
The First-Order Theory of Subtyping Constraints

Zhendong Su∗ Alexander Aiken∗

Computer Science Division
University of California

Berkeley, CA 94720
http://www.cs.berkeley.edu/~{zhendong,aiken}

Joachim Niehren Tim Priesnitz
Programming Systems Lab
Universität des Saarlandes

Saarbrücken, Germany
http://www.ps.uni-sb.de/~{niehren,tim}

Ralf Treinen
LRI, Université Paris-Sud

F91405 Orsay cedex, France
http://www.lri.fr/~treinen

Abstract

We investigate the first-order theory of subtyping con-
straints. We show that the first-order theory of non-
structural subtyping is undecidable, and we show that in the
case where all constructors are either unary or nullary, the
first-order theory is decidable for both structural and non-
structural subtyping. The decidability results are shown by
reduction to a decision problem on tree automata. This work
is a step towards resolving long-standing open problems of
the decidability of entailment for non-structural subtyping.

1 Introduction

In this paper we present the first decidability and undecid-
ability results for the first-order theory of subtyping. Before
describing our results, we begin with a capsule history of
subtyping, which motivates the first-order theory of subtyp-
ing as an interesting topic to study.

Since the original results of Mitchell [24], type check-
ing and type inference for subtyping systems have received
steadily increasing attention. The primary motivations for
studying these systems today are program analysis algo-
rithms based on subtyping (see, for example, [2, 5, 14, 16,
22, 31, 37]) and, more speculatively, richer designs for typed
languages ([29]).

Subtyping algorithms invariably involve systems of sub-
type constraints τ1 ≤ τ2, where the τi are types that may
∗This research was supported in part by the National Science

Foundation grant No. CCR-0085949 and NASA Contract No. NAG2-
1210.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
POPL ’02, Jan. 16-18, 2002 Portland, OR USA
c© 2002 ACM ISBN 1-58113-450-9/02/01...$5.00

contain type variables. There are two interesting questions
we can ask about a system of subtyping constraints C:

1. Does C have solutions (and what are they)?

2. Does C imply (or entail) another system of constraints
C′? That is, is every solution of C also a solution of
C′?

For (1), the basic algorithms for solving many natural
forms of subtyping constraints are by now quite well un-
derstood (e.g., see [36]). For (2), there has been much less
progress on subtype entailment, although entailment is as
important as constraint resolution in applications of subtyp-
ing. For example, a type-based program analysis extracts
some system of constraints C from a program text; these
constraints are the model of whatever program property is
being analyzed. A client of the analysis (e.g., a program
optimization system) interacts with the analysis by asking
queries: Does a particular constraint τ1 ≤ τ2 hold in C? Or
in other words, does C entail τ1 ≤ τ2? As another example,
in designing a language with expressive subtyping relation-
ships, checking type interfaces also reduces to a subtype en-
tailment problem. While no mainstream language has such
expressive power today, language researchers have encoun-
tered just this problem in designing languages that blend
ML-style polymorphism with object-oriented style subtyp-
ing, which leads to polymorphic constrained types (see, again,
discussion in [29]).

There are two natural choices of subtype relation in the
literature. Structural subtyping requires that types have ex-
actly the same shape—read as trees, τ1 ≤ τ2 cannot hold
unless the corresponding branches of τ1 and τ2 are equal
in length. For example if a ≤ b in the subtype ordering,
then C(a, a) ≤ C(b, b) for some covariant constructor C,
but a 6≤ C(b, b). Non-structural subtyping has both a least
type ⊥ and a greatest type >, so that ⊥ ≤ τ ≤ > for any
τ . More details on structural and non-structural subtyping
can be found in [4, 19, 24].

Despite extensive effort over many years, the exact com-
plexity and even the decidability of entailment is open for
non-structural subtyping constraints [3, 12, 13, 17, 18, 22,
27, 28, 33, 34, 36, 42]. As we show in Section 2, the natural
versions of entailment and subtyping constrained types can

be encoded easily in the first-order theory of subtyping, so
to gain insight into and take a step towards resolving these
difficult problems, we study the full first-order theory in this
paper.

The major contributions of this paper are summarized
as follows:

• We show that the first-order theory of non-structural
subtyping constraints is undecidable via a reduction
from the Post’s Correspondence Problem (PCP). The
result is shown for both simple and recursive types
(Theorems 7 and 9). The result holds also for infi-
nite trees. In addition, this result yields a technical
separation of structural subtyping and non-structural
subtyping (Theorem 10).

• We show that the first-order theory of subtyping con-
straints with unary function symbols is decidable by
an automata-theoretic construction. This result holds
for all combinations of the structural versus non-
structural, and simple versus recursive cases (Theo-
rem 17).

• The automata-theoretic construction bridges tree au-
tomata theory and subtyping problems, suggesting an
alternative way of tackling the problems (see Sec-
tion 5.3 for a discussion).

We leave open the decidability of the full first-order the-
ory of structural subtyping.

We first present background information on subtyping
(Section 2), and show that the first-order theory of non-
structural subtyping entailment is undecidable (Section 3).
Next we give an automata-theoretic construction for sub-
typing constraints and show that the first-order theory of
subtyping constraints with unary function symbols is decid-
able (Section 5). We then discuss related work (Section 6)
and conclude (Section 7). An example encoding of an en-
tailment problem is given in Appendix A.

2 Subtyping Constraints and Their First-Order Theories

We present an overview of subtyping systems and introduce
the problems we consider in this paper.

2.1 Preliminaries on Subtyping

Subtyping systems are generalizations of the usual equality-
based type systems such as the Hindley/Milner type system
of ML [23]. We consider the following type language

τ ::= ⊥ | > | α | τ1 → τ2 | τ1 × τ2

where⊥ and> are the smallest and largest type respectively,
α is chosen from a countable set of type variables V, → is
the function type constructor, and × is the product type
constructor.

Types in this language form a lattice with the following
ordering

• ⊥ ≤ τ ≤ >, for any τ ;

• τ1 → τ2 ≤ τ ′1 → τ ′2 iff τ ′1 ≤ τ1 and τ2 ≤ τ ′2, for any
types τ1, τ2, τ ′1, and τ ′2;

• τ1 × τ2 ≤ τ ′1 × τ ′2 iff τ1 ≤ τ ′1 and τ2 ≤ τ ′2, for any types
τ1, τ2, τ ′1, and τ ′2.

This is the non-structural ordering on types, since related
types need not have the same shape, e.g., ⊥ ≤ ⊥ → >.
The corresponding notion of structural ordering requires two
types to be related only if they have the same shape. In
structural ordering, there is no smallest or largest type.

Another dimension is whether a type language allows
recursive types, i.e., infinite types which are solutions to
recursive type equations such as α = α → ⊥. Recursive
types are interpreted over regular trees, which are possibly
infinite trees with finitely many subterms. We also consider
general infinite trees.

We write T (F) to denote the set of finite ground types
(types without variables), where F is the alphabet

{⊥,>, · → ·, · × ·}

The set T (F ,V) denotes the set of all types built with vari-
ables drawn from V.

A subtype constraint is an inequality of the form τ1 ≤
τ2. A subtype constraint system is a finite set of subtyping
constraints. When clear from context, we drop “subtype”
and just say a constraint or a constraint system. For a
constraint system C, the type variables in C are called the
free variables of C, denoted fv(C).

A valuation ρ is a function mapping type variables V to
ground types T (F). A valuation ρ is sometimes referred to
as a ground substitution. As is standard, we extend val-
uations homomorphically to substitutions from T (F ,V) to
T (F).

A valuation ρ satisfies a constraint τ1 ≤ τ2, written
ρ � τ1 ≤ τ2 if ρ(τ1) ≤ ρ(τ2) holds in the lattice T (F). A
valuation ρ satisfies a constraint system C, written ρ � C,
if ρ satisfies all the constraints in C. A constraint system
C is satisfiable if there is a valuation ρ such that ρ � C.
The set of valuations satisfying a constraint system C is the
solution set of C, denoted by S(C). We denote by S(C) |E
the set of solutions of C restricted to a set of variables E.
The satisfiability problem for a constraint language is to de-
cide whether a given system of constraints is satisfiable. It
is well-known that the satisfiability of a constraint system
can be decided in polynomial time by a test for consistency
of the given constraint set according to a set of syntactic
rules [20, 30, 33].

Corresponding to polymorphic type schemes in Hind-
ley/Milner style type systems, polymorphic subtype systems
have so-called constrained types, in which a type is restricted
by a system of constraints [1, 3, 42]. An ML style poly-
morphic type can be viewed as a constrained type with no
constraints. For example,

α→ β\{α ≤ int→ int, int→ α ≤ β}

is a constrained type. Let τ\C be a constrained type, and
let ρ be a satisfying valuation for C. The ground type ρ(τ)
is called a instance of τ\C.

There are a few important problems associated with con-
strained types in polymorphic subtype systems.

• In practice, constrained types can be large and compli-
cated. Thus it is important to simplify the types [12,
22, 33] to make the types and the associated constraints
smaller. Type and constraint simplification is related to
the following decision problem of constraint entailment:
A constraint system C entails a constraint τ1 ≤ τ2,
written C � τ1 ≤ τ2, if for every satisfying valuation ρ
of C, we have ρ � τ1 ≤ τ2.

2

• The notion of existential entailment, written C1 �
∃E.C2, is a more powerful notion of entailment.1 The
entailment holds if for every valuation ρ � C1, there
exists a valuation ρ′ � C2 such that ρ and ρ′ agree
on variables fv(C2) \ E. We assume w.l.o.g. that
fv(C1) ∩ E = ∅. This notion is interesting because
usually for a constrained type, we are only interested
in variables appearing in the type, and there are often
many “internal” variables in the constraints we may
wish to eliminate. This notion of entailment allows
more powerful simplification and is likely to be more
expensive.

• In polymorphic subtype systems, we may need to de-
termine whether one constrained type is a subtype of
another constrained type [42]. Let τ1\C1 and τ2\C2

be two constrained types. We wish to check whether
τ1\C1 ≤ τ2\C2 which holds if for every instance τ of
τ2\C2, there exists an instance of τ ′ of τ1\C1 such that
τ ′ ≤ τ . We assume w.l.o.g. that C1 and C2 do not have
any variables in common. In addition, we can restrict
τ1 and τ2 to variables because

τ1\C1 ≤ τ2\C2

iff
α\(C1 ∪ {α = τ1}) ≤ β\(C2 ∪ {β = τ2})

where α and β are fresh variables not in C1 or C2.

Although extensive research has directed at these prob-
lems [3, 12, 13, 17, 18, 22, 27, 28, 33, 34, 36, 42], their
decidability has been open for many years. In this paper,
we present results on the first-order theory of subtyping con-
straints, which we believe is a step in resolving these open
problems.

2.2 First-Order Theory of Subtyping Constraints

We first define the first-order theory of subtyping constraints.
First-order formulae w.r.t. to a subtype language are:

f ::= true | t1 ≤ t2 | ¬f | f1 ∧ f2 | ∃x.f

where t1 and t2 are type expressions and x is a first-order
variable ranging over types. Notice that we do not need
equality because ≤ is anti-symmetric.

As usual, for convenience, we also allow disjunction ∨,
implication → , and universal quantification ∀. We write
t1 � t2 for ¬(t1 ≤ t2). A formula is quantifier free if it has
no quantifiers. A formula is in prenex normal form if it is of
the form Q1 . . . Qn.f where Qi’s are quantifiers and f is a
quantifier free formula. We adopt the usual notion of a free
variable and a closed and open formula.

We next show how the open entailment problems dis-
cussed in Section 2.1 fit in the first-order theory of subtyp-
ing.

2.2.1 Entailment is in the ∀-Fragment

The universal fragment consists of all the closed formulae
∀.f , where ∀ consists of a set of universal quantifiers, and f
is a quantifier free formula.

The entailment problem C � x ≤ y is in the universal
fragment. Notice that C is a conjunction of basic constraints

1Existential entailment is also called restricted entailment, writ-
ten C1 �E′ C2, where E′ = fv(C2) \ E.

and the entailment C � x ≤ y holds iff the universal formula
∀x1, . . . , xn.(C → (x ≤ y)) is valid, where the xi’s are the
variables free in C ∪ {x ≤ y}.

2.2.2 Existential Entailment is in the ∀∃-Fragment

The ∀∃-fragment consists of all the closed formulae ∀∃.f ,
where f is a quantifier free formula.

Existential entailment C1 � ∃E.C2 is expressed by the
following formula:

∀α1, . . . , αn.(C1 → ∃E.C2)

where the αi’s are the variables in fv(C1) ∪ (fv(C2) \ E).
Because we assume fv(C1) ∩ E = ∅, there is an equivalent
formula in the ∀∃-fragment

∀α1, . . . , αn.∃E.(C1 → C2)

2.2.3 Subtype Constrained Types is in the ∀∃-Fragment

Let α\C1 and β\C2 be constrained types. We express
α\C1 ≤ β\C2 as the formula

∀β1, . . . , βn.(C2 → ∃α1, . . . , αm.(C1 ∧ α ≤ β))

where the αi’s and βj ’s are the variables free in C1 and
C2 respectively. Because C1 and C2 have disjoint sets of
variables (see definition of constrained types above), this is
equivalent to

∀β1, . . . , βn.∃α1, . . . , αm.(C2 → (C1 ∧ α ≤ β))

In fact, we can show that subtype constrained types can
be polynomially reduced to existential entailment.

Proposition 1 Subtype constrained types is polynomially
reducible to existential entailment.

Proof. We have the following equivalences

α\C1 ≤ β\C2

⇔ { by defn. of α\C1 ≤ β\C2 }

S(C2) |{β} ⊆ S(α ≤ β ∧ C1) |{β}

⇔ { by defn. of existential entailment with E = fv(C1) }

C2 � ∃E.(α ≤ β ∧ C1)

2

3 Undecidability of the First-Order Theory

In this section, we show that the first-order theory of non-
structural subtyping is undecidable for any type language
with a binary type constructor and the bottom element ⊥
(or dually, the top element >). The formula we exhibit is in
the ∃∀∃∀∃∀-fragment.

The proof is via a reduction from the Post’s Correspon-
dence Problem (PCP) [32] to a first-order formula of non-
structural subtyping. Since PCP is undecidable [32], the
first-order theory of non-structural subtyping is undecidable
as well. The proof follows the framework of Treinen [40] and
is inspired by the proof of undecidability of the first-order
theory of ordering constraints over feature trees [25].

3

Recall that an instance of PCP is a finite set of pairs
of words 〈li, ri〉 for 1 ≤ i ≤ n. The words are drawn from
the alphabet {1, 2}. The problem is to decide whether there
is a non-empty finite sequence of indices s1 . . . sm (where
1 ≤ si ≤ n for 1 ≤ i ≤ m) and the sequence constitutes a
pair of matched words:

ls1 · · · lsm = rs1 · · · rsm

where words are concatenated.
For non-structural subtyping, we consider both finite

types and recursive types. We first describe the subtype
logic that we use. We consider any subtype language with
at least a bottom element ⊥ and a binary type constructor.
We show that for any such language, the first-order theory
of non-structural subtype entailment is undecidable.

For the rest of the paper, we consider the simple expres-
sion language:

τ ::= ⊥ | f(τ, τ)

where f is covariant in both of its arguments. It is straight-
forward to modify our construction to allow type construc-
tors with contravariant field(s) and with arity greater than
two.

3.1 Representing Words as Trees

PCP is a word problem but types are trees. As a first step,
we describe how to encode words in {1, 2} using types.

3.1.1 Words as f-Spines

We first describe how to represent words over {1, 2} as trees
over a binary constructor f and the constant ⊥. We use f-
spines to represent words. Intuitively, an f -spine is simply
a tree with a spine of f ’s and all other positions labelled ⊥.

Definition 2 (f-Spine) A finite tree t (in f and ⊥) is an
f -spine if there is exactly one maximal path with labels f .
On this maximal path, a left child represents 1 and a right
child represents 2.

Example 1 (The word ε) The empty word ε is repre-
sented by the term f(⊥,⊥). See Figure 1a.

Example 2 (The word 1) The word 1 is represented by
the term f(f(⊥,⊥),⊥). See Figure 1b.

Example 3 (The word 21221) The word 21221 is repre-
sented by the term f(⊥, f(f(⊥, f(⊥, f(f(⊥,⊥),⊥))),⊥)).
See Figure 1c.

3.1.2 Enforcing a Word Tree

We want to enforce with a first-order formula of subtyping
constraints that a tree t is an f -spine, i.e., that it represents
a word w. Any f -spine t satisfies three properties:

1. Only f and ⊥ appear in t (Lemma 3).

2. There is exactly one maximal path of f ’s (Lemma 4).

3. t is not ⊥ (because ⊥ does not represent a word).

Lemma 3 A tree t contains only f and ⊥ iff

∃x.((x ≤ f(x, x)) ∧ (t ≤ x))

f

 111

⊥ ⊥

f
1

��� 111

f

 111 ⊥

⊥ ⊥

f

 2000

⊥ f
1

��� 000

f

 2000 ⊥

⊥ f

��� 2000

⊥ f
1

��� 111

f

 111 ⊥

⊥ ⊥
(a) The word ε. (b) The word 1. (c) The word 21221.

Figure 1: Some example representations of words.

Proof. Suppose t contains only f and ⊥. Let h be the
height of t, which is the length of the longest branch of t.
The full binary tree s of height h where all the leaves are
labelled ⊥ and all the internal nodes are labelled f satisfies
s ≤ f(s, s) and t ≤ s.

On the other hand, suppose for some s with s ≤ f(s, s),
we have t ≤ s. It suffices to show that s contains only f and
⊥. For the sake of argument, assume on some shortest path
π from the root, s is labelled with g, i.e., every path strictly
shorter than π is labelled either f or ⊥. Now consider the
path π in f(s, s). If π exists in f(s, s), then it must be
labelled either f or ⊥ in f(s, s). If π does not exist in f(s, s),
then a prefix of π exists in f(s, s) and must be labelled with
⊥. In both cases, a contradiction is reached since s ≤ f(s, s).

2

Lemma 4 For any non-⊥ tree t with f and ⊥, there is
exactly one maximal path of f ’s iff the subtypes of t form a
chain w.r.t. ≤.

Proof. If t has exactly one maximal path of f ’s, then clearly
that all the subtypes of t form a chain. On the other hand,
if t has at least two maximal paths of f ’s. The two subtypes
of t where we replace f by ⊥ at the respective paths are
incomparable. 2

Thus we can enforce a tree to represent a word. We
shorthand the formula by word(t), that is

dom-closure(t)
def
= ∃x.((x ≤ f(x, x)) ∧ (t ≤ x))

chain(t)
def
=

∀t1, t2.(((t1 ≤ t) ∧ (t2 ≤ t)) →
((t1 ≤ t2) ∨ (t2 ≤ t1)))

word(t)
def
= dom-closure(t) ∧ chain(t) ∧ (t 6= ⊥)

3.1.3 Prepending Trees

In the following discussion, we use words and trees that
represent words interchangeably, since the context should
make the distinction clear.

To construct a solution to a PCP instance, we need to
concatenate words. Thus we want to express with con-
straints that a word w1 is obtained from w2 by prepending
w. We express this with a family of predicates prependw, one

4

f
1

��� 000

f

 2000 ⊥

⊥ f

 111

⊥ ⊥

f

��� 2000

⊥ f
1

��� 111

f
1

��� 000 ⊥

f

 2000 ⊥

⊥ f

 111

⊥ ⊥
(a) The word 12. (b) The word 2112 = 21 · 12.

Figure 2: Tree prepending example.

for each constant word w. The predicate prependw(t1, t2) is
true if the word represented by t1 is obtained by prepending
w to the word for t2. Note that this is sufficient, because
in PCP, the words are constant. We define the predicate
recursively

prependε(t1, t2)
def
= (t1 = t2)

prepend1w(t1, t2)
def
=

∃t′.((t1 = f(t′,⊥)) ∧
prependw(t′, t2))

prepend2w(t1, t2)
def
=

∃t′.((t1 = f(⊥, t′)) ∧
prependw(t′, t2))

Example 4 (Prepending example) We prepend the
word 21 onto the word 12 (Figure 2a) to get the word 2112
(Figure 2b).

3.2 Reducing PCP to FOT of Subtyping

In this section, we describe how to reduce an instance of
PCP to a first-order formula of subtyping constraints.

3.2.1 Outline of the Reduction

We construct a formula that accepts the representations of
all the solutions of a PCP instance.

We first describe a solution to a PCP instance as a
tree. Recall that a PCP instance P consists of n pairs
of words 〈l1, r1〉, . . . , 〈ln, rn〉, where li, ri ∈ {1, 2}∗. A so-
lution s = s1 · · · sm to P is a non-empty finite sequence
of indices 1 through n, i.e., s ∈ {1, · · · , n}+, such that
ls1 · · · lsm = rs1 · · · rsm . One can represent a solution s as
the tree t shown in Figure 3. In the tree t, the values of
ε, ls1 , rs1 , . . . , lsm · · · ls1 , and rsm · · · rs1 are represented
by their corresponding word trees. The tree is constructed
as follows. We start with the empty word pair 〈ε, ε〉. At
each step, we prepend a particular pair from the PCP in-
stance 〈lsi , rsi〉 to the previous pair of words. At the end,
ls1 · · · lsm = rs1 · · · rsm , i.e., we have found a solution to
P. Notice that the solutions are constructed in the reverse
order because we use prepend instead of append. 2

2We use prepend because append is just not as convenient to ex-
press.

f

||||
MMMMMMMM

f

��� ... f

{{{{{
RRRRRRRRRR

ε ε f

���
????? f

}}}}}
AAAAA

lsm rsm f

����
@@@@@

...
AAAAAA

lsm−1 lsm rsm−1rsm f

yyyyy
FFFFF

f

zzzz
FFFF ⊥

ls1 · · · lsm rs1 · · · rsm

Figure 3: A PCP solution viewed as a tree.

With this representation of PCP solutions as trees, we
can reduce an instance of PCP to the validity of a first-
order formula of subtyping constraints by expressing that
there exists a tree t such that

1. The tree t is of the particular form in Figure 3. (Sec-
tion 3.2.2)

Our construction does not require the branches of the
solution tree to be in the order shown in Figure 3. Any
order is fine.

2. We have a valid PCP construction sequence. (Sec-
tion 3.2.3)

Each left branch f(wi, w
′
i) is either the pair of empty

words or there exists another left branch f(wj , w
′
j) such

that prependlk (wi, wj) and prependrk (w′i, w
′
j) for some

k. In addition, one of the left branches is of the form
f(w,w) with w non-empty.3 This ensures that we have
a non-empty sequence.

We next express these requirements with first-order for-
mulae of subtype constraints.

3.2.2 Correct Form of the Tree

To ensure the correct form of the tree t, we require that
each left branch represents two words conjoined with the
root labelled with f , i.e., we have f(w,w′) for some trees
representing words w and w′. In order to achieve this, we
construct trees of the form shown in Figure 4a, which is a
branch of the tree representing a PCP solution shown in
Figure 3.

Let t be the tree representing a PCP solution. We can-
not extract a branch directly from t because subtyping con-
straints cannot express removing something from a tree.
However, we observe that a branch is a supertype of the
main spine shown in Figure 4b with some additional prop-
erties, which we enforce separately. We first express the
main spine s of t. Two properties are needed for s:

3We assume for any PCP instance, li 6= ri for any i. Otherwise,
the instance is trivially solvable.

5

f

���
?????

⊥ ...

@@@@@

⊥ f

���
>>>>>

f

���� ///
...

��� 3333

wi w′i ⊥ ⊥

f

���
@@@@@

f

���� ///
...

��� ?????

wi w′i f

���� /// f

���
=====

wi w′i f

���� ///
...

��� 3333

wi w′i ⊥ ⊥
(a) A branch. (b) An expanded branch.

Figure 5: Extracting words from a branch.

f

���
?????

⊥ ...

@@@@@

⊥ f

���
>>>>>

f

���� ///
...

��� 3333

wi w′i ⊥ ⊥

f

��� ,,

⊥ ...

��� ---

⊥ ⊥

(a) A branch. (b) The main spine.

Figure 4: The branch of a solution tree.

1. The main spine s is of the form shown in Figure 4b.

We simply require s ≤ f(⊥, s).

2. The tree s is a subtype of t and among all possible
spines, it is the largest such tree.

This is easily expressed as

(s ≤ t) ∧ ∀x.(((x ≤ f(⊥, x)) ∧ (x ≤ t)) → (x ≤ s))

We introduce the shorthand that s is the main spine of
t by

spine(s, t)
def
=

(s ≤ f(⊥, s)) ∧ (s ≤ t)
(∀x.(((x ≤ f(⊥, x)) ∧ (x ≤ t)) → (x ≤ s)))

We observe that a branch b of t is a subtype of t and
a proper supertye of the main spine s with two additional
properties:

1. Exactly one left branch of the main spine is of the form
f(wi, w

′
i).

2. All the other left branches of the main spine are labelled
with ⊥.

We can express that b is a proper supertype of the main
spine s by

s < b
def
= ((s ≤ b) ∧ (s 6= b))

We express (1) and (2) by observing that b is a maximal
tree such that the set of all the subtypes of b that are proper
supertypes of the main spine s have a unique minimal ele-
ment, i.e., the set {x | s < x ≤ b} has a unique minimal
element. We use is-min(u, v, w) to express that u is a mini-
mal element of the subtypes of v that are proper supertypes
of w, that is

is-min(u, v, w)
def
=

(u ≤ v) ∧ (w < u) ∧
∀x.(((x ≤ v) ∧ (w < x)) → (u ≤ x))

In addition, uniq-min(u,w) expresses that all the subtypes
of u that are proper supertypes w have a unique minimal
element, that is

uniq-min(u,w)
def
=

∃x.(is-min(x, u, w) ∧
∀y.(is-min(y, u, w) → (x = y)))

With that, we can express the requirements on b by the
following formula

branch(b, t)
def
=

(b ≤ t) ∧
∃s.(spine(s, t) ∧ (s < b) ∧ uniq-min(b, s)
∧ ∀x.((b < x ≤ t) → ¬uniq-min(x, s)))

We establish the correctness of branch(b, t) in Lemma 5.

Lemma 5 A tree b is a branch of t as shown in Figure 4a
iff branch(b, t).

Proof. It is straightforward to verify that if b is a branch
of t then branch(b, t). For the other direction, assume
branch(b, t). Then we know that b is a subtype of t and a
proper supertype of the main spine s. Since uniq-min(b, s),
i.e., all the subtypes of b strictly larger than s have a unique
minimum, b cannot have two left sub-branches labelled with
f . Thus b must be a subtype of a branch. However, since
b is the largest tree such that uniq-min(b, s), it must be a
branch. 2

3.2.3 Correct Construction of the Tree

The previous section describes how to extract a branch of the
tree t. However, that is not sufficient, since we ultimately
need the two words wi, w

′
i associated with a branch.

We must ensure that for each branch the two words wi
and w′i are empty or are constructed from the words of an-
other branch wj and w′j by prepending lk and rk respec-
tively, for some k.

6

For a branch b, we need to extract the two words wi
and w′i. The trick is to duplicate the non-⊥ left child of b
to all the left children of b preceding this non-⊥ child. In
particular, this would have the effect of duplicating the two
words at the first child of the branch.

We give an example. Consider the branch b shown in
Figure 5a. We would like to build from b the expanded tree
b′ shown in Figure 5b. If we can construct such a tree b′,
then it is easy to extract the two words wi and w′i simply
by the constraint ∃u.f(f(wi, w

′
i), u) = b′.

We now show how to construct b′ from b. Observe that
the right child of b′ is a subtype of b′ itself, i.e., if we let
b′ = f(u, v), then v ≤ b′. In addition, observe that of all
supertypes of b, b′ is the smallest tree with this property.
We write the shorthand recurse(t1, t2) for the formula

recurse(t1, t2)
def
=

(t1 ≤ t2) ∧
∃x1, x2.(t2 = f(x1, x2)) ∧ (x2 ≤ t2)

which says that t1 is a subtype of t2 and the right child of t2
is a subtype of t2 itself. Now we can express the duplication
of b to get b′ through the following formula

dup-branch(b, b′)
def
=

recurse(b, b′) ∧
∀t.(recurse(b, t) → (b′ ≤ t))

We establish the correctness of dup-branch(b, b′) in
Lemma 6.

Lemma 6 Let b be a branch of t. A tree b′ duplicates
the non-⊥ sub-branch of b (as shown in Figure 5) iff
dup-branch(b, b′).

Proof. It is straightforward to verify that if b′ duplicates
the non-⊥ sub-branch of b, then dup-branch(b, b′). For the
other direction, assume dup-branch(b, b′′). Since b′ (shown
in Figure 5b) meets the condition recurse(b, b′), by definition
of dup-branch we have b′′ ≤ b′. We also have b ≤ b′′ because
recurse(b, b′′) holds. With a simple induction on the height
of the left spine of f ’s of b, we can show that b′′ must be the
same as b′. Thus, b′′ duplicates the non-⊥ sub-branch of b.

2

We introduce a few shorthands next. The formula
wordpair(w1, w2, b, t) expresses that for a branch b of a solu-
tion tree t, w1 and w2 are the pair of words associated with
that branch.

wordpair(w1, w2, b, t)
def
=

word(w1) ∧ word(w2) ∧
∃b′.(dup-branch(b, b′) ∧
∃u.(f(f(w1, w2), u) = b′))

The formula onestep(wi, w
′
i, wj , w

′
j) expresses a step in

the PCP construction, i.e., the concatenation of a pair of
words onto the current pair. It says that the words wi and
w′i are obtained from the words wj and w′j by respectively
prepending some words lk and rk of the PCP instance.

onestep(wi, w
′
i, wj , w

′
j)

def
=

∨
1≤k≤n(prependlk (wi, wj)
∧ prependrk (w′i, w

′
j))

We can now express that the tree t represents a solution
of a PCP instance. Recall that we must express that for
each wi and w′i, either wi and w′i are the empty words,
or there exist wj and w′j such that prependlk (wi, wj) and

prependrk (w′i, w
′
j). Consider the PCP instance P in which

we have 〈l1, r1〉, . . . , 〈ln, rn〉, where li and ri are words in
{1, 2}. We construct a first-order formula solvable(P) which
is valid iff P is solvable. The formula expresses the existence
of a tree representing a solution to P.

We introduce a few more shorthands. The formula
empty(w) tests whether a word w is ε. The formula
construct(w1, w2, b

′, t) ensures that w1 and w2 are obtained
from some branch b′ of t by a one step construction. We
use valid-branch(b, t) for saying that the words w1 and w2

are either ε or are obtained by a construction step of
PCP from another branch b′. Finally, we use the formula
accept-branch(b, t) to say that for some branch, the two
words associated with that branch are the same and not
the empty words ε.

empty(w)
def
= w = f(⊥,⊥)

construct(w1, w2, b
′, t)

def
=

branch(b′, t) ∧
∃w′1, w′2.(wordpair(w′1, w

′
2, b
′, t)

∧ onestep(w1, w2, w
′
1, w

′
2))

valid-branch(b, t)
def
=

(∃w1, w2.wordpair(w1, w2, b, t)
∧ ((empty(w1) ∧ empty(w2))
∨∃b′.construct(w1, w2, b

′, t)))

accept-branch(b, t)
def
=

branch(b, t) ∧
∃w.(wordpair(w,w, b, t) ∧
¬empty(w))

The formula solvable(P) now can be given as

solvable(P)
def
=

∃t.(∀b.(branch(b, t) → valid-branch(b, t))
∧ ∃b.accept-branch(b, t))

The correctness of the reduction from PCP to the first-
order theory of subtyping constraints is established in The-
orem 7.

Theorem 7 (Soundness and Completeness) A PCP
instance P has a solution iff the formula solvable(P) is valid.

Proof. It is easy to verify that if P has a solution, then any
representation of the solution sequence in terms of a tree t
shown in Figure 3 meets the requirement

∀b.(branch(b, t) → valid-branch(b, t)) ∧ ∃b.accept-branch(b, t)

On the other hand, suppose we have such a t, then it is also
easy to extract a solution sequence from t. Start with the
branch bm such that the two words associated with bm are
the same. Since bm is a branch and the two words are not
ε, there must be another branch bm−1 such that we have a
PCP construction step. This process must terminate, since t
is a finite tree. This reasoning can be easily formalized with
an induction on the number of branches of t (or equivalently
the size of t). 2

3.3 Recursive Types

In this section, we show that the construction can be
adapted to recursive types. Recall that in recursive types,
types are interpreted as regular trees over f and ⊥.

To adapt our construction, notice that it is sufficient to
restrict all the types (trees) to be finite trees. That is, we
need only express that a tree t is finite.

It turns out that only the words we get from a branch
of t must be finite. The other trees in the construction

7

f

}}}} 999

f

��� 222 ⊥

w w

f

wwwww
EEEEE

f

��� 333 f

��� <<<

w1 w2 f

 444 ⊥

w1 w1

(a) Failed attempt one. (b) Failed attempt two.

Figure 6: Failed attempts for recursive types.

can be infinite. For words, if we do not restrict them to
be finite, the existence of such a tree t as in Figure 3 may
not correspond to a solution to the PCP problem. To see
this, consider the PCP instance {〈11, 1〉}. Clearly, it has no
solution. However, consider the tree (f(f(w,w),⊥) shown
in Figure 6a, where w is the infinite regular tree such that
w = f(w,⊥), i.e., the infinite word 1ω.

One may wonder whether we can instead require that
a construction step must use two different branches, and
that the words for the two branches are not the same at
the respective positions. This does not work either. Con-
sider the PCP instance {〈ε, 1〉, 〈ε, 2〉}, which has no solution.
Now consider the tree f(f(w1, w2), f(f(w1, w1),⊥)) shown
in Figure 6b, where w1 = f(w2,⊥) ∧ w2 = f(⊥, w1), i.e.,
w1 is the infinite word (12)ω and w2 is the infinite word
(21)ω.

We take the approach of restricting the words extracted
from a branch to be finite. This can be achieved by simply
requiring that the set of proper subtypes of w has a largest
element, i.e.,

has-max(w)
def
= ∃t.(t < w ∧ ∀t′.(t′ < w → t′ ≤ t)

Lemma 8 A tree t representing a word is finite iff
has-max(t).

Proof. Let t be a word tree. If t is finite, then the set
of proper subtypes of t forms a chain. The set is finite,
and thus has a largest element. On the other hand, if the
tree is infinite, then all its proper subtypes are finite trees
truncated from t, i.e., the set of trees representing the finite
prefixes of word denoted by t (except ⊥). This set forms an
infinite ascending chain, and thus it does not have a largest
element. 2

We can now directly use the construction in Section 3,
except we require in the formula wordpair(w1, w2, b, t) that
w1 and w2 are finite:

wordpair(w1, w2, b, t)
def
=

word(w1) ∧ word(w2) ∧
has-max(w1) ∧ has-max(w2) ∧
∃b′.(dup-branch(b, b′) ∧
∃u.(f(f(w1, w2), u) = b′))

Thus, we have shown that the first-order theory of non-
structural subtyping constraints over recursive types (and
infinite trees) is undecidable.

Theorem 9 The first-order theory of non-structural sub-
typing constraints over recursive types (and infinite trees) is
undecidable for any type language with a binary type sym-
bol and ⊥.

Proof. Follows from Lemma 8 and Theorem 7. 2

4 Structural Subtyping: A Comparison

We show that the first-order theory of structural subtyping
constraints over the type language over f and ⊥ is decid-
able. This result provides a clear contrast between the ex-
pressiveness of structural and non-structural subtyping. In
addition, it provides another, and in some sense more appar-
ent, distinction between these two alternative interpretation
of subtypes. In fact, we show that the first-order theory of
structural subtyping constraints with a signature containing
one constant symbol is decidable.

Theorem 10 The first-order theory of structural subtyp-
ing constraints with a single constant symbol is decidable
for both simple and recursive types (and infinite trees).

Proof. This can be easily shown by noticing that in a
type language with only one constant (i.e., ⊥), the subtype
relation is the same as equality. Thus we can simply turn any
constraint t1 ≤ t2 into t1 = t2. Since the first-order theory
of equality is decidable both for finite and regular trees (and
infinite trees) [21], the theorem follows immediately. 2

5 Decidability of FOT with Unary Symbols

In this section, we show that if we restrict our type language
to unary function symbols and constants, the first-order the-
ory is decidable. This result shows that the difficulty in
the whole first-order theory lies in binary type constructors.
The idea of the proof is to reduce the problem to the tree
automata emptiness problem.

Note that word automata would suffice for encoding the
case with unary function symbols. However, because our
approach is extensible to type languages over arbitrary sig-
natures for the existential or universal fragments (see Sec-
tion 5.3), we present our results in terms of tree automata.

5.1 Background on Tree Automata

We recall some definitions and results on tree automata.
Tree automata generalize word automata by accepting

trees instead of words. Let F be a ranked alphabet, and let
Fn denote the set of symbols of arity n.

Definition 11 (Finite Tree) A finite tree t over a ranked
alphabet F is a mapping from a prefix-closed set pos(t) ⊆ N∗
into F . The set of positions pos of t satisfies

• pos(t) is nonempty and prefix-closed.

• For each π ∈ pos(t), if t(π) ∈ Fn, then πi ∈ pos(t) for
1 ≤ i ≤ n.

Definition 12 (Finite Tree Automata (NFTA)) A fi-
nite tree automaton (NFTA) over F is a tuple

A = (Q,F , QF ,∆)

where Q is a finite set of states, F is a finite set of ranked
alphabet, QF ⊆ Q is a set of final states, and ∆ is a set of
transition rules of the form

f(q1, . . . , qn) −→ q

where n ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q.

8

The above defines a bottom-up tree automaton, since an
automaton starts at the leaves and works up the tree in-
ductively. The move relation of a tree automaton A =
(Q,F , QF ,∆) can be defined as tree rewriting rules t −→

A
t′.

We say that t −→
A

t′ if t′ can be obtained from t by replac-

ing f(q1, . . . , qn) with q for some f(q1, . . . , qn) −→ q ∈ ∆.

We denote the reflexive and transitive closure of −→
A

by
∗−→
A

.

A term (or a tree) is accepted by a NFTA A =

(Q,F , QF ,∆) if t
∗−→
A

q for some final state q in QF .

Example 5 (tree automaton) Consider the automaton
where

Q = {q, qf}
F = {a, b, f(·, ·)}
QF = {qf}

∆ =

 a −→ q
b −→ qf

f(q, qf) −→ qf

The automaton accepts the smallest tree language L sat-

isfying (1) b ∈ L, and (2) if t ∈ L then f(a, t) ∈ L. For
example, it accepts the term f(a, b) since

f

��� ///

a b

−→ f

��� ///

q b

−→ f

��� 222

q qf

−→ qf

Our goal is to use tree automata to encode the solu-
tions of subtyping constraints. The solutions of a con-
straint system are an n-ary relation, associating with each
type variable a component in the relation. Thus, the so-
lutions of a constraint system of m variables can be repre-
sented as a set of m-tuples of trees. For example, the tuple
〈f(f(>,>),⊥), f(>, f(⊥,>))〉 is a solution to the constraint
x ≤ y.

We use a standard encoding to represent tuples [9]. We
first give an example to illustrate how the encoding works.
Consider tuples of words over the alphabet {0, 1}. We can
construct an automaton to accept the (encoding of) lan-
guage L of pairs (w,w′) such that ‖w‖ = ‖w′‖ (‖w‖ denotes
the length of the word w) and wi 6= w′i for 1 ≤ i ≤ ‖w‖, i.e.,
we flip 0’s and 1’s in w and w′. One possible encoding is to
“stack” the two words, i.e., put one on top of the other, and

we consider the product alphabet {00,
0
1,

1
0,

1
1}. With this en-

coding, we can easily construct an automaton that accepts
L, for example, the automaton with one state q and q is

both initial and final, having transitions (q, 01) −→ q and

(q, 10) −→ q.

This idea can be extended to tree automata on tuples
with “overlapping” of the terms. For any finite ranked
alphabet F , we define Fn = (F ∪ {]})n, where] is a
new symbol of arity 0. We consider only binary terms,
since general n-ary symbols can be simulated with a lin-
ear number of binary symbols in the arity of the sym-
bol. We define the arity of the symbols as the maximum
of the arities of the components, i.e., arity(f1, . . . , fn) =
max{arity(f1), . . . , arity(fn)}. Since] is of arity 0, the sym-
bol (], . . . ,]) is of arity 0, i.e., a constant. We denote by Fnm
the set of symbols in Fn of arity m.

For example, consider F = {a, f(·, ·)}, where a is a
constant and f is a binary symbol. Then F2 is the
set of symbols {aa, af, a], fa, ff, f],]a,]f,]]} and F2

2 is
{af, fa, ff, f],]f}.
Example 6 (tuple encoding)

f

��� 111

f

��� 000 ⊥

> >

f

 ///

> f

��� 000

⊥ >

ff

uuuuu
IIIII

f>
��� 777 ⊥f

��� 777

>] >]]⊥]>
(a) t1 (b) t2 (c) encoding of (t1, t2)

Definition 13 (Tree Automata on Tuples) Let F be a
ranked alphabet. A finite tree automaton on n-tuples over
F is a tree automaton A = (Q,Fn, QF ,∆) over Fn (defined
above), where Q is a finite set of states, QF ⊆ Q is a set of
final states, and ∆ is a set of transition rules of the form

f(q1, . . . , qm) −→ q

where n ≥ 0, f ∈ Fnm, q, q1, . . . , qm ∈ Q.

Example 7 (automaton on tuples) Consider the au-
tomaton where

Q = {qf}
F = {a, f(·, ·)}
QF = {qf}

∆ =

{
aa −→ qf

ff(qf , qf) −→ qf

}
One can verify that this automaton accepts the tree lan-

guage {(t, t) | t ∈ T (F)}.

Let t = (f1, . . . , fi, . . . , fn). Define ti = fi (the i-th com-
ponent of t) and t−i = (f1, . . . , fi−1, fi+1, . . . , fn) (the i-th
projection of t).

We now define two important operations on relations,
projection and cylindrification.

Definition 14 (Projection and Cylindrification) If
R ⊆ T (F)n (n ≥ 1) and 1 ≤ i ≤ n, then the i-th projection
of R is the relation Ri ⊆ T (F)n−1 defined by

Ri(t1, . . . , tn−1) ⇔ ∃t ∈ T (F).R(t1, . . . , ti−1, t, ti, . . . , tn−1)

If R ⊆ T (F)n (n ≥ 0) and 1 ≤ i ≤ n + 1, then the i-th
cylindrification of R is the relation Ri ⊆ T (F)n+1 defined
by

Ri(t1, . . . , ti−1, t, ti, . . . , tn) ⇔ R(t1, . . . , ti−1, ti, . . . , tn)

We summarize here results on tree automata that we use.
More details can be found in [9, 15].

Theorem 15 (Decidable Emptiness) The emptiness
problem for tree automata is decidable. In fact, it can be
decided in linear time in the size of the automaton.

Theorem 16 (Closure Properties) Tree automata are
closed under intersection, union, complementation, cylindri-
fication, and projection.

One can view intersection as the equivalent of Boolean
“and” ∧, union as the Boolean “or” ∨, complementation as
the Boolean negation ¬, projection as existential quantifica-
tion ∃. Cylindrification is used to ensure that two automata
represent solutions over a common set of variables, so that
their intersection can be taken.

9

5.2 A Decision Procedure

Recall that we consider a monadic signature in this section.
We reduce the validity of a formula φ to the emptiness deci-
sion of a tree automaton. We proceed by structural induc-
tion on the formula φ. We assume the formula is normalized
so that it uses only the connectives ∧, ¬, and ∃. In addition,
w.l.o.g., we assume the literals of the formula are of the form
x ≤ y, x = ⊥, x = >, and x = f(y).

• ∃x.φ
Let A1 be the automaton for φ. We construct an au-
tomaton A for ∃x.φ by taking the projection of A1

w.r.t. the x component of the tuple.4

• ¬φ
Let A1 be the automaton for φ. We construct an au-
tomaton A for ¬φ by complementing A1.

• φ1 ∧ φ2

Let A1 and A2 be the automata for φ1 and φ2. We
construct A′1 and A′2 for φ1 and φ2 by cylindrifying A1

and A2 so that A′1 and A′2 agree on all the components.
Then construct A for φ1 ∧ φ2 by intersecting A′1 and
A′2.

The following are for the base predicates.

• x = ⊥
We construct the automaton

A = ({qf},F1, {qf}, {⊥ −→ qf})

• x = >
We construct the automaton

A = ({qf},F1, {qf}, {> −→ qf})

• x = f(y)

We illustrate the construction for the case where there
is one other unary function symbol g in addition to f .
The constants are ⊥ and >.

We construct the following automaton

A = ({qf , qg, q⊥, q>, q]},F2, {qf},∆)

to accept all the pairs of (x, y) where x = f(y).

We give a recursive construction of the transitions. We
use qs as the state in which we are expecting a s for
the x-component (the first component).

Here are the cases where we expect a f for the x com-
ponent and in which we accept.

f⊥(q⊥) −→ qf

f>(q>) −→ qf

ff(qf) −→ qf

fg(qg) −→ qf

4Notice that only trees that are encodings of tuples of trees are
considered during an automata projection.

Here are the cases where a g is expected for the x com-
ponent.

g⊥(q⊥) −→ qg

g>(q>) −→ qg

gf(qf) −→ qg

gg(qg) −→ qg

Here are the base cases.

⊥] −→ q⊥

>] −→ q>

One can easily show with an induction that the con-
structed automaton accepts the language {(x, y) | x =
f(y)}.

• x ≤ y
We illustrate the construction for f . We assume f is
covariant in its argument. The construction is easily
extensible to the case with more function symbols, with
function symbols of binary or greater arities, and with
function symbols with contravariant arguments.

For α ≤ β to hold, we have the following cases

– α is ⊥;

– β is >;

– α = f(α1) and β = f(β1), where α1 ≤ β1.

We construct the automaton

A = ({ql, qr, qf},F2, {qf},∆)

The transition relation ∆ is constructed in pieces.

We have the atomic cases where α and β are either ⊥
or >

⊥⊥ −→ qf

⊥> −→ qf

>> −→ qf

Then we have the cases where α = ⊥ and β = f(β1) or
β = > and α = f(α1).

⊥f(ql) −→ qf

f>(qr) −→ qf

The state ql is used to signify that the left component
can only be], i.e., the component isn’t there. We still
need to complete the right component. For ql, we have
the rules

]⊥ −→ ql

]> −→ ql

]f(ql) −→ ql

10

The case for qr is symmetric, and we have the rules

⊥] −→ qr

>] −→ qr

f](qr) −→ qr

Finally we have the case where α = f(α1) and β =
f(β1). In this case, we require the subterms to be re-
lated. Thus we have the rule

ff(qf) −→ qf

One can easily verify that the automaton indeed rec-
ognizes the solutions of α ≤ β.

Thus the first-order theory of non-structural subtyping
restricted to unary function symbols is decidable. In addi-
tion, note that for structural subtyping, the only changes
are in the case x ≤ y, and can be easily expressed with tree
automaton. By using an acceptor model for infinite trees
and using top-down automata, we can easily adapt this con-
struction for infinite words.

Theorem 17 The first-order theory of non-structural sub-
typing with unary function symbols is decidable. This holds
both for the finite and infinite words and for structural sub-
typing as well.

Proof. Follows immediately from the above construction
and the properties of tree automata. 2

5.3 Extending to Arbitrary Signatures

We now discuss the issues with extending the described ap-
proach to arbitrary signatures. There are two related diffi-
culties in extending our approach to the full first-order the-
ory over arbitrary signatures. First, although we can easily
express the solutions to x ≤ y with standard tree automata,
we cannot express the solutions to x = f(y, z) with stan-
dard tree automata for any binary symbol f , because the
set {〈t1, t2, t3〉 | t1 = f(t2, t3)} is not a regular set [9]. An
extended form of tree automata on tuples is required, tree
automata on tuples with component-wise tests (TACT); such
automata allow machines to test relationships between tuple
components [41]. Because this class of tree automata is not
closed under projection, it does not extend to the full first-
order theory. However, this class of automata is still inter-
esting because it can encode the existential or equivalently
the universal fragments of the first-order theory. There-
fore, we can reduce non-structural subtype entailment to
the emptiness problem on a restricted class of TACT. We
believe this reduction is a promising direction in resolving
the decidability of non-structural subtype entailment.

6 Related Work

There are a few previous results on constraint simplification
regarding subtyping and set constraints. Henglein and Re-
hof consider the problem of subtyping constraint entailment
of the form C � α ≤ β, where C is a constraint set with sub-
typing constraints and α and β are type variables [17, 18].
The types are constructed from a finite lattice of base ele-
ments with the function (→) and product (×) constructors.
They prove the following results:

1. Structural subtype entailment over finite types is coNP-
complete [17].

2. Structural subtype entailment over recursive types is
PSPACE-complete [18].

3. Non-structural subtype entailment over finite types is
PSPACE-hard [18].

4. Non-structural subtype entailment over recursive types
is PSPACE-hard [18].

Niehren and Priesnitz consider the problem of non-
structural subtype entailment. They show that a natu-
ral subproblem is PSPACE-complete [27] and character-
ize non-structural subtype entailment over the signature
{f(,),⊥,>} with so-called P-automata [28]. They leave
open the decidability of non-structural subtype entailment
for this particular signature. Furthermore, it is not known
whether this approach can be extended to work on arbitrary
signatures.

Niehren et al. consider the entailment problem of atomic
set constraints, a restricted class of set constraints without
union and intersections and interpreted over the Herbrand
universe. They show entailment of the form C � α ⊆ β is
PSPACE-complete for atomic set constraints [26]. Flanagan
and Felleisen consider the problem of simplifying a variant
of atomic set constraints. They show restricted entailment
C1 �E C2 for this class of constraints is decidable (in ex-
ponential time) by reducing restricted entailment to regular
tree grammar containment and PSPACE-hard by a reduc-
tion from nondeterministic finite state automata contain-
ment [13]. They do not give an exact characterization of
the complexity of the problem.

Entailment problems for conditional equality con-
straints [38] (a weaker form of non-structural subtyping con-
straints) are studied in [39]. Both entailment and restricted
entailment are PTIME-complete. This is in contrast to
a simple extension, for which entailment is still PTIME-
complete, but restricted entailment is coNP-complete.

A few researchers consider semantic notions for subtyp-
ing constraint simplification. The most powerful one is the
notion of observational equivalence defined in [42]. Intu-
itively, observational equivalence says that from the analy-
sis point of view replacing one constraint set with an equiv-
alent one does not change the observable behavior of the
constraint system. A similar notion is used in [33] for sim-
plifying subtyping constraints.

There is also related work in term rewriting and con-
straint solving over trees in general [8, 10]. The work in this
paper is inspired by work in this area. Maher shows the
first-order theory of finite trees, infinite trees, and rational
trees is decidable by giving a complete axiomatization [21].
Many researchers consider various order relations among
trees, similar to the subtype orders. Venkataraman study
the first-order theory of subterm ordering over finite trees.
The existential fragment is shown to be NP-complete and
the ∃∀-fragment to be undecidable [43]. Müller et al. study
the first order theory of feature trees and show it undecid-
able [25]. Comon and Treinen show the first-order theory of
lexicographic path ordering is undecidable [11]. Automata-
theoretic constructions are used to obtain decidability re-
sults for many theories. Büchi uses finite word automata to
show the decidability of WS1S and S1S [7]. Finite automata
are also used to construct alternative proofs of decidability
of Presburger arithmetic [6, 44], and Rabin’s decidability of
WS2S and S2S are based on tree automata [35].

11

7 Conclusion

In this paper, we have shown that the first-order theory
of non-structural subtyping constraints is undecidable via a
reduction from the Post’s Correspondence Problem (PCP).
The result holds both for finite and infinite trees and for
any type signature with at least one binary type construc-
tor and a least element ⊥. This result yields a technical
separation of structural subtyping and non-structural sub-
typing. We have also shown that the first-order theory of
subtyping constraints with unary function symbols is de-
cidable. The automata-theoretic construction bridges au-
tomata theory and subtyping problems. This provides us
with an alternative way of tackling of the problems.

We consider this work a step towards resolving the long-
standing open questions about subtyping. The most out-
standing problems are the decidability of non-structural sub-
type entailment and subtyping constrained types.

References

[1] A. Aiken and E. Wimmers. Type Inclusion Constraints
and Type Inference. In Proceedings of the 1993 Confer-
ence on Functional Programming Languages and Com-
puter Architecture, pages 31–41, Copenhagen, Den-
mark, June 1993.

[2] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft Typ-
ing with Conditional Types. In Proceedings of the 21th
Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 163–173, Jan-
uary 1994.

[3] A. Aiken, E. Wimmers, and J. Palsberg. Optimal Rep-
resentations of Polymorphic Types with Subtyping. In
Proceedings of 3rd International Symposium on Theo-
retical Aspects of Computer Software (TACS’97), pages
47–76, 1997.

[4] R. Amadio and L. Cardelli. Subtyping Recursive Types.
ACM Transactions on Programming Languages and
Systems, 15(4):575–631, 1993.

[5] L. O. Andersen. Program Analysis and Specialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994. DIKU report
94/19.

[6] A. Boudet and H. Comon. Diophantine equations, Pres-
burger arithmetic and finite automata. In Proceedings
of Trees in Algebra and Programming (CAAP’96), vol-
ume 1059 of Lecture Notes in Computer Science, pages
30–43. Springer-Verlag, 1996.

[7] J. Büchi. Weak second order logic and finite automata.
Z. Math. Logik, Grundlag. Math., 5:66–62, 1960.

[8] H. Comon. Solving symbolic ordering constraints. In-
ternational Journal of Foundations of Computer Sci-
ence, 1(4):387–411, 1990.

[9] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Au-
tomata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1999.

[10] H. Comon and R. Treinen. Ordering constraints on
trees. In S. Tison, editor, Colloquium on Trees in Alge-
bra and Programming, volume 787 of Lecture Notes in
Computer Science, pages 1–14, Edinburgh, Scotland,
11-13 April 1994. Springer Verlag.

[11] H. Comon and R. Treinen. The first-order theory of
lexicographic path orderings is undecidable. Theoretical
Computer Science, 176:67–87, April 1997.

[12] M. Fähndrich and A. Aiken. Making Set-Constraint
Based Program Analyses Scale. In First Workshop
on Set Constraints at CP’96, Cambridge, MA, August
1996. Available as Technical Report CSD-TR-96-917,
University of California at Berkeley.

[13] C. Flanagan and M. Felleisen. Componential Set-Based
Analysis. In Proceedings of the 1997 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, June 1997.

[14] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich,
and M. Felleisen. Catching Bugs in the Web of Program
Invariants. In Proceedings of the 1996 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pages 23–32, May 1996.

[15] F. Gécseg and M. Steinby. Tree Automata. Akademiai
Kiado, 1984.

[16] N. Heintze. Set Based Analysis of ML Programs. In
Proceedings of the 1994 ACM Conference on LISP and
Functional Programming, pages 306–17, June 1994.

[17] F. Henglein and J. Rehof. The Complexity of Subtype
Entailment for Simple Types. In Proceedings of the
12th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 352–361, 1997.

[18] F. Henglein and J. Rehof. Constraint Automata and the
Complexity of Recursive Subtype Entailment. In Pro-
ceedings of the 25th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), pages
616–627, 1998.

[19] D. Kozen, J. Palsberg, and M.I. Schwartzbach. Efficient
Recursive Subtyping. In Proceedings of the 20th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 419–428, 1993.

[20] D. Kozen, J. Palsberg, and M.I. Schwartzbach. Efficient
Inference of Partial Types. Journal of Computer and
System Sciences (JCSS), 49(2):306–324, 1994.

[21] M.J. Maher. Complete axiomatizations of the algebras
of the finite, rational and infinite trees. In Proceedings
of the Third IEEE Symposium on Logic in Computer
Science, pages 348–357, Edinburgh, UK, 1988. Com-
puter Society Press.

[22] S. Marlow and P. Wadler. A Practical Subtyping Sys-
tem For Erlang. In Proceedings of the International
Conference on Functional Programming (ICFP ’97),
pages 136–149, June 1997.

[23] R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences,
17(3):348–375, December 1978.

12

[24] J.C. Mitchell. Type Inference with Simple Types. Jour-
nal of Functional Programming, 1(3):245–285, 1991.

[25] M. Müller, J. Niehren, and R. Treinen. The first-order
theory of ordering constraints over feature trees. Dis-
crete Mathematics and Theoretical Computer Science,
4(2):193–234, September 2001.

[26] J. Niehren, M. Müller, and J. Talbot. Entailment of
Atomic Set Constraints is PSPACE-Complete. In Pro-
ceedings of the 14th Annual IEEE Symposium on Logic
in Computer Science (LICS), pages 285–294, 1999.

[27] J. Niehren and T. Priesnitz. Entailment of Non-
Structural Subtype Constraints. In Asian Computing
Science Conference, number 1742 in LNCS, pages 251–
265. Springer, December 1999.

[28] J. Niehren and T. Priesnitz. Non-Structural Subtype
Entailment in Automata Theory. In Proceedings of
4th International Symposium on Theoretical Aspects of
Computer Software (TACS’01), number 2215 in LNCS,
pages 360–384. Springer, 2001.

[29] M. Odersky and P. Wadler. Pizza into Java: Translat-
ing theory into practice. In Proceedings of the 24th An-
nual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 146–159, Paris,
France, January 1997.

[30] J. Palsberg and P. O’Keefe. A Type System Equivalent
to Flow Analysis. ACM Transactions on Programming
Languages and Systems, 17(4):576–599, 1995.

[31] J. Palsberg and M. I. Schwartzbach. Object-Oriented
Type Inference. In Proceedings of the ACM Conference
on Object-Oriented programming: Systems, Languages,
and Applications, pages 146–161, October 1991.

[32] E.L. Post. A Variant of a Recursively Unsolvable Prob-
lem. Bull. of the Am. Math. Soc., 52, 1946.

[33] F. Pottier. Simplifying Subtyping Constraints. In
Proceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming (ICFP ’96),
pages 122–133, May 1996.

[34] F. Pottier. Simplifying subtyping constraints: a the-
ory. To appear in Information & Computation, August
2000.

[35] M.O. Rabin. Decidability of Second-Order Theories
and Automata on Infinite Trees. Transactions of the
American Mathematical Society, 141:1–35, 1969.

[36] J. Rehof. The Complexity of Simple Subtyping Systems.
PhD thesis, DIKU, 1998.

[37] O. Shivers. Control Flow Analysis in Scheme. In Pro-
ceedings of the 1988 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 164–174, June 1988.

[38] B. Steensgaard. Points-to Analysis in Almost Lin-
ear Time. In Proceedings of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 32–41, January 1996.

[39] Z. Su and A. Aiken. Entailment with conditional equal-
ity constraints. In Proceedings of European Symposium
on Programming, pages 170–189, April 2001.

[40] R. Treinen. A new method for undecidability proofs of
first order theories. Journal of Symbolic Computation,
14(5):437–457, November 1992.

[41] R. Treinen. Predicate logic and tree automata with
tests. In J. Tiuryn, editor, Foundations of Software Sci-
ence and Computation Structures, volume LNCS 1784,
pages 329–343. Springer, 2000.

[42] V. Trifonov and S. Smith. Subtyping Constrained
Types. In Proceedings of the 3rd International Static
Analysis Symposium, pages 349–365, September 1996.

[43] K.N. Venkataraman. Decidability of the purely existen-
tial fragment of the theory of term algebras. Journal of
the ACM, 34(2):492–510, April 1987.

[44] P. Wolper and B. Boigelot. An automata-theoretic ap-
proach to presburger arithmetic constraints. In Static
Analysis Symposium, pages 21–32, 1995.

A An Example

We give an example in this section to demonstrate our
automata construction in Section 5. Consider the alpha-
bet F = {⊥,>, g(·)}. We want to decide the entailment
{x ≤ g(y), g(x) ≤ y} � x ≤ y.

This entailment holds. We reason with a proof by con-
tradiction. Suppose the entailment does not hold. Then
there exist two trees t1 and t2 such that (1) t1 ≤ g(t2)
and g(t1) ≤ t2; and (2) t1 � t2. Choose t1 and t2 to
be trees such that ‖t1‖ + ‖t2‖ is minimized. Notice that
t1 = g(t′1) and t2 = g(t′2) for some t′1 and t′2, other-
wise, t1 and t2 cannot witness the non-entailment. How-
ever, then we have g(t′1) ≤ g(g(t′2)), i.e., t′1 ≤ g(t′2) and
g(g(t′1)) ≤ g(t′2), i.e., g(t′1) ≤ t′2. Furthermore, t′1 � t′2 since

t1 = g(t′1) � g(t′2) = t2. Thus, t′1 and t′2 also witness the
non-entailment, a contradiction.

We demonstrate that the entailment holds with the tech-
nique presented in this paper. After flattening the con-
straints, we consider the equivalent entailment

{x′ = g(x), y′ = g(y), x ≤ y′, x′ ≤ y} � x ≤ y

The above entailment is equivalent to deciding whether the
constraints {x′ = g(x), y′ = g(y), x ≤ y′, x′ ≤ y, x � y} are
unsatisfiable.

We construct an automaton for each of the five con-
straints.

• x′ = g(x)

Consider the automaton where

Q = {q1, q2, qf}
F = {⊥,>, g(·)}2

QF = {qf}

∆ =

]⊥ −→ q1
⊥g(q1) −→ qf
]> −→ q2
>g(q2) −→ qf
gg(qf) −→ qf

13

The first component is for x, and the second component
is for x′.

• y′ = g(y)

This is the same automaton as for x′ = g(x), with the
first component for y and the second component for y′.

• x ≤ y′

Consider the automaton where

Q = {q1, q2, qf}
F = {⊥,>, g(·)}2

QF = {qf}

∆ =

⊥⊥ −→ qf
⊥> −→ qf
>> −→ qf
]⊥ −→ q1
]> −→ q1

]g(q1) −→ q1
⊥g(q1) −→ qf
⊥] −→ q2
>] −→ q2

g](q2) −→ q2
g>(q2) −→ qf
gg(qf) −→ qf

The first component is for x, and the second component
is for y′.

• x′ ≤ y

This is the same automaton as for x ≤ y′, with the first
component for x′ and the second component for y.

• x � y

Consider the automaton where

Q = {q1, q2, qf}
F = {⊥,>, g(·)}2

QF = {qf}

∆ =

>⊥ −→ qf
]⊥ −→ q1
]> −→ q1

]g(q1) −→ q1
>g(q1) −→ qf
⊥] −→ q2
>] −→ q2

g](q2) −→ q2
g⊥(q2) −→ qf
gg(qf) −→ qf

The first component is for x, and the second component
is for y.

Now we apply cylindrification to the automata above. 5

We use the following shorthand for transition rules:

f1(f2 | f3)(q) −→ q′

5Before applying cylindrification, we need to make these automata
complete. Because of space limitations and the tediousness of the
construction, we simply use the original automata to illustrate how
cylindrification works. The basic construction is the same regardless
whether the automata are complete or not.

is a shorthand for the two rules

f1f2(q) −→ q′

and
f1f3(q) −→ q′

For x′ = g(x), consider the automaton where

Q = {q1, q2, qf}
F = {⊥,>, g(·)}4

QF = {qf}

∆ =

/* derived from]⊥ −→ q1 */
](] | ⊥ | >)⊥(] | ⊥ | >) −→ q1
]g⊥(] | ⊥ | > | g)(q1) −→ q1
]g⊥(] | ⊥ | > | g)(q2) −→ q1
]g⊥(] | ⊥ | > | g)(qf) −→ q1
](] | ⊥ | >)⊥g(q1) −→ q1
](] | ⊥ | >)⊥g(q2) −→ q1
](] | ⊥ | >)⊥g(qf) −→ q1

/* derived from ⊥g(q1) −→ qf */
⊥g(q1) −→ qf

⊥(] | ⊥ | > | g)g(] | ⊥ | > | g)(q1) −→ qf

/* derived from]> −→ q2 */
](] | ⊥ | >)>(] | ⊥ | >) −→ q2
]g>(] | ⊥ | > | g)(q1) −→ q2
]g>(] | ⊥ | > | g)(q2) −→ q2
]g>(] | ⊥ | > | g)(qf) −→ q2
](] | ⊥ | >)>g(q1) −→ q2
](] | ⊥ | >)>g(q2) −→ q2
](] | ⊥ | >)>g(qf) −→ q2

/* derived from >g(q2) −→ qf */
>(] | ⊥ | > | g)g(] | ⊥ | > | g)(q2) −→ qf

/* derived from gg(qf) −→ qf */
g(] | ⊥ | > | g)g(] | ⊥ | > | g)(qf) −→ qf

This automaton is obtained from the automaton for x′ =

g(x) above by applying cylindrification twice. The tuples
are ordered by x, y, x′, and y′, i.e., the first component
corresponds to x, the second component corresponds to y,
and so on.

The other four cases are treated in exactly the same man-
ner.

• y′ = g(y)

• x ≤ y′

• x′ ≤ y

• x � y

Then we can construct the intersection of the five au-
tomata obtained through cylindrification and verify that the
language accepted by the intersection is empty. With that,
we conclude that the entailment does indeed hold. Due to
space limitations, the rest of the construction is left to the
reader.

14

	Introduction
	Subtyping Constraints and Their First-Order Theories
	Preliminaries on Subtyping
	First-Order Theory of Subtyping Constraints
	Entailment is in the -Fragment
	Existential Entailment is in the -Fragment
	Subtype Constrained Types is in the -Fragment

	Undecidability of the First-Order Theory
	Representing Words as Trees
	Words as f-Spines
	Enforcing a Word Tree
	Prepending Trees

	Reducing PCP to FOT of Subtyping
	Outline of the Reduction
	Correct Form of the Tree
	Correct Construction of the Tree

	Recursive Types

	Structural Subtyping: A Comparison
	Decidability of FOT with Unary Symbols
	Background on Tree Automata
	A Decision Procedure
	Extending to Arbitrary Signatures

	Related Work
	Conclusion
	An Example

