements for insertion from
existing code and saves them into a database. Each database
entry is a pair of statement and its required context, where
the context specifies the necessary conditions to apply the

387

1 int a;

2 struct S0 {

3 int f0; int f1; int f2;

4 };

5 void fn1 () {

6 int b = -1;

7 struct S0 f[1];

8 if (a) // the true branch is unreachable

9 f[0] = f[b]; // was "f[0].f0 = b;"

10 }

11 int main () {

12 fn1 ();

13 return 0;

14 }

(a) The simplified EMI variant.
1 ...

2 =====

3 // Required context

4 g: struct (int x int x int) [1]

5 c: int

6 -----

7 // Statement

8 g[0] = g[c];

9 =====

10 ...

(b) The database entry used to insert into the variant. Athena

renamed g,c to f,b to match the context at the insertion point.

Figure 1: LLVM 3.4 trunk crashes while compiling the
variant at -O1 and above (https://llvm.org/bugs/show_
bug.cgi?id=18615).

statement. Figure 1b shows the database entry that was
inserted into the seed program to reveal the bug. To use the
statement of this entry, the insertion point must have an array
of structs g and an integer c in scope.

While performing insertion, Athena only selects from
the database statements whose required contexts can be
satisfied by the local context (at the insertion point) to avoid
generating invalid programs. Athena also renames constructs
in a selected database statement to match the local context
when necessary. In this example, we can replace the original
unexecuted statement with the statement in Figure 1b because
their contexts are compatible under the renaming g→ f and
c→ b.

Note that the program in Figure 1 is already reduced. The
original program and its variant are quite large. Also, the
bug was triggered not under one single step but under a se-
quence of mutations. Athena’s MCMC algorithm plays a key
role here. It guides the mutation process toward generating
programs that are more likely to expose bugs. Orion cannot
reveal the bug because it cannot insert new statements to
trigger the assertion violation.

1 int a, c, d, e = 1, f;

2 int fn1 () {

3 int h;

4 ...

5 for (; d < 1; d = e) {

6 h = f == 0 ? 0 : 1 % f;

7 if (f < 1)

8 c = 0;

9 else // the else branch is unreachable

10 if(h) break; // was "c = 1;"

11 }

12 ...

13 }

14 int main () {

15 fn1 ();

16 return 0;

17 }

(a) The simplified EMI variant.
1 ...

2 =====

3 // Required context

4 requires_loop

5 i: int

6 -----

7 // Statement

8 if (i)

9 break;

10 =====

11 ...

(b) The database entry used to insert into the variant. Athena

renamed i to h. requires _loop requires the statement to be inserted
inside a loop.

Figure 2: GCC trunk 4.10 and also 4.8 and 4.9 miscom-
pile the variant at -O2 and -O3 (https://gcc.gnu.org/
bugzilla/show_bug.cgi?id=61383).

2.2 GCC Miscompilation Bug 61383
Figure 2a shows a simplified version of a GCC miscompila-
tion bug. Because the loop on line 5 executes only once, the
expected semantics of this program is to terminate normally.
However, the compiled binary of the EMI variant aborts dur-
ing its execution.

While compiling the variant, GCC identified the expres-
sion 1 % f as a loop invariant for the loop on line 5. As an
optimization, GCC hoisted the expression out of the loop to
avoid redundant computation. However, this optimization is
problematic because now the expression is evaluated. Since f

is 0, the expression 1 % f traps and aborts the program. This
expression should not be evaluated because the conditional
expression always takes the “then” branch (f == 0 is true).

388

https://llvm.org/bugs/show_bug.cgi?id=18615
https://llvm.org/bugs/show_bug.cgi?id=18615
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61383
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61383

By adding the extra statement if (h) break; from the
database to line 10, Athena changes the control-flow of the
variant. The extra complexity causes the optimization pass
ifcombine to miss the check whether the expression 1 % f

can trap. Hence, it concludes that the statement does not have
any side effect. The expression is incorrectly hoisted and the
bug is triggered.

Because this bug-triggering statement contains a break

statement, we can only insert it inside a loop. While traversing
the source program, Athena keeps track of all variables in
scope and an additional flag indicating whether the current
location is inside the body of a loop. On line 10, Athena
renames i to one of the available variables, h, and replaces
the unexecuted statement with if (h) break;.

3. Background
This section discusses relevant background on Equivalence
Modulo Inputs and Markov Chain Monte Carlo.

3.1 Equivalence Modulo Inputs
Le et al. [9] have introduced the Equivalence Modulo Inputs
(EMI) methodology for testing compilers. Two programs
P and Q are equivalent modulo inputs w.r.t. an input set I
(denoted as JP K =I JQK) if they behave exactly the same on
I (but may behave differently on other input). Formally,

JP K =I JQK ⇐⇒ ∀i ∈ I JP K(i) = JQK(i)

This relaxed notion of program equivalence is attractive
because it enables the testing of a compiler in isolation using
test variants generated from existing code.

Given an existing program P and its input I , we profile the
execution of P under I . We then generate new test variants by
mutating the unexecuted statements of P (such as randomly
deleting some statements). This is safe because all executions
under I will never reach the unexecuted regions. The newly
generated variants are EMI variants of P w.r.t. I .

EMI can test a compiler in isolation because the expected
semantics of the generated variants is known (i.e., producing
the same output as P on I). If we do not know the semantics
of the program, such as one generated by a fuzzer, we have
to rely on multiple compilers to find potential discrepancies
among the compiled executables.

Another appealing property of EMI is that the generated
variants are always valid provided that the seed program itself
is valid. In contrast, randomly removing statements from a
program is likely to produce invalid programs, i.e., those with
undefined behaviors.

3.2 Markov Chain Monte Carlo
Monte Carlo is a general method to draw samples Xi

from a target density distribution p(X) defined on a high-
dimensional space X (such as the space of all possible con-
figurations of a system, or the set of all possible solutions of
a problem). From these samples, one can estimate the target
density p(X).

A stochastic process {X0,X1,X2, . . .} is a Markov chain
if the next state Xt+1 sampled from a distribution q(Xt+1 |
Xt) only depends on the current state of the chain Xt. In
other words, Xt+1 does not depend on the history of the
chain {X0,X1, . . . ,Xt−1}.

Markov Chain Monte Carlo (MCMC) draws samples Xi

in the space X using a carefully constructed Markov chain,
which allows more samples to be drawn from important
regions (i.e., regions having higher densities). This nice
property is obtained when the chain is ergodic, which holds
if it is possible to transition from any state to any other
state in the space X . The samples Xi mimic samples drawn
from the target distribution p(X). Note that while we cannot
sample directly on p(X) (we are simulating this unknown
distribution, which is why we use MCMC in the first place),
we should be able to evaluate p(X) up to a normalizing
constant.

The Metropolis-Hasting algorithm is the most popular
MCMC method. This algorithm samples the candidate state
X∗ from the current state X according to the proposal
distribution q(X∗ |X). The chain accepts the candidate and
moves to X∗ with the acceptance probability as follows:

A(X →X∗) = min
(

1, p(X
∗)q(X |X∗)

p(X)q(X∗ |X)

)
(1)

Otherwise, the chain remains at X , and a new candidate
state is proposed. The process continues until a specified
computational budget is reached.

The Metropolis algorithm is a simple instance of the
Metropolis-Hasting algorithm, which assumes that the pro-
posal distribution is symmetric, i.e. q(X∗ |X) = q(X |X∗).
Our acceptance probability simplifies to the following:

A(X →X∗) = min
(

1, p(X
∗)

p(X)

)
(2)

While MCMC techniques can be used to solve many prob-
lems including integration, simulation and optimization [2, 6],
our focus in this paper is optimization.

4. MCMC Bug Finding
In our setting, the search space X is the space of all EMI
variants of a seed program P . Because our computational
budget is limited, we want to sample more “interesting”
variants in this space X . For this reason, we need to design
an effective objective function that determines if a variant is
interesting and worth exploring.

4.1 Objective Function
Our key insight for a suitable objective function is to favor
variants having different control- and data-flow as the seed
program. When compiling a program, compilers use various
static analyses to determine — based on the program’s
control- and data-flow information — which optimizations
are applicable. By generating variants with different control-

389

and data-flow, we are likely to exercise the compilers more
thoroughly by forcing them to use various optimization
strategies on the variants. In particular, we use program
distance to measure the difference between two programs.

DEFINITION 4.1. (Program Distance) The distance ∆ be-
tween an EMI variant Q and its seed program P is a function
of the distance between their control-flow graph (CFG) nodes
(i.e., basic blocks), the distance between their CFG edges,
and their size difference. Specifically,

∆(Q;P) = α·d(VQ,VP) +β·d(EQ,EP)−γ· |Q−P |

where

• d(A,B) = 1− A∩B
A∪B is the Jaccard distance [29];

• VQ,VP are Q and P ’s CFG node sets respectively;
• EQ,EP are Q and P ’s CFG edge sets respectively; and
• |Q−P | is the program size difference of Q and P .

Two nodes are different if their corresponding statements
are different. If we modify a node in the variant, the node will
be different from the original one. Two edges are different if
their corresponding nodes are different.

Intuitively, our notion of program distance measures the
changes in the variant. It is capable of capturing simple
changes that do not alter the control flow, such as deleting
and inserting straight-line statements, via the node distance.
It also captures complex changes that modify the control
and data flow considerably, such as deleting and inserting
complicated statements, via both the node and edge distance.

Our program distance metric disfavors changes in program
size. This helps avoid generating too small or too large
variants. Small variants are less likely to reveal bugs. Large
variants may take significant amount of time to compile, thus
may prevent us from sampling many variants.

4.2 MCMC Sampling
When applied to optimization, an MCMC sampler draws
samples more often from regions that have higher objective
values. We leverage this crucial property to sample more
often the program space that produces more different EMI
variants (i.e., ones with larger program distances ∆).

To calculate the transition acceptance probability, we need
to evaluate the density distribution p(.) at any step in the
chain. According to [6, 23], we can transform any arbitrary
objective function into a density distribution as follows

p(Q;P) = 1
Z

exp(σ·∆(Q;P)) (3)

where σ is a constant and Z a normalizing partition function.

Algorithm 1: MCMC algorithm for testing compilers
1 procedure BugFinding(Compiler C, Seed test P , Input I):
2 O := C.Compile(P).Execute(I) /* ref. output */

3 Q := P /* initialization */

4 for 1 .. MAX_ITER do
5 Q∗ := Mutate(Q,I) /* propose candidate */

6 O∗ := C.Compile(Q∗).Execute(I)
7 if O∗ 6= O then
8 ReportBug(C,Q∗)
9 if Rand(0,1) < A(Q → Q∗;P) then

10 Q := Q∗ /* move to new state */

Deriving from (1), the probability to accept the proposal
Q→Q∗ is given below:

A(Q→Q∗;P) = min
(

1, p(Q
∗;P)·q(Q |Q∗)

p(Q;P)·q(Q∗ |Q)

)
= min

(
1,exp(σ·(∆(Q∗;P)−∆(Q;P))) · q(Q |Q

∗)
q(Q∗ |Q)

)
(4)

where q(·) is the proposal distribution, q(Q | Q∗) is the
probability of transforming Q∗ to Q, and q(Q∗ | Q) is the
probability of transforming Q to Q∗.

We develop our bug finding procedure based on Metropolis-
Hasting algorithm. Algorithm 1 illustrates this procedure. We
start with the seed program (line 3). The loop on lines 4-10
simulates our chain. At each iteration, based on the current
variant Q, we propose a candidate Q∗, which we use to
validate the compiler. The chain moves to the new state Q∗

with the acceptance probability described in (4). Otherwise,
it stays at the current state Q.

4.3 Variant Proposal
We generate a new candidate Q∗ by removing existing
statements from and inserting new statements into the current
variant Q. All mutations happen in the unexecuted regions
under the profiling inputs I to maintain the EMI property.

Removing unexecuted statements is straightforward. We
can safely remove any of these statements from the program
without affecting its compilability. We only need to be careful
not to remove any declaring statements whose declarations
may be used later in the program.

However, inserting new statements into unexecuted re-
gions is not as straightforward. In particular, we need to
construct the set of all statements suitable for insertion. Also,
while inserting new statements, we need to take extra care to
make sure the new variants compile.

Extracting Statement Candidates We extract statement
candidates from existing code. Given a corpus of existing
programs, we construct the database of all available state-
ments by traversing the ASTs of these programs and extract

390

all statements at all levels. These statements have different
complexities, ranging from a single-line statement to a whole
function body.

For each statement, we determine the context required
to insert the statement. When we perform insertion into a
location, we only insert statements whose required contexts
can be satisfied by the local context at the location. This is to
guarantee that the new variant compiles after insertion.

Generating New Variant We use our statement database to
facilitate variant mutation. At an unexecuted statement, we
can perform the following actions according to the proposal
distribution q(·):

Delete Similar to Orion, we keep track of two probabilities
pd

parent and pd
leaf . We delete a parent statement, those that

contain other statements, with probability pd
parent. We delete

a leaf statement with probability pd
leaf . We distinguish these

two kinds of statements because they have different effects
on the new variant.

Insert We also have two probabilities pi
parent and pi

leaf for
inserting at parent or leaf statements. We can insert a new
statement either before or after the unexecuted statement
(with the same probability). If the unexecuted statement does
not directly belong to a compound statement, we promote it
to a compound statement before inserting the new statement.
This is to make these statements share the same parent.

We perform a breadth-first traversal on the AST of the
current variant Q. During this traversal, we maintain a con-
text table that contains necessary information (such as the
variables in scope) to help select compatible statements from
the database. At each unexecuted statement, we delete the
statement or insert a new statement according to the proba-
bilities defined above. It is possible to do both, in which case
the unexecuted statement is replaced by the new statement.

Maintaining Ergodicity Our mutation must satisfy the er-
godicity property described in Section 3.2, which states that
we should be able to walk from one state to any other state
in our search space. If this property is violated, we cannot
perform the walk because the search space is disconnected.

Let us first see if we can revert our proposal Q∗ to Q.
We can easily revert an inserted statement by deleting it.
However, it is impossible to revert a deleted statement. As
the statement is removed, our coverage tool cannot mark the
location as unexecuted, which is the necessary condition for
insertion. Moreover, if the deleted statement does not exist in
our database, our insertion process will not be able to recover
this statement.

To address the first problem, we leave a syntactic marker
in place of the deleted statement. While mutating the variant,
we replace these markers with new statements as if they are
unexecuted statements. In our implementation Athena, we use
the statement “while(0);”. Comments do not work because
our tool only visits statements. Although these markers do
not have any effects on the variant semantics, they may affect

seed
program

existing code external
statements

program
statements

statement
candidates

seed source

bugs
MCMC sampling

Figure 3: The high-level architecture of Athena. We extract
statement candidates from both existing code and the seed
program. We then perform MCMC sampling on the seed
program to expose compiler bugs.

the compilers under test. Hence, we remove them from the
variant before testing.

To solve the second problem, we allow code from the
seed program. Before sampling, we extract statements from
the seed and add them to the statement database. Because
the deleted statement is either from the seed program or
external code, we will be able to reconstruct it from the
updated database.

Our process is now ergodic, and hence applicable for
sampling. We can transform any EMI variant of a program to
any other EMI variant of that program.

5. Athena
Athena is a concrete realization of our MCMC bug finding
procedure targeting C compilers. We highlight its architecture
in Figure 3. This section discusses various design choices we
made in implementing Athena.

5.1 Extracting Statement Candidates
Athena uses the tool stmt-extractor to extract state-
ment candidates from existing code corpus. We implement
stmt-extractor using LLVM’s Libtooling library [27]. For
each program in the corpus, stmt-extractor visits all state-
ments at all levels in the program’s AST. It then determines
the context required to apply such statements and inserts
these 〈context, statement〉 pairs to the database.

A context contains the following information:

• The variables (including their types) used in the statement
but defined outside. These variables must be in scope at
the insertion point when we perform insertion (otherwise
we would have inserted an invalid statement). We exclude
variables that are defined and used locally.

• The functions (including their signatures) used in the
statement.

• The user-defined types used in the statement such as
structures or unions, and their dependent types.

391

• The (goto) labels defined in the statement. If a function
has already defined these labels, we have to rename the
labels in the inserted statement.

• The labels used in the statement. We have to rename these
labels to match those defined in the function.

• A flag indicating whether the statement contains a break

or continue statement. If this is the case, we can only
insert this statement inside a loop.

To construct the context, we parse the statement and col-
lect the information listed above. In particular, we find the
required variables by finding all variables used in the state-
ment, and subtracting them with those that are defined inside
the statement. During this process, we also collect all used
functions, user-defined types, labels, and break and continue
statements. If the statement uses any user-defined type, we
recurse into the type and construct its dependencies. Type
dependencies are cached to avoid redundant computation.

In Figure 3, we only need to calculate the database of
candidate statements once and the process happens offline.
We also use stmt-extractor to extract statements from the
seed program.

5.2 Proposing Variants
We implement a tool called transformer to transform vari-
ants, also using LLVM Libtooling. The tool takes as input a
program (which is either the seed or one of its EMI variants
in the chain), the program’s coverage information (obtained
using GNU gcov [7]), and the four deletion/insertion proba-
bilities mentioned in Section 4.3.

Transformation The transformer tool performs a breadth-
first traversal on the program. It keeps a context table that
stores variables and labels in scope, the available functions
and user-defined types, and a flag indicating whether the
current statement is in a loop. It deletes unexecuted statement
or inserting new ones according to the given probabilities. If
a statement is deleted, we will stop traversing into it. We do
not traverse into newly inserted statements.

While it is possible to keep the deletion/insertion probabil-
ities unchanged during the mutation, it is better to randomize
them in our experience. Hence, we shuffle these probabilities
after each deletion or insertion.

Statement Renaming Because external code has different
semantics and naming convention, there are usually not many
statement candidates compatible with the local program con-
text at insertion points. For this reason, we relax the context
matching condition to accept matches under renaming. In par-
ticular, we allow the renaming of variables in the statement
candidates to those in the local context that have compatible
types. For example, if the context of a statement candidate
requires an integer variable b, but the local context only has
an integer variable a, we can rename all occurrences of b in
the candidate to a. Similarly, we can rename labels, functions
and user-defined types to those having compatible signatures.

5.3 Discussion
Although our algorithm satisfies the ergodicity property, it is
not symmetric. That is, we cannot walk back to Q∗ from Q
in one step in general (but we may via several steps). This is
because a deleted statement from Q may be constructed from
several steps, and does not exist in our database. For example,
we may insert a large statement s into Qk, and since s is also
unexecuted, some of its children are deleted in Qk+1 (let us
call the updated statement s′). If we delete s′ in Qk+2, we
cannot go back to Qk+1 in a single step because the database
does not have s′.

One possible solution is to extract the statements from
every variant, and update the database after each transition.
We have decided not to do this because many statements
are redundant. It is quite challenging to distinguish these
statements since many of them have been renamed to match
the local context.

As a result, our proposal distribution is not symmetric. To
simplify our implementation, we assume that this distribution
is symmetric (i.e., it is equally likely to generate a new
variant Q∗ from the current variant Q and vice versa). The
consequence of this assumption is that we may not sample
the program space proportionally to the value of the objective
function. For instance, we may not sample as often (or more
often than required) the program space that has high objective
values.

This is an example of the trade-offs between precision and
efficiency. Making our process more precise may incur major
performance degradation. On the other hand, having a less
precise process helps sample many more variants in the same
unit of time. This justifies the lack of sampling precision.

Based on this assumption, our algorithm turns into
Metropolis algorithm, which has the following simpler ac-
ceptance probability:

A(Q→Q∗;P) = min
(
1,exp

(
σ·(∆(Q∗;P)−∆(Q;P))

))
(5)

6. Evaluation
We focus our testing efforts on two open-source compilers
GCC and LLVM because of their openness in tracking and
fixing bugs. We summarize below our results from the end of
January 2014 to the end of August 2015:

• Many detected bugs: In 19 months, Athena has revealed
72 new bugs. Developers confirmed all of our bugs and
fixed nearly all of them (68 out of 72).

• Many serious bugs: GCC developers marked 17 out of
40 GCC bugs as P1, the most severe kind of bugs that
must be fixed before a new GCC release can be made.
Three of our GCC bugs were linked to subsequent bugs
exposed while compiling real-world code, namely gcc,
qtwebkit, and glibc.

• Many deep bugs: Our experiments show that Athena is
capable of detecting both shallow and deep bugs. The later

392

requires sophisticated mutation sequences that could not
be done using Orion.

• Many long-latent bugs: Although our focus is to test the
development trunks of GCC and LLVM, we have found
15 latent bugs in old versions of the two compilers. These
bugs had resisted traditional validation approaches, which
further illustrates Athena’s effectiveness.

6.1 Testing Setup
We first describe our testing setup before presenting our
detailed results.

Sources of Seed Programs Athena is capable of using
existing open-source projects as seed programs. However,
it is challenging to reduce bugs triggered by these projects
because the projects typically involve multiple directories
and multiple files [9]. Therefore, in our evaluation, we only
use programs generated from the random program generator
Csmith [30]. Existing reduction tools such as Berkeley’s
Delta [15] and CReduce [21] can reduce these programs
effectively.

Sources of Statement Candidates Athena is also capable
of using existing code as candidates for insertion. As part of
our evaluation, we built a database of all statements extracted
from the SPEC CINT2006 benchmarks [25]. Because the
database contains a huge number of statements, it is very
expensive to perform a linear scan on it. Note that we
cannot look up by required context because a local context is
different from these required contexts, and it may satisfy not
one but multiple of them. Our solution is to repeatedly draw
a random statement from the database until we find one that
satisfies the local context. If we cannot find any satisfying
statement after some constant k attempts, we conclude that
no satisfying candidate exists.

Unfortunately, our experiments show that inserting real-
world code into Csmith-generated seeds is ineffective. This is
because Csmith can only generate limited forms of constructs,
making the contexts at insertion points incapable of accepting
the more diverse real-world code. One way to mitigate this
problem is to merge the required constructs from external
projects to the current variant. This is quite challenging
because these constructs may depend on other constructs,
or locate in a different location. We leave this for future work.

The seed program turns out to be a great source for
statement candidates. A seed program can yield hundreds of
statements that have diverse complexities: statements range
from one line to hundred lines of code. Moreover, these
statements are well connected to the variants, which helps
increasing the ratio of satisfying statements. Our evaluation
uses only statements from the seed programs.

Selecting Statement Candidates For each unexecuted loca-
tion, there are potentially multiple satisfying statements from
the database. A good strategy to select the “best” statement
from this satisfying set may yield a better result overall.

GCC LLVM TOTAL
Fixed 38 30 68

Not-Yet-Fixed 2 2 4
WorksForMe 0 3 3

Duplicate 3 4 7
Invalid 1 0 1

TOTAL 44 39 83

Table 1: Reported bugs.

We hypothesize that the best statement is one that uses
the most information from the local context. For instance,
it uses the most number of variables defined in the variant.
Using this statement puts more constraints on the compiler
because it increases the dependencies between existing code
and external code.

Under this strategy, we have to scan the database to find
the best statement candidate. Our experiments show that this
strategy is two orders of magnitude slower than the random
sampling strategy. Because speed is key in testing, we adopt
the random sampling strategy and use it in our evaluation.

Testing Infrastructure Our testing focuses on the x86-
linux platform due to its popularity and ease of access. We
conduct our experiments on two machines (one 18 cores
and one 6 cores) running Ubuntu 12.04 (x86_64). While
calculating the program distance ∆, we value equally changes
in CFG nodes and edges (α= β = 0.5). We fine-tuned γ to
avoid generating programs larger than 500KB, a threshold at
which we observed a significant degradation in compilation
time for both GCC and LLVM.

As in the work on Csmith and Orion, we have focused on
the five standard options, "-O0", "-O1", "-Os", "-O2" and "-
O3", because they are the most commonly used. Athena tests
only the daily-built development trunks of GCC and LLVM.
Once it finds a bug in a compiler, Athena also validates the
bug against other major releases of that compiler.

6.2 Quantitative Results
We next present some general statistics on our reported bugs.

Bug Count Table 1 summarizes our bug results. In 19
months, we reported 83 bugs, which are roughly equally
divided between GCC (44 bugs) and LLVM(39 bugs). Devel-
opers confirmed 72 valid bugs and fixed 68 of them.
Not-Yet-Fixed Bugs Among two GCC bugs that have not
been fixed, one was just reported recently. The other one
(bug 62016) is a performance bug, which affects GCC 4.8.X,
4.9.X, and 4.10 trunk (at that time). GCC took a few minutes
to compile a small program due to problems in inlining.
Developers discussed about backporting some code across
versions to fix the problem. Unfortunately, this was quite
challenging because of a cross-version design gap. A few
months later, GCC moved to version 5.0 and some design
changes fixed the problem. The bug therefore remains unfixed,
although it still affects earlier versions. One of the two not-

393

yet-fixed LLVM bugs is a complicated one. Developers have
not found a solution to fix it yet. The other bug triggers only
in debug mode, which perhaps is the reason why developers
have not fixed it.
WorksForMe Bugs It may take a while before developers
consider our reported bugs. During this time, the trunk has
changed and it is possible that these changes suppress the bug.
Developers mark bugs that no longer trigger “WorksForMe”.
We have three LLVM bugs of this kind. We do not have this
kind of bugs in GCC because GCC developers responded to
our bugs very quickly. Moreover, even when this happens,
GCC’s policy recommends going back to the affected revision
and check if the root cause has been properly fixed. If not, the
bug may be latent and is likely to trigger later. Indeed, one
LLVM WorksForMe bug (bug 21741) re-triggers in a later
revision. We reopened the bug, but LLVM developers have
not yet responded.
Duplicate Bugs Before reporting a bug, we ensure that it
has different symptoms from the previously reported and not
yet fixed bugs. However, reporting duplicated bugs may be
unavoidable because compilers are complex. Bugs having
different symptoms may turn out to have the same root cause.
During our evaluation, we reported 7 duplicated bugs (3 GCC
and 4 LLVM).

As an example, GCC bugs 64990 and 645383 are dupli-
cates of bug 61047. Bug 61047 only triggers at -O1 on GCC
4.9 and 4.10 trunk. Bug 64990 triggers at all optimization
levels on all versions of GCC from 4.6 to 5.0 trunk. Bug
65383 only triggers at -O2 and -O3 from GCC 4.7 to trunk,
and the program looks very different from bug 64990. Al-
though these bugs affected different versions and triggered
at different optimization levels, they turned out to have the
same root cause. Developers marked two bugs reported later
as duplicates.
Invalid Bugs We reported one invalid bug (bug 63774) for
GCC, in which a function returns the address of a local vari-
able. We were unsure whether this behavior was implementa-
tion defined or undefined. It turned out that the behavior was
undefined, and the bug was subsequently marked as invalid.

Bug Type We classify bugs into two main categories: (1)
ones that manifest when we compile programs, and (2)
ones that manifest when we execute the compiled binaries.
A compile-time bug can be a crashing bug (e.g., internal
compiler errors), or performance bug (e.g., the compiler
hangs or takes a very long time to compile the program).
A runtime bug happens when the compiled program behaves
abnormally w.r.t. its expected behavior. For example, it may
crash, hang, or produce wrong output. We call these bugs
miscompilation bugs.

Table 2 classifies our 72 confirmed and valid bugs accord-
ing to the above taxonomy. These bugs are quite diverse,
illustrating the power of Athena in finding all kinds of bugs.
A significant chunk of these bugs are miscompilation, the
most serious kind among the three.

GCC LLVM TOTAL
Miscompilation 11 17 28

Crash 26 13 39
Performance 3 2 5

Table 2: Bug classification.

Importance of Reported Bugs Developers took our bugs
seriously. They have confirmed all of our bugs and fixed
nearly all of them. GCC developers are generally more
responsive in fixing bugs — they fixed most of our reported
bugs within several days.

Three of our GCC bugs were linked to bugs triggered
while compiling real-world projects. Bug 63835 is related
to a bug that crashes GCC while compiling GCC itself.
Bugs 61042 and 61684 crash GCC while compiling our
variants. Later, people reported similar bugs while compiling
qtwebkit and glibc. Subsequently, these bugs were marked
as duplicates. Such bugs are rare because developers usually
fix our bugs very quickly, leaving only a small time window
for people to rediscover these bugs using real-world projects.

Another way to measure the importance of our bugs is via
the “Importance” field set by developers in the bug reports.
Developers marked 17 of our 40 GCC bugs as “P1”, the
highest bug priority (the default is “P3”). Developers must
fix all P1 bugs before they can release a new version of GCC.
LLVM developers marked all our bugs using the default value
“P normal”. We do not know whether these bugs have normal
severity or LLVM developers did not classify the bugs.

6.3 Effectiveness of MCMC Bug Finding
Athena is effective because it is able to find many bugs after
developers have fixed numerous bugs reported by Csmith
and Orion. However, it is unclear how many of these bugs
are deep bugs and could not be found by Orion. We conduct
another experiment to compare Athena directly with Orion to
answer this question.

We run Athena and Orion in parallel for a certain amount
of time using the same seed programs that trigger our bugs.
If Athena finds a bug, we reset the chain to the seed program
and continue. This does not apply to Orion because it always
operates on the seed program.

We limit this experiment to bugs that affect previous stable
releases. It is because if the bug only affects the trunk, we
need to build the compiler at that revision. Since the number
of bugs is large, it is quite expensive to build a revision for
each of them.

Table 3 shows the results of running Athena and Orion in
parallel on 15 of such bugs for one week. In the table, we
assume that all bugs rediscovered under a same seed file are
the same. From our experience with both Orion and Athena,
it is unlikely for the same seed Csmith program to reveal
multiple bugs in the same compiler revision.

394

Bug ID Type Affected Compilers Optimizations Seed Variant Report DB # Bugs # Variants
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

gcc-59903 Crash 4.8, 4.9 (trunk) -O3 4,694 6,238 38 1,723 14 23,479
gcc-60116 Mis. 4.8, 4.9 (trunk) -Os 11,596 11,843 25 3,092 367 20,082
gcc-60382 Crash 4.8, 4.9 (trunk) -O3 6,151 21,903 19 1,989 19 21,267
gcc-61383 Mis. 4.8, 4.9, 4.10 (trunk) -O2, -O3 3,298 3,567 22 1,272 106 32,981
gcc-61452 Hang 4.8 - 5.0 (trunk) -O1, -Os 3,308 3,474 17 885 0 49,158
gcc-61917 Crash 4.9, 4.10, 5.0 (trunk) -O3 11,820 11,226 7 3,066 2 32,562
gcc-64495 Crash 4.8 – 4.10, 5.0 (trunk) -O3 2,767 1,951 20 517 4 45,896
gcc-64663 Crash 4.6 – 4.10, 5.0 (trunk) -O1, -Os, -O2, -O3 11,118 12,160 9 2,875 0 26,626

llvm-20494* Mis. 3.2 – 3.4, 3.5 (trunk) -O2, -O3 8,080 11,009 23 1,683 2,660 24,588
llvm-20680 Mis. 3.5, 3.6 (trunk) -O3 6,250 7,584 15 1,753 22 23,438
llvm-21512* Crash 3.5, 3.6 (trunk) -O1, -Os, -O2, -O3 8,455 5,087 11 3,081 988 21,882
llvm-22086 Crash 3.5, 3.6 (trunk) -Os, -O2, -O3 5,220 8,495 27 1,711 0 29,279
llvm-22338 Crash 3.5, 3.6, 3.7 (trunk) -O2, -O3 2,923 7,197 23 1,302 13 19,469
llvm-22382 Crash 3.2 – 3.6, 3.7 (trunk) -Os, -O2, -O3 4,813 2,147 19 1,432 0 29,805
llvm-22704 Crash 3.6, 3.7 (trunk) -O1, -Os, -O2, -O3 3,684 23,250 11 981 12 28,740

Table 3: The result of running Athena and Orion on the bugs that affect stable releases for one week. Columns (5), (6) and (7)
show the SLOC (in BSD/Allman style) of the original seed program, the bug-triggering variant, the reduced file used to report
the bug. Column (8) shows the size of the database (i.e., the number of <context, statement> pairs) constructed from the seed
program. Column (9) shows the number of bugs Athena rediscovered. Column (10) shows the total number of variants Athena
generated. Orion rediscovered two shallow bugs: LLVM 20494 and 21512.

Shallow Bugs During this period, Orion was able to only
discover two LLVM bugs (20494 and 21512). Athena also
rediscovered these bugs. Interestingly, these bugs were redis-
covered most often (2,660 and 988 times). This indicates that
they are shallow bugs, which can be triggered using simple
mutations. Orion failed to find bugs in the other seed pro-
grams. These bugs are deep bugs, which require sophisticated
sequences of mutations.

Deep Bugs Despite generating 28K variants on average
for a seed program, Athena was unable to rediscover four
of our bugs. Some other bugs were rediscovered only a few
times. These bugs are indeed quite deep and require specific
sequences of mutations. This is understandable because the
search space is vast and our process is nondeterministic.

The sizes of the triggering variants vary. The variants are
often larger than the original programs. Some are significantly
larger because we may happen to insert some large chunks of
code (such as bugs gcc-60382 and llvm-22704). On the other
hand, some are smaller because we delete some large chunks
of code (such as bugs gcc-64495 and llvm-22382).

This experiment confirms that Athena is more powerful
than Orion in terms of bug detection. Indeed, Orion is Athena
taking away insertion and limiting the length of random walks
to one. However, Athena may take more time than Orion to
find bugs. If the bug is shallow, Orion may find it faster
because it only explores the smaller nearby neighborhood of
a seed program.

6.4 Coverage Improvement
We now evaluate the line coverage improvement of Athena
on GCC and LLVM in comparison with Orion. The baseline

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Orion 10 Athena 10 Orion 25 Athena 25 Orion 50 Athena 50 Orion 100 Athena 100

C
o

ve
ra

ge
 Im

p
ro

ve
m

e
n

ts
 (

%
)

Orion & Athena Configurations

GCC LLVM

Figure 4: Improvement in line coverage of Orion and Athena

while increasing the number of variants. The baseline is the
coverage of executing 100 Csmith seeds, where GCC and
LLVM have respectively 34.9% and 23.5% coverage ratios.

is the coverage of executing 100 Csmith seed programs, on
which GCC and LLVM achieve 34.9% and 23.5% coverage
ratios respectively. We measure coverage using variants
produced by Orion and Athena from these seeds. To evaluate
the impact of the number of variants on code coverage, we
also vary the number of variants for each seed.

Figure 4 shows the coverage improvement of Orion and
Athena over the baseline. Although both Athena and Orion
help increase line coverage, Athena is strictly better than
Orion. In particular, 10 Athena variants yields slightly better
coverage than 100 Orion variants. This is expected because
Athena generates more diverse test programs.

6.5 Assorted Sample Bugs Found by Athena

We now present six GCC and LLVM bugs to illustrate the
diversity of our reported bugs.

395

int printf(const char *, ...);

static short a = 0;

short b = -1;

static unsigned short c = 0;

int main (){

if (a <= b)

printf ("%d\n", c);

return 0;

}

(a) GCC trunk miscompiles this program
at -Os and above in both 32-bit and 64-bit
modes. The compiled executable prints 0,
which is unexpected.

int a;

int b;

int c[1];

int d;

int f;

void foo () {

for (; b; b++)

c[0] = c[f] && (d = a);

}

(b) GCC trunk crashes with a segmentation
fault when compiling the program at -O3 in
both 32-bit and 64-bit models.

int a, b, d;

void fn1 () {

for (b = 0; b < 9; b++) {

int e;

for (d = 0; d < 5; d++) {

a &= 231; a ^= 14;

}

e = (a ^= 1) < 0;

}

}

(c) This is a performance regression bug. It
takes GCC trunk several minutes to compile
this small program if flags -O3 and -g are
specified.

int a;

int b;

int d;

void foo () {

for (b = 0; b < 9; b++) {

int e;

for (d = 0; d < 5; d++) {

a &= 231;

a ^= 14;

}

e = (a ^= 1) < 0;

}

}

int main() {

foo(); return 0;

}

(d) Clang trunk miscompiles this program
at -O3 in both 32-bit and 64-bit modes. The
compiled executable aborts with a floating
point exception (modulo by zero).

int a;

int b;

int fn1 () {

if (b)

goto lbl;

fn1 ();

return 0;

lbl:

a = 0;

fn1 ();

return 0;

}

int main() {

return fn1();

}

(e) Clang trunk crashes when compiling the
test program at -O1 and above in both 32-
bit and 64-bit modes. The bug is in tail call
elimination pass.

int a, c, d;

unsigned int b;

static int e[1];

long long f;

long long fn1 () {return a;}

void fn2 () {

int g;

while (c) {

f = b; g |= f;

while (c) g = e[0];

g |= fn1 ();

}

}

int main () {

fn2 (); return 0;

}

(f) Clang hangs when compiling this test
program at -Os and above in both 32-bit and
64-bit modes.

Figure 5: Example test programs uncovering a variety of GCC and LLVM bugs.

Figure 5a The GCC trunk miscompiled the program at -Os
and above in both 32-bit and 64-bit modes. The miscom-
piled executable prints 0. This behavior is unexpected
because the print statement is guarded by the predicate a

<= b, which is evaluated to false.
The bug is in the ICF (interprocedural constant folding)
pass. Both variables a and c are read-only and have the
same value 0. GCC folds them by converting a to an alias
to c. However, c is unsigned whereas a is signed. This
signedness difference later confuses the pass conditional
constant propagation, making it incorrectly conclude that
the conditional expression a <= b is always true.

Figure 5b The test program crashes the GCC trunk with a
segmentation fault when it is compiled at -O3 in both
32-bit and 64-bit modes.

The bug is due to a missing check in the tree optimization
pass IFCVT that transforms the body of a loop to vectorize
it. This pass seeks a certain φ statement (one containing
two operands: a value defined by a statement within the
loop body, and another φ value), and converts the matched
φ statement into an if-expression. The compiler crashes
when it is checking the φ statement d.2 = φ(a.1, d.1)

that is generated from the assignment d = a. The first
operand a.1 is from an assignment a.1 = a before the
loop. Because the optimization pass assumes that a.1 is
generated within the loop, a memory error occurs.

Figure 5c This small test program reveals a severe perfor-
mance regression in GCC. It takes GCC several minutes to
compile the program at -O3 with debugging information
retained (specified by the flag -g). While GCC unrolls

396

the loop body, it keeps the debugging information in all
unrolled instances.

Figure 5d The Clang trunk miscompiles the test program at
-O3. The compiled executable aborts with a floating-point
exception (modulo by zero).
This bug involves the loop vectorizer pass and the peep-
hole optimization pass of LLVM. Initially, the loop body is
vectorized including the modulo statement (a % d). How-
ever, in the later peephole pass (i.e., instcombine), vector
shuffle instructions that are necessary to perform the mod-
ulo operation are eliminated, leading to the trap.

Figure 5e The test program crashed Clang trunk at -O1 and
above in both 32-bit and 64-bit modes.
The cause of this bug is in the tail call elimination pass
of LLVM. After internal transformation (i.e., folding
return statements into unconditional branches), some basic
blocks are cleared but later requested to provide their
terminator instructions. This causes an assertion failure.

Figure 5f The test program triggered Clang to hang with the
flags -Os and above in both 32-bit and 64-bit modes.
The bug is in the peephole optimizer of LLVM. The
specific optimizer FoldOpIntoPhi creates an infinite
loop. The optimization it performs triggers other opti-
mizations in instcombine, which in turn leads back to
FoldOpIntoPhi.

7. Related Work
This section surveys representative, closely related work.

Compiler Testing Compiler testing still remains the dom-
inant technique for validating production compilers. Every
major compiler (such as GCC and LLVM) has its own regres-
sion test suite maintained along with its development. There
are also some commercial test suites available for checking
compiler conformance and correctness such as PlumHall [19],
SuperTest [1].

The alternative is to use random testing to complement
these manually written test suites. Recent work by Nagai
et al. [16, 17] generates random arithmetic expressions to
find bugs in C compilers’ arithmetic optimizations. They have
found several bugs in GCC and LLVM. CCG is a random C
program generator that focuses on finding compiler crashing
bugs [3]. Csmith is another C program generator that can find
both crashing and miscompilation bugs [4, 21, 30]. Based
on the idea of differential testing [14], Csmith randomly
generates C programs and checks for deviant behavior across
compilers or compiler versions. Csmith is very successful: it
has found a few hundred GCC and LLVM bugs over the last
several years. Athena complements the above techniques.

CLsmith is a system built on top of Csmith to validate
OpenCL compilers [5]. It also applies EMI to enrich the
generated test programs. Proteus [10] is another system based
on Csmith and Orion to specifically stress test the link-time

optimizers of compilers. Although we only demonstrate the
effectiveness of our technique in testing ordinary C compilers,
the mutation strategy in Athena is general, orthogonal and can
also be applied to both domains to generate more effective
test programs.

Markov Chain Monte Carlo MCMC sampling is a popular
algorithm that has played a significant role in science and
engineering. People have applied MCMC techniques to solve
a large number of problems in statistics, economics, physics,
biology, and computer science [2, 6].

In computer science, Schkufza et al. recently applied
MCMC sampling to perform superoptimization tasks, which
transform a loop-free sequence of binary statements into
a more optimized sequence [23, 24]. They propose a cost
function that captures both correctness and performance,
and some basic operations to transform the program such as
replacing the opcode or operand, or swapping the statements.
The cost function guides their program space exploration
toward lower cost (i.e., more optimized) programs.

Our technique also uses MCMC sampling to explore the
space of programs but with several distinct differences: (1)
we target a different domain (i.e., compiler testing); (2) the
cost function in our work is to maximize the diversity of
generated test programs; and (3) the eligible transformations
generate EMI variants instead of instruction sequences.

Verified Compilers A verified compiler guarantees that
the compiled code is semantically equivalent to its source
program. To achieve this goal, each verified compiler is
accompanied by a correctness proof that ensures semantic
preservation. CompCert [11, 12] is the most notable example
of verified compilers. CompCert is mostly written in the Coq
specification language, and its correctness is proved by the
Coq proof assistant. Zhao et al. proposed a new technique to
verify SSA-based optimizations in LLVM — a production
compiler — using the Coq proof assistant [31]. Malecha et al.
applied the idea of verified compilers to the database domain
and demonstrated preliminary results on building a verified
relational database management system [13].

Translation Validation It is usually easier to prove that a
particular translation of a source program is correct than to
verify the correctness of all possible translations (of all possi-
ble source programs). This is the motivation behind transla-
tion validation, which aims to verify that the compiled code
is equivalent to its source on-the-fly. Hanan Samet introduced
the idea of translation validation in his PhD thesis [22]. Pnueli
et al. did an early work on translation validation to validate
the non-optimizing compilation from SIGNAL programs to
C programs [20]. Subsequently, Necula [18] extended it to
handle optimizing transformations and validates four opti-
mizations in GCC 2.7. Tristan et al. adapted the work on
equality saturation [26] to validate intraprocedural optimiza-
tions in LLVM [28].

397

8. Conclusion
We have presented a novel EMI mutation strategy to expose
deep bugs in production compilers. Our technique uses the
MCMC algorithm guided by an objective function to sample
the space of test programs effectively. Athena, our realization
targeting C compilers, has found 72 GCC and LLVM bugs in
19 months, most of which have been fixed.

We continue actively using Athena to stress-test GCC and
LLVM, and plan to extend our testing to programs derived
from real-world projects. The key challenge is to effectively
reduce such large test programs after bugs are found, which
typically involve multiple directories and source files.

9. Acknowledgments
We would like to thank the anonymous reviewers for their
constructive feedback on an earlier draft of this paper. Our
special thanks go to the GCC and LLVM developers for an-
alyzing and fixing our reported bugs. Our evaluation also
benefited significantly from Berkeley Delta [15], and Univer-
sity of Utah’s Csmith [30] and C-Reduce [21] tools.

This research was supported in part by National Science
Foundation (NSF) Grants 1117603, 1319187, 1349528, and
1528133. The information presented here does not necessarily
reflect the position or the policy of the Government and no
official endorsement should be inferred.

References
[1] ACE. SuperTest compiler test and validation suite. URL

http://www.ace.nl/compiler/supertest.html.

[2] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An
Introduction to MCMC for Machine Learning. Machine
Learning, 50(1):5–43, Jan. 2003.

[3] A. Balestrat. CCG: A random C code generator. URL
https://github.com/Merkil/ccg/.

[4] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide,
and J. Regehr. Taming compiler fuzzers. In Proceedings of the
2013 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 197–208, 2013.

[5] N. Chong, A. Donaldson, A. Lascu, and C. Lidbury. Many-
core compiler fuzzing. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2015.

[6] W. R. Gilks. Markov Chain Monte Carlo In Practice. Chapman
and Hall/CRC, 1999. ISBN 0412055511.

[7] GNU Compiler Collection. Gcov - Using the GNU Compiler
Collection (GCC). URL http://gcc.gnu.org/onlinedocs/

gcc/Gcov.html.

[8] Jesse Ruderman. Introducing jsfunfuzz. URL http://www.

squarefree.com/2007/08/02/introducing-jsfunfuzz/.

[9] V. Le, M. Afshari, and Z. Su. Compiler validation via equiv-
alence modulo inputs. In Proceedings of the 2014 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), 2014.

[10] V. Le, C. Sun, and Z. Su. Randomized stress-testing of link-
time optimizers. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA), 2014.

[11] X. Leroy. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. In Proceedings
of the 33rd ACM Symposium on Principles of Programming
Languages (POPL), pages 42–54, 2006.

[12] X. Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009.

[13] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. To-
ward a verified relational database management system. In
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 237–248,
2010. .

[14] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100–107, 1998.

[15] S. McPeak, D. S. Wilkerson, and S. Goldsmith. Berkeley Delta.
URL http://delta.tigris.org/.

[16] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda. Random testing
of C compilers targeting arithmetic optimization. In Workshop
on Synthesis And System Integration of Mixed Information
Technologies (SASIMI 2012), pages 48–53, 2012.

[17] E. Nagai, A. Hashimoto, and N. Ishiura. Scaling up size
and number of expressions in random testing of arithmetic
optimization of C compilers. In Workshop on Synthesis And
System Integration of Mixed Information Technologies (SASIMI
2013), pages 88–93, 2013.

[18] G. C. Necula. Translation validation for an optimizing compiler.
In Proceedings of the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 83–94, 2000. .

[19] Plum Hall, Inc. The Plum Hall Validation Suite for C. URL
http://www.plumhall.com/stec.html.

[20] A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
In Proceedings of the 4th International Conference on Tools
and Algorithms for Construction and Analysis of Systems
(TACAS), pages 151–166, 1998.

[21] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang.
Test-case reduction for C compiler bugs. In Proceedings of the
2012 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 335–346, 2012.

[22] H. Samet. Automatically proving the correctness of translations
involving optimized code. PhD Thesis, Stanford University,
May 1975.

[23] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superop-
timization. In Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 305–316,
2013.

[24] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization
of floating-point programs with tunable precision. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 53–64,
2014.

[25] Standard Performance Evaluation Corporation. SPEC
CINT2006 Benchmarks. URL https://www.spec.org/

cpu2006/CINT2006/.

398

http://www.ace.nl/compiler/supertest.html
https://github.com/Merkil/ccg/
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://delta.tigris.org/
http://www.plumhall.com/stec.html
https://www.spec.org/cpu2006/CINT2006/
https://www.spec.org/cpu2006/CINT2006/

[26] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality satura-
tion: a new approach to optimization. In Proceedings of the
ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages, pages 264–276, 2009.

[27] The Clang Team. Clang 3.4 documentation: LibTooling. URL
http://clang.llvm.org/docs/LibTooling.html.

[28] J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-
graph translation validation for LLVM. In Proceedings of the
2011 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 295–305, 2011.

[29] Wikipedia. Jaccard index. URL http://en.wikipedia.org/

wiki/Jaccard_index.

[30] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the
2011 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 283–294, 2011.

[31] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Formal verification of SSA-based optimizations for LLVM.
In Proceedings of the 2013 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 175–186, 2013.

399

http://clang.llvm.org/docs/LibTooling.html
http://en.wikipedia.org/wiki/Jaccard_index
http://en.wikipedia.org/wiki/Jaccard_index

	Introduction
	Illustrative Examples
	LLVM Crashing Bug 18615
	GCC Miscompilation Bug 61383

	Background
	Equivalence Modulo Inputs
	Markov Chain Monte Carlo

	MCMC Bug Finding
	Objective Function
	MCMC Sampling
	Variant Proposal

	Athena
	Extracting Statement Candidates
	Proposing Variants
	Discussion

	Evaluation
	Testing Setup
	Quantitative Results
	Effectiveness of MCMC Bug Finding
	Coverage Improvement
	Assorted Sample Bugs Found by Athena

	Related Work
	Conclusion
	Acknowledgments

