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Abstract
Validating optimizing compilers is challenging because it is
hard to generate valid test programs (i.e., those that do not
expose any undefined behavior). Equivalence Modulo Inputs
(EMI) is an effective, promising methodology to tackle this
problem. Given a test program with some inputs, EMI mu-
tates the program to derive variants that are semantically
equivalent w.r.t. these inputs. The state-of-the-art instanti-
ations of EMI are Orion and Athena, both of which rely
on deleting code from or inserting code into code regions
that are not executed under the inputs. Although both have
demonstrated their ability in finding many bugs in GCC and
LLVM, they are still limited due to their mutation strategies
that operate only on dead code regions.

This paper presents a novel EMI technique that allows
mutation in the entire program (i.e., both live and dead re-
gions). By removing the restriction of mutating only the dead
regions, our technique significantly increases the EMI vari-
ant space. It also helps to more thoroughly stress test compil-
ers as compilers must optimize mutated live code, whereas
mutated dead code might be eliminated. Finally, our tech-
nique also makes compiler bugs more noticeable as miscom-
pilations on mutated dead code may not be observable.

We have realized the proposed technique in Hermes.
The evaluation demonstrates Hermes’s effectiveness. In 13
months, Hermes found 168 confirmed, valid bugs in GCC
and LLVM, of which 132 have already been fixed.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—testing tools; D.3.2
[Programming Languages]: Language Classifications—C;
H.3.4 [Programming Languages]: Processors—compilers

General Terms Algorithms, Languages, Reliability, Veri-
fication

Keywords Compiler testing, miscompilation, equivalent
program variants, automated testing

1. Introduction
Compilers are among the most important, widely-used sys-
tem software, on which all programs depend for compi-
lation. A bug in a compiler can have profound impact: it
may lead to catastrophic consequences in safety-critical do-
mains. Generally, compiler bugs can be categorized into two
classes: crashes and miscompilations. The first class causes
the compiler to crash during compilation due to either mem-
ory errors or internal assertion failures, which hinders the
software development process. The second class causes the
compiler to silently compile the program into wrong code.
The compiler bug manifests itself indirectly as an applica-
tion failure. Compared to crashes, this class is more harm-
ful, because (1) compiler bugs are usually rare and appli-
cation developers usually do not attribute the failure to the
compiler, incurring extra debugging effort, and (2) such bugs
can escape from in-house software testing and result in field
failures.

It is critical to make compilers dependable. In the past
decade, compiler verification has been an important, active
area for the verification grant challenge in computing re-
search [8]. The main compiler validation techniques include
formal verification [12, 13], translation validation [22, 24],
and random testing [4, 9–11, 35]. The first two categories
try to produce certified compilers or optimization passes. Al-
though promising and encouraging progress has been made
(e.g., CompCert [13]), it is still challenging to apply for-
mal techniques to fully verify a production compiler, such
as GCC and LLVM. Therefore, random testing remains the
dominant approach in compiler validation. A notable exam-
ple is Csmith [35], which generates random valid programs
and relies on multiple compilers as testing oracles to detect
possible discrepancies. Recently, Le et al. introduced Equiv-
alence Modulo Inputs (EMI) [9] to extend the capability of
existing testing approaches. EMI is a general methodology
to derive semantically equivalent valid variants from exist-
ing test programs. Since the variants and the original test
program are expected to behave the same w.r.t. some inputs,
EMI only needs a single compiler to discover compiler in-
consistencies.



Dead-Code EMI Mutation The state-of-the-art EMI in-
stantiations are Orion [9] and Athena [11]. Both mutate test
programs by manipulating statements in dead code regions.
In particular, given an existing program P and some in-
puts I , they profile the execution of P under the inputs I .
While Orion only randomly prunes the unexecuted state-
ments, Athena also inserts extra code into the dead code
regions. Because the mutated code is never executed, the
semantics of the variants is equivalent to the original pro-
gram w.r.t. the inputs. Although Orion and Athena have been
proved to be effective at finding bugs in mature production
compilers such as GCC and LLVM, they are still technically
limited by their mutation strategies.

First, the search space of their variant generation is lim-
ited by the size of dead code regions. Orion can only output a
limited number of variants. Although Athena is able to insert
extra dead code to extend the search space, the mutation is
still confined within the dead code regions. Second, compil-
ers can identify dead code regions and eliminate them during
compilation. If this happens, all mutations in these regions
become futile. Third, a miscompilation bug manifesting only
in dead code regions is not observable as the wrong code is
not executed (note that miscompilations manifest as appli-
cation failures). For example, if a function with a large body
is never called, then any miscompilation bug in the function
body cannot be noticed. This happens for test programs that
have large chunks of dead code under some inputs.

Live-Code EMI Mutation In this paper, we propose a set
of novel EMI mutation strategies that address the aforemen-
tioned limitations. Our mutation strategies apply to the live
code regions, while still preserving the original semantics
w.r.t. the inputs. Our approach has the following two steps:

Profiling Stage Instead of profiling which statements are
not executed as Orion and Athena do, we record more
information during profiling. Given a program point l
and a set of live variables V at l, we also record all the
valuations of v ∈ V , i.e., all the values that each v ever
has during execution.

Mutation Stage Based on the valuations of V , we synthe-
size a code snippet c at l, such that at the exit of c the
program state remains identical to the one prior to the en-
try of c. A simple example would be a code snippet con-
sisting of only nop statements which have no side effects
on the runtime. However, in order to stress test compilers,
we require that the snippet make changes to the program
state, and ensure the semantics preservation at the exit of
c by construction.

In this paper, we synthesize the following three types
of code snippets to insert into the live code regions: 1) an
if/while statement with a non-empty randomly generated
body and a contradiction predicate, 2) an if statement with
a tautology predicate to enclose an existing statement in
the live code regions, and 3) a chunk of live code mutating

existing variables, which restores these values at the exit of
the code snippet. We will detail them in Section 4.2.

Compared to the simple mutation strategies of Orion and
Athena, the main challenge in this work is how to ensure
that the statements synthesized for execution have no unde-
fined behavior. Our key idea is to leverage the valuation of
V to ensure the validity of the synthesized code. We pro-
pose a bottom-up approach to constructing valid expressions
progressively (Section 4.3.2).

We have implemented the proposed technique for vali-
dating C compilers in a tool called Hermes. Our evaluation
on validating two widely-used mature production compilers
GCC and LLVM has strongly positive results. Within only
13 months, Hermes found 168 confirmed, valid bugs in the
development trunk of GCC and LLVM. Of these bugs, 29
also affect stable releases, and 132 have already been fixed
be compiler developers. Note that 29 of the reported bugs
have been latent (bugs found in stable releases of production
compilers), thus having slipped through traditional testing
and previous compiler testing techniques (i.e., Athena and
Orion).

Contributions This paper makes the following main con-
tributions:

• We propose a set of novel EMI mutation strategies, which
manipulate both live and dead code regions, to overcome
the limitations of existing techniques, such as Orion and
Athena.
• We present a bottom-up approach to synthesizing valid

(i.e., undefined behavior-free) expressions by leveraging
the program states of the original test program w.r.t. a set
of inputs.
• We realize our approach as the Hermes tool for validating

C compilers. Hermes is remarkably effective: it has found
12.9 bugs per month on average during our continuous
13-month evaluation as of the submission date.

Paper Organization The remainder of the paper is struc-
tured as follows. Section 2 illustrates our approach via two
of our reported bugs. Section 3 briefly introduces the con-
cept of EMI. Section 4 presents the details of our approach.
Section 5 describes our extensive evaluation on GCC and
LLVM. Section 6 surveys related work and Section 7 con-
cludes.

2. Illustrative Examples
We illustrate Hermes’s bug finding process via two concrete
bugs: one for GCC and one for LLVM. Both examples show
how we use the profiled variable valuations to synthesize
code snippets and insert them into live code regions, while
still preserving the EMI property. We use Csmith [35] to
generate the initial testing programs, from which we derive
EMI variants to stress test compilers. The Csmith-generated



programs are referred to as seed programs in the remainder
of this paper.

Because the original seeds and their bug-triggering vari-
ants are large (a few thousands lines of code), in this paper,
we only show their reduced versions.1

2.1 GCC Miscompilation Bug 66186
Figure 1 shows the reduced variant which triggers a GCC
miscompilation bug. The executable compiled with GCC
4.9, 5.1, or development trunk 6.0.0 at optimization levels
-O2 or -O3 throws a segmentation fault. However, this does
not conform to the semantics of this program. The if state-
ment on line 10 is not executed because a is 0. Therefore,
the program should terminate normally.

1 int a;
2
3 int main () {
4 int b = -1, d, e = 0, f[2] = { 0 };
5 unsigned short c = b;
6
7 for (; e < 3; e++)
8 for (d = 0; d < 2; d++)
9 /* a=0, b=-1, c=65535, d={0,1}, e={0,1,2}, f[0]=0 */

10 if (a < 0) // Inserted code highlighted in gray.
11 for (d = 0; d < 2; d++)
12 if (f[c])
13 break;
14 return 0;
15 }

Figure 1: GCC 4.9, 5.1, and development trunk (6.0.0
rev 223265) miscompile the variant at -O3. (https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=66186).
The compiled binary throws segmentation fault instead of
terminating normally.

The code snippet inserted by Hermes is highlighted in
gray between lines 10 and 13. It is synthesized as follows:

1. Hermes profiles the execution of the seed program (i.e.,
the program in Figure 1 excluding the highlighted code)
to determine the possible values of in-scope variables
at all execution points. For instance, line 9 shows the
observed values of all variables in scope at this location.

2. Hermes synthesizes a statement that does not have any
side effect to the program (in this case it is an if state-
ment where the guard is false2), and inserts the state-
ment into the location.

The bug occurs because GCC incorrectly assumes that
accesses to stack variables (in this case, access to f[c]

1 A reduced version is derived from the bug-triggering test program by re-
moving bug-irrelevant code fragments in order to help developers under-
stand and diagnose the bug.
2 The global variable a is not explicitly initialized, and according to the C
language standard it is implicitly set to 0 by default. Thus the conditional is
always false.

on line 12) are non-trapping, and therefore hoists f[c] out
of the if statement on line 10, making it unconditionally
executed. However, this array access is out-of-bounds as c is
65535, and should not be executed as it is in the dead code
region. GCC developers have confirmed and fixed this bug.
Note that existing tools such as Orion [9] and Athena [11]
cannot reveal this bug because the mutation happens in the
live region of the program.

2.2 LLVM Miscompilation Bug 26266

1 extern void abort();
2 char a;
3 int b, c = 9, d, e;
4 void fn1() {
5 unsigned f = 1;
6 int g = 8, h = 5;
7 for (; a != 6; a--) {
8 int *i = &h, *j;
9 for (;;) {

10 /* g = 8, h = 5 */
11 int k = e; // Inserted code highlighted in gray.
12 int l = ~1;
13 if (g && h) {
14 k = g;
15 l = f;
16 f = -(~(c && b) | -~(e * ~l));
17 if (c < f)
18 abort();
19 }
20 g = k;
21 f = l;
22 if (d <= 8)
23 break;
24 *i = 0;
25 for (; *j <= 0;)
26 ;
27 }
28 }
29 }
30 int main() {
31 fn1();
32 return 0;
33 }

Figure 2: LLVM development trunk (3.9.0 rev 258508) mis-
compile the variant at -O1 and above. (https://llvm.
org/bugs/show_bug.cgi?id=25154). The compiled bi-
nary aborts instead of terminating normally.

Figure 2 shows a reduced variant that triggers a mis-
compilation bug of Clang. Initially, Clang compiles the seed
program correctly at all optimization levels — all compiled
executables terminate normally. However, after Hermes in-
serts the live code snippet (between lines 11 and 21 high-
lighted in gray) on line 11, Clang trunk 3.9 miscompiles the
variant: the compiled binary aborts on line 18, a program
point which should not be reachable.

Different from the GCC example above where Hermes
only generates an if statement whose guard is false, in
this example, Hermes synthesizes a chunk of code which is

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66186
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66186
https://llvm.org/bugs/show_bug.cgi?id=25154
https://llvm.org/bugs/show_bug.cgi?id=25154


executed at runtime. By instrumenting the program, Hermes
knows that the values of g and h on line 10 are 8 and
5 respectively. Then it synthesizes a block of live code to
mutate f. Specifically, we use g and h to construct a true if
statement on line 13. In the body, we first save the value
of f on line 15, later change its value and use the new
value (lines 17). This live code snippet is generated by our
mutation strategy Always True Conditional Block which will
be detailed in Subsection 4.2.

This bug is in the demanded-bits analysis in Clang. When
computing the demanded bits for the comparison c < f on
line 17, Clang should consider both operands c and f. How-
ever, in the buggy version of this analysis, the first operand is
accidentally ignored, leading the compiler to conclude that
this comparison c < f is always true (actually it should be
always false), and consequently making the abort() uncon-
ditionally executed. Again, this bug cannot be triggered by
Orion and Athena because the insertion happens in the live
region.

3. Equivalence Modulo Inputs
This section briefly introduces the formal definition of
Equivalence Modulo Inputs (EMI) [9]. Let L denote a
generic programming language L with deterministic seman-
tics J·K. Repeated executions of a program P ∈ L on the
same input i3 always yield the same output JP K(i).

Given two programs P,Q ∈ L and a set of common
inputs I (i.e., I ⊆ dom(P ) ∩ dom(Q)4), P and Q are
equivalent modulo inputs w.r.t. I (denoted as JP K =I JQK)
iff

∀i ∈ I JP K(i) = JQK(i).

Given a program P ∈ L, any input set I ∈ dom(P )
naturally induces a collection of programs Q ∈ L such
that JP K =I JQK. We refer to this collection as P ’s EMI
variants. EMI relaxes the notion of program equivalence,
and provides a practical way to generate test programs from
existing code for compiler testing.

The state-of-the-art instantiations of EMI are Orion and
Athena. Both operate on unexecuted code regions. Given a
program P and its inputs I , Orion and Athena first profile
the execution of P and identify the dead code regions. Then
they delete statements from or insert additional statements
into the dead code regions. As these modified regions remain
unexecuted under the same inputs I , the mutated programs
are EMI variants of P .

The main benefit of EMI is the preservation of the valid-
ity of P w.r.t. I after mutation. Another attractive property of
EMI is that it does not need a reference compiler for differ-
ential testing, because EMI provides an explicit testing ora-
cle, that is, all EMI variants are expected to output the same

3 For a closed program (e.g., a Csmith-generated program), we assume that
it only has one type of inputs, i.e., ∅.
4 dom(f) denotes the domain the function f .

result w.r.t. the same input. In contrast, other approaches
such as Csmith [35] relies on an extra reference compiler
to cross-check the consistency of the compiled code, as the
semantics of the randomly generated test programs is un-
known.

Without loss of generality, we assume that the input set I
has only one element in order to facilitate the presentation.
Thus in the remainder of this paper, we use I to represent a
single input, rather than a set of inputs.

4. Approach
Algorithm 1 shows the general process of using EMI. Given
a compiler under test, we first compute the testing oracle O
on line 2 by caching the output of compiling and running
the test program P . In each of the main iterations on line 4,
we generate an EMI variant P ′, and compare the output of
compiling and running P ′ (i.e., O′) with the oracle O.

Algorithm 1: Hermes’s process for testing compilers
1 procedure Test(Compiler C, Program P , Input I):
2 O ← C.Compile(P ).Execute(I) // oracle

3 P ′ ← P // initialization

4 for i← 1 to MAX_ITER do
// create a random EMI variant

5 P ′ ← EMI(P ′, I)

O′ ← C.Compile(P ′).Execute(I)

6 if O′ 6= O then // inconsistent outputs

7 ReportBug(C,P ′)

8 function EMI (Program P , Input I):
9 p← Profile(P, I)

10 P ′ ← P // initialization

11 foreach s ∈ P ′.Statements() do
12 Mutate(P ′, s, p)

13 return P ′

14 function Mutate (Program P ′, Statement s, Profile p):
15 env← p(Loc(P ′, s))

16 if dom(env) 6= ∅ and FlipCoin() then
// SynCode randomly selects FCB, TG or TCB

17 code← SynCode(env)
18 P ′.InsertBefore(code, s)

19 foreach c ∈ s.ChildStatements() do
20 Mutate(P ′, c, p)

4.1 Program Profiling
Our EMI variant generation (the function EMI on line 8 in
Algorithm 1) starts on line 9 with profiling the test program
to record necessary program states. Our profiling schema
is more sophisticated than the one used in both Orion and
Athena. While Orion and Athena only need the coverage
information to identify dead code regions, our approach, in
addition to the coverage information valuation of variables



at certain program points so that we can mutate the live
code safely without introducing any undefined behavior. We
formally define the execution profile as follows:

Definition 4.1 (Execution Profile). Given a program P and
an input I , the execution profile of running P with input I
records all the values observed at runtime for each variable
at each program point. Let V̂ar denote all the in-scope vari-
ables (including fields of structures and elements of arrays),
Z be the integers, and L̂oc denote the program points in P .
The profile P̂rofile is defined as a mapping from a program
point l ∈ L̂oc to an environment e ∈ Ênv, which maps a
variable v ∈ V̂ar to the set of its observed values.

P̂rofile = L̂oc→ Ênv (Profile)

Ênv = V̂ar→ P(Z) (Environment)

Take Figure 1 as an example. After running the program,
we collect a profile, which associates line 10 with the fol-
lowing environment:

profile(10) =

 a→ {0} d→ {0, 1}
b→ {−1} e→ {0, 1, 2}
c→ {65535} f [0]→ {0}


Figure 3: The environment on line 10 in Figure 1

For a program point l in dead code regions, the profile has
an empty environment, namely, profile(l) = ∅. Note that in
this paper, we only use integer values (i.e., Z) in execution
profiles. This is mainly due to the inherent inaccuracy of
floating-point number arithmetics, which makes differential
testing of compilers intractable [9, 11, 35]. In other words,
it is difficult to predict the results of comparisons on close
floating point values. We leave this as future work.

4.2 Live Code EMI Mutation
Our approach relies on mutating live code regions in a test
program. Given a test program P , its inputs I , and a state-
ment s executed by running P with I , we formally define
the mutation as a program synthesis problem as follows.

Definition 4.2 (Live Code EMI Mutation). Let C be a code
snippet to be inserted right before s, resulting in a variant
program P ′. C is an EMI mutation in P ′ if when P ′ is
executed with I the program state before the entry of C and
the program state after the exit of C are the same.

To stress test compilers, the code snippet C should have
side effects, otherwise a compiler may be smart enough to
safely remove C from P ′. The extra side effects complicate
data- and control-dependencies so that compilers may opti-
mize P ′ differently from P .

After obtaining a profile, we randomly insert a code snip-
pet into a live code region. Specifically, on line 16 in Algo-
rithm 1, if the statement s is executed (by checking whether

its associated environment is not empty, i.e., dom(env) 6= ∅)
and FlipCoin returns true,5 we then randomly synthesize a
code snippet via calling SynCode() and insert the snippet
into the program right before s on line 17. This procedure is
repeatedly applied to the child statements of s on line 20.

We have designed the following strategies in SynCode()
to synthesize live code EMI snippets. In each invocation to
SynCode(), the following strategies are randomly selected
with the same probability, i.e., 1/3 each.

Always False Conditional Block (FCB) We generate an
if/while statement, of which the body is not empty and the
conditional predicate of this statement is always evaluated
to false under the program input I . We synthesize the false
predicate based on the variable valuations in the environment
at the program point.

The body is randomly generated by unrolling the C gram-
mar. Concretely, during code generation, we randomly pick
a production rule from the grammar, and instantiate it by re-
cursively instantiating its sub-production rules with the in-
scope variables available at the program point. We try to
reuse the existing variables as much as possible in order
to maximize the data dependencies between the code in the
seed program and the synthesized code snippet. To limit the
size of the generated code, we set an upper bound of the
depth for derivation of production rules.

10 if (a < 0) // inserted code
11 for (d = 0; d < 2; d++)
12 if (f[c])
13 break;

For example, the above code snippet (extracted from lines
10–13 of Figure 1) is synthesized based on the environment
in Figure 3. As a is 0 at runtime, the predicate (a < 0)
is false, and the body will not be executed. The body is
synthesized by instantiating the production rule of the for
loop, which requires instantiations of four more production
rules (e.g., the loop body, initializer, condition) and uses
three existing variables d, f and c. Note that since the body
is not executed, we do not need to ensure the validity of the
code during program generation.

Always True Guard (TG) For an existing executed state-
ment s in the original program, we introduce an if statement
to guard s, of which the predicate p is always true, (i.e., if
(p) s;). This strategy alters the control flow but still pre-
serves the original semantics.

Always True Conditional Block (TCB) We synthesize an
if statement with a non-empty body with side effects, where
the guard is always true based on the environment. This is the
opposite of FCB because the body of this statement will be
executed. Therefore, we need to ensure that the body does
not exhibit any undefined behavior (i.e., well-defined w.r.t.

5 FlipCoin returns true with a tuned probability. In a different context, the
probability can be different.



1 int backup_v = 〈synthesized valid expression〉;
2 if (〈synthesized true predicate〉) {
3 backup_v = v;
4 v = 〈synthesized valid expression〉;
5 if/while(〈synthesized false predicate〉) {
6 print v;
7 }
8 }
9 v = backup_v;

Figure 4: Skeleton to synthesize TCB with one variable v.
The highlighted text will be replaced by synthesized expres-
sions and predicates.

to the C standard). In order to stress the compiler, the body
should have side effects on the program state. But these side
effects should be reverted at the exit of the TCB block to
maintain the EMI property.

The process of generating TCB snippets takes as input a
set of in-scope variables. Without loss of generality, Figure 4
only takes a single variable v of type int. It is straightfor-
ward to extend the template to multiple variables of different
types.

In general, the template first creates a backup variable to
store the value of v on line 3, then changes v on line 4. The
print statement ‘print v’ on line 5 ensures that the new
value of v is used, so that the compiler cannot optimize
away the synthesized code. Finally, the template restores
the variable v to its original value on line 9. This template
does not change program state after it is fully executed, and
therefore preserves the EMI property.

4.3 Predicate, Expression and TCB Synthesis
This subsection describes the building blocks of realizing
our three mutation strategies: synthesizing a predicate with
a given truth value, and synthesizing an expression without
undefined behavior for TCB. We also discuss how we gen-
erate a TCB block via speculative execution.

4.3.1 Predicate Synthesis
Algorithm 2 presents the process to generate a predicate with
a given truth value. The parameter depth is used to limit the
size of the generated predicate.

A predicate is built top-down. At the top we first ran-
domly choose a logical operator (i.e., conjunction, disjunc-
tion, and negation), then carefully randomize and compute
the target truth values of the children so that the whole pred-
icate evaluates to the expected truth value. We then proceed
to build the children. Specifically in Algorithm 2, the func-
tion SynNeg synthesizes a negation predicate, SynCon gen-
erates a conjunction, and SynDis generates a disjunction.

An atomic predicate (one with depth 0) checks the rela-
tion between a variable and a constant, or between two vari-
ables. It is constructed with a set of rules (i.e., the function
SynAtom). Specifically, as we know all values of each vari-

Algorithm 2: Synthesize a predicate
1 function SynPred (Env env, Bool expected, Int depth):
2 if depth = 0 then
3 return SynAtom(env, expected)

4 switch Random(4) do
/* synthesize a negation */

5 case 1 do return SynNeg(env, expected, depth)
/* synthesize a conjunctive predicate */

6 case 2 do return SynCon(env, expected, depth)
/* synthesize a disjunctive predicate */

7 case 3 do return SynDis(env, expected, depth)
/* synthesize an atomic predicate */

8 case 4 do return SynAtom(env, expected)

9 function SynNeg (Env env, Bool expected, Int depth):
10 return Expr(‘!’, SynPred(env, !expected, depth− 1))

11 function SynCon (Env env, Bool expected, Int depth):
12 if expected then left← true, right← true
13 else if FlipCoin() then left← true, right← false
14 else left← false, right← FlipCoin()

15 left_pred← SynPred(env, left, depth− 1)

16 right_pred← SynPred(env, right, depth− 1)

17 return Expr(‘&&’, left_pred, right_pred)

18 function SynDis (Env env, Bool expected, Int depth):
19 if ! expected then left← false, right← false
20 else if FlipCoin() then left← false, right← true
21 else left← true, right← FlipCoin()

22 left_pred← SynPred(env, left, depth− 1)

23 right_pred← SynPred(env, right, depth− 1)

24 return Expr(‘| |’, left_pred, right_pred)

25 function SynAtom (Env env, Bool expected):
/* Rule 1: randomly pick one variable v and

construct a relational predicate with expected
truth value over v and a constant */

/* Rule 2: randomly pick two variables v1 and v2,

and construct a relational predicate with

expected truth value over v1 and v2 */

able, we can create tautologies or contradictions by construc-
tion by selecting the right constants or relational operators.
For example, in Figure 1, because a is 0 on line 10, we can
create a contradiction a < 0, a > 0, a < d and many others.

4.3.2 Bottom-Up Valid Expression Synthesis
In order to realize the TCB mutation strategy, we need
to synthesize valid expressions without undefined behav-
ior, a challenging synthesis problem in compiler testing for
decades. In this paper, we leverage the fact that we know the
values of all variables at runtime w.r.t. the program inputs
I , and propose a bottom-up expression building algorithm
that safely avoids undefined behaviors. Figure 5 shows the
grammar of expressions we support in this work.



〈expr〉 ::= 〈c〉 | 〈v〉 | ‘(’ 〈expr〉 ‘)’ | 〈uop〉 〈expr〉
| 〈expr〉 〈bop〉 〈expr〉

〈c〉 ::= Z
〈v〉 ::= variables

〈uop〉 ::= ‘!’ | ‘~’ | ‘-’

〈bop〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘<<’ | ‘>>’ | ‘&’ | ‘|’ | ‘^’
| ‘>’ | ‘>=’ | ‘==’ | ‘!=’ | ‘<=’ | ‘<’

Figure 5: BNF Grammar of Synthesized Expressions

Algorithm 3: Synthesize valid expressions
1 function SynExpr (Env env):
2 worklist← Sample(env, Random(|dom(env)|))
3 while |worklist| > 1 do
4 if FlipCoin() then // unary expression

5 v ← Sample(worklist, 1)
6 uop_list← a shuffled list of unary operators
7 foreach uop ∈ uop_list do
8 if IsUndefined(env, v, uop) then
9 continue

10 worklist← (worklist \ {v})
11 worklist← worklist ∪ {Expr(uop, v)}
12 break

13 else // binary expression

14 {u, v} ← Sample(worklist, 2)
15 bop_list← a shuffled list binary operators
16 foreach bop ∈ bop_list do
17 if IsUndefined(env, u, v, bop) then
18 continue

19 worklist← (worklist \ {u, v})
20 worklist← worklist ∪ {Expr(bop, u, v)}
21 break

22 return the only expression in worklist

Algorithm 3 shows the process to build valid expressions
with unary and binary operators. The variable worklist stores
a set of valid expressions, which are gradually merged to-
gether with various operators and form a valid single com-
pound expression.

The function Sample samples elements from a set with-
out replacement. Initially, we sample a random number of
variables from env on line 2 and use them as the leaves of
the expression to build. We then make a random choice to
generate either a unary or a binary expression on line 4.

Building Binary Expression If we choose to construct a
binary expression, we first sample two elements {u, v} from
worklist as child expressions on line 14, then iterate through
all the available binary operators in a randomized order un-
til we find an operator bop that does not introduce unde-
fined behaviors according to the valuations of u and v. Note

that some operators are always well defined independently
of their arguments according to the C language standard
(e.g., negation (!), bit and/or/xor, and relational operators),
so this step will always succeed. The algorithm removes
u and v from worklist and adds the new binary expression
Expr(bop, u, v) to worklist.

Building Unary Expression This process is similar to
constructing binary expressions. However, because building
unary expressions does not shrink worklist, our algorithm
may not terminate. To deal with this problem, a counter
records the number of consecutive unary constructions (This
counter is not shown in Algorithm 3 for clear presentation
of the algorithm). If a threshold is reached, we force the
algorithm to build binary expressions in the next iteration.

Checking Undefined Behavior To evaluate the validity
of an expression e, we need all the possible values of its
child expression(s). We perform a speculative execution
Spex(env, e) over e with the given environment env to com-
pute an over-approximation of the environment as follows:

• v ∈ V̂ar: If e is a variable expression v, its values can be
obtained from env, i.e.,

Spex(env, e) = env(v)

• Expr(uop, e′): If e is a unary expression, its values are
computed by applying uop to each value of its child
expression e′, i.e.,

Spex(env, e) = {uop x|x ∈ Spex(env, e1)}

• Expr(bop, e1, e2): If e is a binary expression, its values
are the application of bop to the elements of the Cartesian
product of Spex(env, e1) and Spex(env, e2), namely,

{x1 bop x2|(x1, x2) ∈ Spex(env, e1)× Spex(env, e2)}

To check for undefined behaviors, we emulate the se-
mantics of unary and binary operators defined in the C lan-
guage standard over all the possible values of child expres-
sions. If no values trigger undefined behaviors, the function
IsUndefined returns false.

4.4 TCB Synthesis with Speculative Execution
Hermes generates TCB code snippets by instantiating the
template in Figure 4. Specifically, it replaces the highlighted
text in Figure 4 with synthesized expressions and predicates
by calling SynExpr and SynPred, as shown in Figure 6.

Both functions SynExpr and SynPred require the envi-
ronment of the insertion point (i.e., the program point at
which the synthesized code will be inserted). However, be-
cause the whole TCB code snippet is statically synthesized
(not executed yet), the environment of each program point
in the template except the entry is ∅. The environment of



the entry env is the one associated to the insertion point of
the whole TCB code in the original test program, which is
accessible from the execution profile.

Similar to checking undefined behaviors, we perform
speculative execution to over-approximate environments for
each program point of a TCB code block. Figure 6 shows
how we instantiate the TCB template. The template is in-
terpreted line by line from top to bottom. For each line, the
plain text will be output directly as a part of the final code
snippet. The highlighted text within 〈〉 will be executed first
and its result will be a part of the final code snippet.

The environment env is updated along the live path of the
template. After each assignment to a variable, we update env
with the new valuation. For example, after creating a new
variable backup_v and initializing it with a random expres-
sion on line 2, we update env by incorporating backup_v
and its valuation on line 3. The updated env is used later to
synthesize other predicates and expressions.

1 // env is obtained from the execution profile
2 int backup_v = 〈SynExpr(env)〉
3 〈add backup_v and its valuation to env〉
4 if (〈SynPred(env, true, depth)〉) {
5 backup_v = v;
6 〈update backup_v in env with v’s valuation〉
7 v = 〈SynExpr(env)〉;
8 〈update v in env with its new valuation〉
9 if/while(〈SynPred(env, false, depth)〉) {

10 print v;
11 }
12 }
13 v = backup_v;

Figure 6: Synthesizing TCB with speculative execution

4.5 Implementation
We have implemented the proposed technique in Hermes
for testing C compilers. Hermes uses Clang’s LibTooling
library [30] to instrument profiling code into the program
to obtain the execution profile, and to mutate the program
based on the obtained profile.

In addition to the algorithmic complexity, we also face
the challenge of handling the intricate type conversions de-
fined in the C language when performing speculative execu-
tion. This is crucial as any inconsistency with the C standard
will lead the synthesized code to deviate from our expec-
tation, which breaks the mutated program’s EMI property.
For example, given two variables ‘int a=0’ and ‘short
b=-1’, the sum ‘a+b’ will be -1. However if the type of
a is unsigned, then ‘a+b’ will be the maximum value of
unsigned type (4294967295 if unsigned has 32 bits) as b
is converted to unsigned first.

Therefore, although our speculative execution operates
on concrete values in execution profiles, we also need to take
their types into consideration when performing unary and
binary operations. Hermes carefully implements these con-

versions including integer promotion, usual arithmetic con-
version and implicit conversion in C. Note that an alterna-
tive to implement Spex is creating tiny C programs with the
desired fragments of code and running them. However, the
code fragments may contain undefined behavior. And cur-
rently we do not have a reliable way to detect and control
the undefined behavior in the executable code. Moreover,
this approach may incur additional overhead as it involves
compilation, execution, and process-level communication,
compared to our current implementation by simulating the
semantics of the C language.

4.5.1 Sparse Profiling
Profiling all program points to collect the valuations of all
in-scope variables is usually not feasible or practical, as
it can consume much time and huge storage space. In the
following, we describe an optimization technique to reduce
the profiling overhead.

The optimization is based on an insight that not all col-
lected environments in the profile are used for EMI mutation.
Note line 16 in Algorithm 1. For each program point with
non-empty environment (checked by dom(env) 6= ∅), Her-
mes makes a random decision to mutate this program point
(determined by FlipCoin()). If Hermes decides to skip this
point (i.e., FlipCoin() returns false), then the effort to col-
lect the environment for this point is wasted.

Based on this observation, we propose a sparse profiling
schema by moving the non-determinism of code synthesis
at the mutation stage to the profiling stage. Let s denote all
the eligible program points for profiling. Instead of instru-
menting profiling code into each point in s, we introduce a
profiling probability Pprofile, and sample a subset s′ ⊆ s with
Pprofile for profiling. Concretely, when we visit each point in
s, we randomly select the point and instrument the profiling
code with the probability Pprofile.

Next on line 16 in Algorithm 1, we remove the call to
FlipCoin(), and deterministically synthesize a code frag-
ment for the program point l if l has a non-empty environ-
ment.

5. Evaluation
This section discusses our testing efforts over 13 months,
from middle May 2015 to middle March 2016. We focus on
testing two open-source compilers GCC and LLVM because
of their openness in tracking and fixing bugs. Some high-
lights of this process follows:

• Many detected bugs: In 13 months, we have reported
168 new and valid bugs. Developers have confirmed all
these bugs and fixed 132 of them.
• Many long-latent bugs: We have found 29 latent bugs

in stable releases of GCC and LLVM. These bugs have
slipped through traditional testing and previous compiler
testing techniques, e.g., Athena.



Developers are generally responsive in confirming and
fixing our bugs, which is a strong indication that they take
our bugs seriously. To quote one developer:

“Wow, this was a *horrible* failure. Thanks for the
testcase! We were invalidating a cached reference un-
der our own feet.” 6

5.1 Testing Setup
We ran Hermes on two machines (one has 18 cores and the
other 6 cores) running Ubuntu 14.04 (x86_64).

Compiler Versions We built the development trunks of
GCC and LLVM daily and tested them on their five standard
options, "-O0", "-O1", "-Os", "-O2" and "-O3". The reason
for testing development trunks is mainly that developers fix
bugs primarily in truck revisions rather than stable releases.
Fixes for bugs in stable releases are only available much later
in subsequence stable releases. This long gap between when
a bug is found and when the fix is released makes it difficult
to identify whether a newly found bug is a duplicate to an
existing unfixed bug. We also lose the opportunity of finding
bugs in the trunk as early as possible if we only focus on
stable releases.

Seed Programs In this paper, we use Csmith [35] as the
seed program generator, because Csmith-generated pro-
grams can be effectively reduced using existing reduction
tools such as Berkeley’s Delta [19] and CReduce [25].

Note that Hermes is orthogonal to and independent of the
seed programs. We can use the vastly available open-source
code as seeds. However, the major obstacle of doing this is
that those programs are usually large and consist of multiple
files, and thus cannot be effectively reduced by the state-of-
the-art reduction tools.

Testing Process Our testing process is fully automated and
runs continuously. In each iteration, we first use Csmith to
generate a seed program. We then apply Hermes to derive 10
variants from the seed, and use then to test GCC and LLVM.

This process involves little human intervention. In ad-
dition to test program generation, we have also automated
the test case reduction (using Delta and CReduce). The only
manual effort is to confirm that the reduced test programs
are indeed valid and report them. Concretely, if the com-
piler bug is miscompilation, we ensure that the test program
does not contain undefined behavior. Moreover, we check
whether the new bug is a duplicate to any existing bugs in
compilers’ Bugzilla databases.

Profiling and Synthesis Parameters We set the profiling
probability Pprofile to 0.1 to perform sparse profiling (cf.
Section 4.5.1). The Csmith-generated programs usually have
around 1000 ~ 2000 lines of code, so the profiler will select
around 100 ~ 200 program points to instrument. Note that
some of these instrumented points might be in dead code

6 https://llvm.org/bugs/show_bug.cgi?id=25225

GCC LLVM TOTAL
Fixed 85 47 132

Not-Yet-Fixed 10 26 36
Duplicate 28 20 48

Invalid 1 0 1
TOTAL 124 93 217

Table 1: Reported bugs.

regions, hence the final number of executed profiling points
can be fewer, not zero according to our experiences.

When synthesizing a predicate, we set its maximum depth
to 2. In detail, before each call to SynPred in Algorithm 2,
we randomize a number d ∈ [0, 2] and pass d as the argu-
ment depth.

5.2 Quantitative Results
We next present some statistics on our reported bugs.

Bug Count Table 1 summarizes our bug results. In 13
months, we reported in total 217 bugs (124 in GCC and 93 in
LLVM). Developers confirmed 168 valid bugs and fixed 132
of them; 49 have yet to be confirmed as they were reported
very recently.
Not-Yet-Fixed Bugs All these bugs were reported recently.
Developers have confirmed these bugs, and are discussing
how to fix them.
Duplicate Bugs Although we only considered bugs that
have different symptoms from that of the not-yet-fixed bugs,
we reported 48 duplicated bugs (all are GCC bugs) during
this testing period. These bugs turned out to have the same
root cause.
Invalid Bugs We reported one invalid bug in GCC, in which
the variant has an undefined behavior, in particular, sequence
point violation [34]. This was caused by a bug in our Hermes
tool, which we later fixed.

Bug Type Compiler bugs can be generally classified into
the following three categories.
Miscompilation The compiler silently miscompiles the pro-
gram by producing a wrong executable that alters the seman-
tics of the source program.
Crashing The compiler crashes when compiling the pro-
gram, due to either runtime errors (e.g., segmentation fault,
floating-point exceptions) or assertion failures.
Performance The compiler hangs or takes a very long time
to compile the program.

Miscompilation bugs are run-time bugs because they
manifest when the compiled binaries are executed. Crash-
ing and performance bugs are compile-time bugs because
they manifest during compilation.

Table 2 partitions our 168 confirmed and valid bugs into
the above three categories. The category performance repre-
sents bugs that cause the compiler to not terminate within a

https://llvm.org/bugs/show_bug.cgi?id=25225


certain amount of time when compiling a program (five min-
utes in our experiments). As the table shows, nearly half of
our bugs are miscompilation, the most serious kind.

GCC LLVM TOTAL
Miscompilation 42 34 76

Crash 52 38 90
Performance 1 1 2

Table 2: Bug classification.

Mutation Cost and Throughput Given a seed program,
the time cost of Hermes to derive an EMI variant is low.
Thanks to the sparse profiling and efficient implementation
of the code synthesizer, the time is negligible. On average, it
took Hermes only 1.7 seconds to complete both the profiling
and code synthesis. Table 3 shows the statistics of the time
cost.

In the setting of a single run (a single thread on a single
CPU core), our testing process can test around 400 programs
per hour. Most of the CPU time is taken up by the compila-
tion by GCC and LLVM at different optimization levels. The
throughputs of Hermes and Athena are similar, as the muta-
tion overhead of Hermes is quite small although Hermes has
an extra step of profiling.

Min Mean Median Max StdDev
0 1.7 1 6 1.2

Table 3: Time of Generating an EMI variant (seconds).

5.3 Comparison with Athena
This section presents our in-depth comparison evaluation of
Hermes and Athena. In general, we performed the compari-
son in three different ways: 1) running Athena concurrently
with Hermes, 2) running Athena with the same seeds to re-
trigger the bugs found by Hermes in Table 4, and 3) mea-
suring the covered lines of compiler code. These three eval-
uations complement each other, and together offer a com-
prehensive comparison between Athena and Hermes. Since
Le et al. has shown in [11] that Athena outperforms Orion
at finding bugs in GCC and LLVM, we exclude Orion from
this study.

5.3.1 Effectiveness
Based on the data reported in [11], Athena took 19 months to
find 72 confirmed bugs, whereas Hermes has already found
168 confirmed bugs within only 13 months. Moreover, since
last May, we have launched a parallel run of Athena along
with Hermes. During the same period, Athena has found
only a few bugs.

We have also conducted an evaluation to compare Her-
mes and Athena directly. In particular, we selected all the
confirmed bugs (28 bugs in total) that were found by Hermes

BUG ID Type Optimization Athena
1 GCC-68194 Mis. -Os,-O2,-O3
2 GCC-68240 Crash -O2, -O3
3 GCC-68248 Crash -O2, -O3
4 GCC-68285 Mis. -O3
5 GCC-68305 Crash -O1,-Os,-O2,-O3
6 GCC-68327 Crash -O3 X
7 GCC-68376 Mis. -O1,-Os,-O2,-O3
8 GCC-68506 Mis. -O3
9 GCC-68520 Crash -O3

10 GCC-68570 Crash -O1,-Os,-O2,-O3
11 GCC-68624 Mis. -O2,-O3
12 GCC-68691 Crash -O3
13 GCC-68721 Mis. -Os,-O2,-O3 X
14 GCC-68730 Mis. -O3
15 GCC-68906 Crash -O3
16 GCC-68909 Crash -O3
17 GCC-68911 Mis. -O3
18 GCC-68951 Mis. -O3
19 GCC-68955 Mis. -O3
20 GCC-69030 Crash -O2,-O3
21 GCC-69083 Crash -O3
22 GCC-69097 Wrong -O1,-Os,-O2,-O3
23 LLVM-25372 Crash -O1,-Os,-O2
24 LLVM-25538 Crash -O1,-Os,-O2 X
25 LLVM-25629 Mis. -O1,-Os,-O2,-O3
26 LLVM-25754 Crash -O1,-Os,-O2,-O3
27 LLVM-25900 Wrong -O1,-Os,-O2,-O3
28 LLVM-25988 Wrong -O2,-O3

Table 4: The results of running Athena to re-trigger the
confirmed bugs that were reported in November 2015. The
first column shows the bug ID. The second column is the
type of the bug, either miscompilation or crash. The third
column lists the optimization levels to trigger the bug, and
the forth shows the reproduction result.

and reported in November and December 2015, and tried to
re-trigger them using Athena with the same seed programs
used by Hermes. For each bug, we used Athena to derive a
sequence of variants from the same seed program. Consider-
ing the stochastic characteristics of Athena, we set the num-
ber of variants per seed to 200 (in comparison to 10 variants
per seed of Hermes), and repeated the generation process
100 times. Table 4 lists the results. Only three bugs (GCC-
68327, GCC-68870, and LLVM-25538) can be re-triggered
by Athena.

The various comparisons above demonstrate that the mu-
tation strategy of Hermes is more effective at finding bugs
than that of Athena.

5.3.2 Line Coverage
We now evaluate the line coverage improvement of Hermes
on GCC and LLVM compared to Athena. The baseline is
the coverage of compiling 100 Csmith-randomly-generated
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Figure 7: Improvement in line coverage of Athena and Her-
mes. The baseline is the coverage of compiling 100 seed pro-
grams by GCC and LLVM (34% coverage ratio for GCC
and 21.1% for LLVM). The x-axis is the number of gener-
ated variants per seed program, and the y-axis is the absolute
coverage ration improvement over the baseline.

seed programs — the coverage ratio of GCC is 34% and that
of LLVM is 21.1%.

We then use Athena and Hermes to derive EMI vari-
ants from these 100 test programs, compile the variants with
GCC and LLVM, and lastly measure the coverage of com-
pilers. We vary the number of variants to generate from each
seed program, and obtain the coverage data shown in Fig-
ure 7. The x-axis is the number of generated variants per
seed program, and the y-axis is the absolute coverage ratio
improvement over the baseline.

Figure 7 demonstrates that Hermes significantly improves
line coverage of both GCC and LLVM over Athena. Take the
second group of vertical bars at x=10 as an example. Hermes
improved the coverage over the baseline by 4.8% (24,612
lines) for GCC and 1.8% (12,672 lines) for LLVM, while
Athena did by 0.6% (3,111 lines) for GCC and 0.2% (1,753
lines) for LLVM. The additionally covered code is mainly in
the middle-end and the back-end of each compiler.

5.4 Comparison of Mutation Strategies
This section presents the comparison of the three mutation
strategies (i.e., FCB, TG, TCB) in terms of numbers of bugs
detected.

We use the 28 bugs in Table 4 as samples for this analysis.
Each bug-revealing test program P ′ is derived from the
seed program P by injecting a set S of code snippets, of
which each is synthesized by a strategy of Hermes. Then
we iteratively remove elements from S until we obtain a
minimal S′ ⊆ S such that P + S′ (i.e., an EMI variant by
inserting the mutation code S′ into P ) still trigger the same
bug.

15 1
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Figure 8: Distribution of bugs found by different mutation
strategies. Intersection represents the number of bugs found
by the combination of strategies. For example, the intersec-
tion of the three circles means that four bugs are found by a
set of code snippets synthesized by FCB, TG and TCB to-
gether.

Then we classify S′ based on the mutation strategies that
synthesize the elements in S′. The result is shown in Figure 8
as a Venn diagram. Each single strategy can find bugs alone.
But there are two bugs found by the combination of FCB and
TCB, one bug by the combination of TG and TCB, and four
bugs by the three strategies together.

5.5 Sample Bugs
This section illustrates the diversity of our bugs via six bug
samples. Note that all these bugs are reduced from (much)
larger mutated programs.

Figure 9a The expected behavior of this program is to print
0 (the value of d assigned inside the loop). Note that be-
cause the conditional statement at line 13 is not executed
(b is 0), none of its printf statements are executed.
However, the program compiled with GCC trunk prints
1. The reason is that GCC decides to perform loop
unswitching [33] to move the conditional at line 15 out-
side the loop. This optimization is incorrect because the
now-used local variable j was not initialized: the opti-
mized program contains undefined behavior. Note that
the original program is valid (no undefined behavior) be-
cause j is not evaluated.

Figure 9b The expected behavior of this program is to ter-
minate normally. Because the value of a after exiting the
loop at line 5 is 1, the program does not abort at line 21.
However, the program compiled with GCC trunk aborts.
The ifcombine optimization mistakenly moves the unini-
tialized variable k at line 9 before the guard at line 8,
introducing undefined behavior (k is now evaluated).

Figure 9c The expected behavior of this program is to ter-
minate normally. In the function fn2, the for loop exe-
cutes twice, each time decreasing the value of g by 1.



1 int a;
2 int b;
3 short c;
4
5 int main () {
6 int j;
7 int d = 1;
8
9 for (; c >= 0; c++) {

10 a = d;
11 d = 0;
12
13 if (b) {
14 printf ("%d", 0);
15 if (j) {
16 printf ("%d", 0);
17 }
18 }
19 }
20
21 printf ("%d\n", d);
22 return 0;
23 }

(a) GCC development trunk (6.0.0 rev
228389) miscompiles the variant at -O3.
The compiled binary prints 1 instead of 0.
https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=67828

1 int a = 2, b = 1, c = 1;
2
3 int fn1 () {
4 int d;
5 for (; a; a--) {
6 for (d = 0; d < 4; d++) {
7 int k;
8 if (c < 1)
9 if (k) c = 0;

10 if (b) continue;
11 return 0;
12 }
13 b = !1;
14 }
15 return 0;
16 }
17
18 int main () {
19 fn1 ();
20 if (a != 1)
21 __builtin_abort ();
22 return 0;
23 }

(b) GCC development trunk (6.0.0 rev
229251) miscompiles the variant at -O3.
The compiled binary aborts instead of
terminating normally.
https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=68083.

1 int a[1], b, d, e, f, h, i, j;
2 volatile int c = 1;
3 char g;
4 void fn1 (int p1) { b = a[p1]; }
5 void fn2 () {
6 for (h = 15; h < 22; h += 5)
7 if (c) {
8 d--; f--; g--;
9 if (d) {

10 j = f < 0 || (f >= 0) > f;
11 i = e ^= 1;
12 }
13 e = 0;
14 }
15 else g = 0;
16 }
17 int main () {
18 a[0] = 1;
19 fn2 ();
20 fn1 (g & 1);
21 if (b != 1) __builtin_abort();
22 return 0;
23 }

(c) LLVM development trunk (3.8.0 rev
248820) miscompiles the variant at -O2
and -O3. The compiled binary aborts
instead of terminating normally.
https://llvm.org/bugs/show_bug.
cgi?id=24991

1 int printf (const char *, ...);
2 int a[1], b[1][1], c, d;
3
4 void fn1 (int p1) {
5 for (; d; d++)
6 goto lbl;
7 if (0)
8 lbl:
9 c--;

10 else
11 b[p1][0] = 0;
12
13 printf ("%d\n", a[p1]);
14 goto lbl;
15 }

(d) LLVM 3.6, 3.7, and development trunk
(3.8.0 rev 250927) crash while compiling
the variant at -Os and above.
https://llvm.org/bugs/show_bug.
cgi?id=25291

1 int a, b, c;
2
3 void fn1 () {
4 short d = 0;
5 for (; d < 2; d++) {
6 for (b = 0; b < 1; b++)
7 for (; c; c++)
8 a = d;
9 for (; b < 1; b++)

10 for (c = 0; c;)
11 ;
12 if (c)
13 break;
14 }
15 }

(e) LLVM development trunk (3.8.0 rev
253143) crashes while compiling the
variant at -O2.
https://llvm.org/bugs/show_bug.
cgi?id=25538.

1 struct S {
2 int f0;
3 int f1;
4 };
5 int b;
6 int main () {
7 struct S a[2] = { 0 };
8 struct S d = { 0, 1 };
9 for (b = 0; b < 2; b++) {

10 a[b] = d;
11 d = a[0];
12 }
13 if (d.f1 != 1)
14 __builtin_abort ();
15 }

(f) GCC 4.9.2, 5.1, and development trunk
(6.0.0 rev 223630) miscompiles the variant
at -O3. The compiled binary aborts instead
of terminating normally.
https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=66272.

Figure 9: Some sample variants that trigger a variety of GCC and LLVM bugs.

While calling fn1 at line 20, the argument is 0 because g
is -2. This function assigns b to a[0], which is 1. There-
fore, the if statement at line 21 is not executed, and the
program does not abort. However, the program compiled
by Clang trunk aborts because of a bug in calculating
liveness.

Figure 9d Clang 3.6, 3.7, and trunk crashes while compiling
this program at -Os and above because of an issue in
global value numbering [32].

Figure 9e Clang trunk crashes while compiling this pro-
gram at -O2. The bug happened because the developer
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did not handle a special case while avoiding recomputing
the expensive loop-closed SSA form [15].

Figure 9f The expected behavior of this program is to termi-
nate normally. After the first iteration of the loop at line 9,
a[0] has the same value as d. After the second iteration,
a[1] also has the same value as d. The program does not
abort at line 14 because d.f1 is 1.
However, the program compiled with GCC 4.9.2, 5.1, and
trunk aborts. The predictive commoning pass [7] mistak-
enly hoisted the store d.f1 = a[0].f1; at line 11 out
of the loop because it incorrectly assumes that the store
is independent of the previous store to a[b].

6. Related Work
Our work is closely related to research on compiler testing
and verification. In this section, we survey the three most
related lines of work: compiler testing, compiler verification
and translation validation.

6.1 Compiler Testing
Due to its practicability, compiler testing is still the domi-
nant technique to assure compiler quality. For example, ma-
ture production compilers (e.g. GCC and LLVM) have their
own regression test suites. Commercial test suites are also
available such as PlumHall [23] and SuperTest [1] for lan-
guage conformance and correctness checking. Most of these
test suites are written manually.

An alternative to manually written test suites is random
testing, which can further stress test compilers by providing
extra testing coverage. Zhao et al. proposed a tool JTT to
test the EC++ embedded compiler [36]. Nagai et al. [20,
21] proposed a technique to generate random arithmetic
expressions to find bugs in the arithmetic optimizers of GCC
and LLVM. CCG is another random C program generator
that targets compiler crashing bugs [2]. Sun et al. proposed
an automated approach to finding bugs in compiler warning
diagnostics [27]. Chen et al. proposed a guided approach to
detecting discrepancies between different implementations
of Java Virtual Machine [3]. Sun et al. proposed a simple but
effective program fuzzer to find crashing bugs in GCC and
LLVM based on an observation that most of bug revealing
test programs are small [28].

Csmith Csmtih [35] is one of the most successful random
program generator for testing C compilers. It targets crash-
ing and miscompilation bugs. Over the last several years,
Csmith has made significant contribution to improve the
quality of GCC and LLVM. Csmith is well-known for its
careful control to avoid generating test programs with un-
defined behaviors and the large set of C language features
it supports. In addition to compiler testing, Csmith has also
been applied to test static analyzers such as Frama-C [5], and
CPU emulators [18].

Csmith [35] and all these efforts [2, 20, 21, 36] generate
test programs from scratch. We propose a technique to derive
EMI variants from existing tests. [2, 20, 21, 36] only found
several bugs. Csmith found hundreds of bugs before, but
the current production compilers (e.g., GCC and LLVM) are
already resilient to it. We also used Csmith to generate seed
programs, but rarely found bugs triggered directly by the
seeds.

EMI Recently, Le et al. introduce equivalence modulo in-
puts (EMI), a technique that allows creation of many variants
from a single program that are semantically equivalent under
some inputs to stress test compilers [9]. They have developed
a series of tools to instantiate EMI. Orion [9] deletes unexe-
cuted statements randomly. Proteus [10] stress tests the link-
time optimizers of GCC and LLVM by splitting a translation
unit into multiple ones and randomizing optimization levels.
Athena [11] randomly inserts code into and removes state-
ments from dead code regions, and uses the Markov Chain
Monte Carlo (MCMC) method to guide EMI variant gener-
ation.

Hermes complements all the three tools above, as our mu-
tation strategies operate on live code regions, which over-
come the limitations of mutating dead code regions as men-
tioned in Section 1. Moreover, our approach is also orthog-
onal to Athena because it can be easily integrated into the
MCMC process of Athena to propose EMI variants.

CLsmith CLsmith is a testing system built on top of
Csmith to validate OpenCL compilers [4] by leveraging
differential testing [9, 35] (i.e., using a reference compiler
to serve as the test oracle) and EMI. As stated in [4], the
dynamically-dead code regions are scarce in practical ker-
nels, and therefore they injected dead-by-construction code
into kernels. Specifically, they construct an always false con-
ditional block, and the condition compares two global liter-
als (e.g. a literal can be an integral constant, or a global
variable whose value is known at compile time and does
not change at run time) which is known to be dead by con-
struction but unknown to compilers. Later in [6], Donaldson
and Lascu discussed a broader way to generate EMI vari-
ants by mutating existing expressions with identify func-
tions. For example, an identify function can be defined as
id(e) = e + e0, where e is an existing expression in the
seed program, e0 is a synthesized expression whose value is
always zero w.r.t. the same input, and the result expression
e+ e0 is equivalent to e but in a different syntactical form.

Hermes differs from CLsmith as our mutation strate-
gies interact with the local context more as CLsmith’s false
predicate relies on the comparison between two global lit-
erals, whereas ours are randomly synthesized over all in-
scope variables. Moreover, we also generate live code blocks
(TCB) which is not supported by CLsmith. All our mutation
strategies are ready to be incorporated into CLsmith, which
we believe can improve the diversity of its test programs.



6.2 Verified Compilers
A verified compiler ensures that the compilation from source
code is semantics preserving, i.e., the compiled code is
semantically equivalent to the source code. This goal is
achieved by accompanying a correctness proof with the
compiler that guarantees semantic preservation.

The most notable verified compiler is CompCert [13, 14],
a certified optimizing compiler for a subset of C language.
The compiler with its proof has been developed using Coq
proof assistant. Zhao et al. proposed a new technique to ver-
ify SSA-based optimizations in LLVM with the Coq proof
assistant [37]. Malecha et al. applied the idea of verified
compilers to the database domain and built a verified rela-
tional database management system [17]. Lopes et al. pro-
posed a domain-specific language to automatically prove
and generate peephole optimizers [16].

The benefit of verified compilers is clearly their guaran-
tee of compilation correctness. For example, years of test-
ing with Csmith, Orion and Athena have not revealed a
single bug in the optimizer component of CompCert. This
correctness guarantee is crucial to safety-critical domains.
However, for general application domains, verified compil-
ers have not been widely accepted due to their limited types
of optimizations compared to the production compilers, e.g.,
GCC and LLVM.

6.3 Translation Validation
Translation validation aims to verify that the compiled code
is equivalent to its source code and find any compilation
errors on the fly. The motivation originates from the fact
that it is usually easier to prove the correctness of a specific
compilation than to prove the correctness of compiling every
input program.

Hanan Samet first introduced the concept of translation
validation in [26]. Pnueli et al.’s work [24] proposed to use
translation validation to validate the non-optimizing compi-
lation from SIGNAL to C. Later, Necula [22] extended the
concept to directly validate compiler optimizations and suc-
cessfully validated four optimizers in GCC 2.7. Tate et al. in-
troduced a translation validation framework for JVM based
on equality saturation [29]. Later, Tristan et al. validated in-
traprocedural optimizations in LLVM [31] by adapting the
work on equality saturation [29].

7. Conclusion
We have presented a class of novel EMI mutation strategies
for compiler testing. Rather than mutating dead code regions
like the state-of-the-art tools Orion and Athena, our tech-
nique directly manipulates live code regions, which signifi-
cantly increases the space of EMI variants and testing effi-
ciency. Within only 13 months, our realization Hermes has
found 168 confirmed bugs in GCC and LLVM, of which 132
have already been fixed.

We keep actively testing GCC and LLVM with Hermes,
and have still been able to find around 10 bugs per month
even after many months of testing. For future work, we plan
to design more live code EMI mutation strategies by leverag-
ing the insights of this paper — investigating observed pro-
gram states by running programs with a set of inputs in order
to fabricate EMI mutation code.
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