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Abstract

Subtype satisfiability is an important problem for de-
signing advanced subtype systems and subtype-based
program analysis algorithms. The problem is well un-
derstood if the atomic types form a lattice. However,
little is known about subtype satisfiability over posets.
In this paper, we investigate algorithms for and the
complexity of subtype satisfiability over general posets.
We present a uniform treatment of different flavors of
subtyping: simple versus recursive types and structural
versus non-structural subtype orders. Our results are
established through a new connection of subtype con-
straints and modal logic. As a consequence, we settle a
problem left open by Tiuryn and Wand in 1993.

1 Introduction

Many programming languages have some form of sub-
typing. The most common use is in the sub-classing
mechanisms in object-oriented languages. Also common
is the notion of “coercion” [19], for example automatic
conversion from integers to floating point numbers.

Type checking and type inference for subtyping sys-
tems have been extensively studied since the original
results of Mitchell [20]. The main motivations for inves-
tigating these systems today are more advanced designs
for typed languages and program analysis algorithms
based on subtyping.

Subtyping systems invariably involve subtype con-
straints, inequalities of the form τ1 ≤ τ2, to capture
that the type τ1 is a subtype of τ2. For example, the
constraint int ≤ real means that at any place a float-
ing point number is expected, an integer can be used
instead.

Types are typically interpreted over trees over some
base elements (drawn from a finite lattice or a partial
order). The trees can be infinite if recursive types are
allowed. There are two choices for the subtype rela-
tion. In a system with structural subtyping only types

with the same shape are related. In a system with non-
structural subtyping, there is a “least” type ⊥ and a
“largest” type > that can be related to types of arbi-
trary shape.

Three logical problems for subtype constraints are
investigated in the literature: satisfiability [1, 6, 10, 15,
16, 20, 24, 27, 33, 34], entailment [8, 13, 14, 21, 22,
25, 26, 29, 35], and first-order validity [18, 32]. In this
paper, we close a number of problems on satisfiability.

If the base constants form a lattice then subtype
satisfiability is well understood [16, 20, 24]. For general
partially-ordered sets (posets), however, there exist only
partial answers. Tiuryn and Wand show that recursive
structural satisfiability is in DEXPTIME [34]. Tiuryn
shows that finite structural satisfiability is PSPACE-
hard [33], and subsequently Frey shows that it is in
PSPACE and thus PSPACE-complete [9]. Decidability
and complexity of non-structural subtype satisfiability
are open, for both finite and recursive types.

1.1 Main Contributions

In this paper, we close the open questions on subtype
satisfiability over posets. We consider all combinations
of finite versus recursive types, and structural versus
non-structural orders.

We base our results on a new approach, connect-
ing subtype constraints and modal logic. We introduce
uniform subtype constraints and show that their satisfi-
ability problem is polynomial time equivalent to that of
a dialect of propositional dynamic logic [2, 5, 7], which
is subsumed by the monadic second-order logic SnS of
the complete infinite n-ary tree [28]. With this connec-
tion, we completely characterize the exact complexity
of subtype satisfiability over posets in all cases.

Table 1 summarizes complexity results regard-
ing subtype satisfiability over posets. We show in
this paper, that recursive structural satisfiability is
DEXPTIME-hard, finite non-structural satisfiability is
PSPACE-complete, and recursive non-structural satis-
fiability is DEXPTIME-complete. In particular, this



structural non-structural

finite types
PSPACE (Frey, 1997 [9])

PSPACE-hard (Tiuryn, 1992 [33])
PSPACE-complete (this paper)

infinite types
DEXPTIME (Tiuryn and Wand, 1993 [34])

DEXPTIME-hard (this paper)
DEXPTIME-complete (this paper)

Table 1: Summary of complexity results on subtype satisfiability over posets.

settles a longstanding problem left open by Tiuryn and
Wand in 1993 [34].

1.2 Plan of the Paper

We first recall structural and non-structural subtype
orders, constraints, and satisfiability, and introduce so
called uniform counterparts (Section 2). We present
our dialect PDLn of propositional dynamic logic (PDL)
for infinite n-ary trees (Section 3) and determine the
complexity of uniform subtype satisfiability, by estab-
lishing forth and back translations to PDLn (Section 4).
Next, we relate structural and non-structural subtype
satisfiability to uniform subtype satisfiability, all inter-
preted over infinite trees (Section 5). We then consider
subtype satisfiability interpreted over finite trees (Sec-
tion 6) and conclude (Section 7). We include a proof of
DEXPTIME-hardness for our variant of PDLn in the
appendix (Appendix A).

2 Subtyping

In this section, we review basic concepts on subtyping.
We discuss the various choices of type expression lan-
guages, their signatures, subtype orders, and the notion
of subtype constraints. We also introduce the main sub-
ject of this paper: subtype satisfiability over posets.

2.1 Types as Trees

Types can be viewed as trees over some ranked alphabet
Σ, the signature of the given type language. A signature
consists of a finite set of function symbols (a.k.a. type
constructors). Each function symbol f has an associ-
ated arity(f) ≥ 0, indicating the number of arguments
that f expects, and for all 1 ≤ i ≤ arity(f) a polarity
pol(f, i) ∈ {1,−1}. We call a position i of symbol f
covariant if pol(f, i) = 1 and contravariant otherwise.
Symbols with arity zero are type constants.

We identify nodes π of trees with relative addresses
from the root of the tree, i.e., with words in (N−{0})∗.
A word πi addresses the i-th child of node π, and ππ′

the π′ descendant of π. The root is represented by the
empty word ε. We define a tree τ over Σ as a partial

function:
τ : (N− {0})∗ → Σ

Tree domains dom(τ) are prefixed closed, non-empty,
and arity consistent, i.e.: ∀π ∈ dom(τ)∀i ∈ N − {0} :
πi ∈ dom(τ) ↔ i ≤ arity(τ(π)). A tree τ is finite if
dom(τ) is a finite set, and infinite otherwise. We write
treeΣ for the set of possibly infinite trees over Σ.

Given a function symbol f with n = arity(f)
and trees τ1, . . . , τn ∈ treeΣ we define f(τ1, . . . , τn)
as the unique tree τ with f(τ1, . . . , τn)(ε) = f and
f(τ1, . . . , τn)(iπ) = τi(π). We define the polarities of
nodes in trees as follows:

polτ (ε) =df 1
polf(τ1,...,τn)(iπ) =df pol(f, i) ∗ polτi

(π)

For partial orders ≤, we let ≤1 denote the order ≤ itself
and ≤−1 the reversed relation, ≥.

Subtype orders ≤ are partial orders on trees over
some signature Σ. Two subtype orders arise naturally,
structural subtyping and non-structural subtyping.

2.2 Structural Subtyping

We investigate structural subtyping over standard sig-
natures with posets. These are parametrized by posets
(B,≤B) of constants and have the form:

Σ = B ∪ {×,→}

The product type constructor × is a binary function
symbol that is covariant in both positions (pol(×, 1) =
pol(×, 2) = 1), while the function type constructor →
is contravariant in its first and covariant in its second
argument (pol(→, 1) = −1 and pol(→, 2) = 1).

Structural subtype orders ≤ are partial orders on
trees over structural signatures Σ. They are obtained
by lifting the ordering on constants (B,≤B) in Σ to
trees. More formally, ≤ is the smallest binary relation
≤ on treeΣ such that for all b, b′ ∈ B and types τ1, τ2,
τ ′1, τ

′
2 in treeΣ:

• b ≤ b′ iff b ≤B b′;

• τ1 × τ2 ≤ τ ′1 × τ ′2 iff τ1 ≤ τ ′1 and τ2 ≤ τ ′2;

• τ1 → τ2 ≤ τ ′1 → τ ′2 iff τ ′1 ≤ τ1 and τ2 ≤ τ ′2.
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Notice that × is monotonic in both of its argu-
ments while → is anti-monotonic in its first argument
and monotonic in its second. For more general signa-
tures, monotonic arguments are specified by covariant
positions of function symbols, and anti-monotonic ar-
guments by contravariant positions.

For structural subtyping, two types are related only
if they have exactly the same shape, i.e., tree domain.
Notice that structural subtype orders are indeed partial
orders. We do not restrict ourselves to lattices (B,≤B)
in contrast to most previous work.

2.3 Non-Structural Subtyping

In the non-structural subtype order, two distinguished
constants are added to structural type languages, a
smallest type ⊥ and a largest type >. The ordering is
parametrized by a poset (B,≤B) and has the signature:

Σ = B ∪ {×,→} ∪ {⊥,>}

For the non-structural subtype order, besides the three
structural rules earlier, there is an additional rule:

• ⊥ ≤ τ ≤ > for any τ ∈ treeΣ

2.4 Uniform Subtyping

We introduce uniform subtyping as an intermediate or-
dering for two reasons: (i) to capture both structural
and non-structural subtyping effects and (ii) to use it
as a bridge from uniform subtype constraints to modal
logic.

We call a signature Σ uniform if all symbols in Σ
have the same non-zero arity and the same polarities.
All trees over Σ are complete infinite n-ary trees, where
n is the arity common to all function symbols in Σ.
Hence, all trees have the same shape. Furthermore,
the polarities of nodes π ∈ {1, . . . , n}∗ in trees τ over
uniform signatures do not depend on τ . We therefore
write pol(π) instead of pol τ (π).

The signatures {×} and {→}, for instance, are both
uniform, while {×,→} or {⊥,>,×} are not. The idea to
model the non-structural signature {⊥,>,×} uniformly
is to raise the arities of ⊥ and > to 2 and to order them
by ⊥ ≤Σ × ≤Σ >.

A uniform subtype order ≤ is defined over a
partially-ordered uniform signature (Σ,≤Σ). It satis-
fies for all trees τ1, τ2 ∈ treeΣ:

τ1 ≤ τ2 iff ∀π ∈ {1, . . . , n}∗ : τ1(π) ≤
pol(π)
Σ τ2(π)

where n is the arity of the function symbols in Σ. For

simplicity, we will often write ≤π
Σ instead of ≤

pol(π)
Σ .

2.5 Subtype Constraints and Satisfiability

In a subtype system, type variables are used to denote
unknown types. We assume that there are a denumer-
able set of type variables V . We assume w.l.o.g. that
subtype constraints are flat, and subtype constraints ϕ
over some signature Σ are given by the following gram-
mar:

ϕ ::= x=f(x1, . . . , xn) | x≤y | ϕ ∧ ϕ

where n is the arity of f ∈ Σ. We call atomic con-
straints x=f(x1, . . . , xn) and x≤y the literals. The type
variables in a constraint ϕ are called the free variables
of ϕ, denoted by V (ϕ).

We always consider two possible interpretations of
subtype constraints, over possibly infinite tree over Σ,
and over finite trees over Σ respectively. A variable
assignment α is a function mapping type variables V
to trees of the respective domain. A constraint ϕ is
satisfiable over Σ if there is a variable assignment α
such that α(ϕ) holds in Σ.

We distinguish three subtype satisfiability problems,
each of which has two variants depending on interpre-
tation over finite or possibly infinite trees.

Structural subtype satisfiability is the problem to
decide whether a structural subtype constraint is
satisfiable. The arguments of this problem are a
posets (B,≤B) and a constraint ϕ over the signa-
ture B ∪ {×,→}.

Non-structural subtype satisfiability is the prob-
lem to decide whether a non-structural subtype
constraint is satisfiable. The arguments are a
poset (B,≤B) and a constraint ϕ over signature
B ∪ {×,→} ∪ {⊥,>}.

Uniform subtype satisfiability is the the problem
to decide whether a uniform subtype constraint is
satisfiable. The arguments are a partially-ordered
uniform signature (Σ,≤Σ) and a subtype con-
straint ϕ over this signature.

3 Propositional Dynamic Logic over Trees

Propositional dynamic logic (PDL) is a modal logic
that extends Boolean logic to directed graphs of pos-
sible worlds. The same proposition may hold in some
node of the graph and be wrong in others. Nodes are
connected by labeled edges, that can be talked about
modal operators.

In this paper, we consider the modal logic PDLn,
the PDL language for the complete infinite n-ary tree.
PDLn is naturally subsumed by the monadic second-
order logic SnS of the complete n-ary tree [28].
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R ::= i | R ∪R′ | RR′ | R∗ where 1 ≤ i ≤ n
A ::= p | ¬A | A ∧A′ | [R]A

Figure 1: Syntax of PDLn.

3.1 Other PDL Dialects

Propositional dynamic logic (PDL) over directed edge-
labeled graphs goes back to Fischer and Ladner [7], who
restricted Pratt’s dynamic logic to the propositional
fragment. It is well known that PDL has the tree prop-
erty : every satisfiable PDL formula can be satisfied in a
rooted edge-labeled tree. Deterministic PDL [2, 11, 36]
restricts the model class to graphs whose edge labels
are functional in that they determine successor nodes.
Deterministic PDL with edge labels {1, . . . , n} is the
closest relative to our language PDLn, due to the tree
property.

Besides of PDLn, a large variety of PDL dialects with
tree models were proposed in the literature. These dif-
fer in the classes of tree models, the permitted modal
operators, and the logical connectives. Three differ-
ent dialects of PDL over finite, binary, or n-ary trees
were proposed in [5, 17, 23], see [4] for a comparison.
PDL over finite unranked ordered trees were proposed
for computational linguistics applications [5] and found
recent interest for querying XML documents.

3.2 PDLn and its Fragments

For every n ≥ 1 we define a logic PDLn as the PDL
logic, for describing the complete infinite n-ary tree.

The syntax of PDLn expressions1 A is given in Fig-
ure 1. Starting from some infinite set Pr of propo-
sitional variables p, it extends the Boolean logic over
these variables by universal modalities [R]A, where R
is a regular expression over the alphabet {1, . . . , n}.

We frequently use the modality [∗] as an abbrevia-
tion of [{1, . . . , n}∗], and sometimes [+] as a shorthand
for [{1, . . . , n}+]. We freely use definable logical con-
nective for implication →, equivalence ↔, disjunction
∨, exclusive disjunction ∨

+

, and the Boolean constants
true and false. Furthermore, we can define existential
modalities 〈R〉A by ¬[R]¬A.

We interpret formulas of PDLn over the complete
infinite n-ary trees. Tree nodes are labeled by the set
of propositions that are valid there. Formally, a model
M of a formula in PDLn assigns Boolean values 0, 1 to
propositional variables in every node in {1, . . . , n}∗:

M : Pr × {1, . . . , n}∗ → {0, 1}

1We could allow for test ?A in regular expressions, which fre-

quently occur in PDL dialects but we will not need them.

M,π |= p if M(p, π) = 1
M,π |= A1 ∧A2 if M,π |= A1 and M,π |= A2

M,π |= ¬A if not M,π |= A
M,π |= [R]A if for all π′ ∈ L(R): M,ππ′ |= A

Table 2: Semantics of PDLn.

Table 2 defines when a formula A holds in some node π
of some model M , in formulas: M,π |= A. A formula
[R]A is valid for some node π of a tree M if A holds in
all R descendants of π in M , i.e., in all nodes ππ′ where
π′ belongs to the language L(R) of R.

Let us recall some logical notations. A formula A is
valid in a model M if it holds in the root of M :

M |= A iff M, ε |= A

A formula A is satisfiable if it is valid in some model; it
is valid it is valid in all models:

|= A iff ∀M.M |= A

Two formulas A, A′ are equivalent if A↔ A′ is valid:

A |=| A′ iff |= A↔ A′

For instance, 〈i〉A |=| [i]A holds for all 1 ≤ i ≤ n and all
A, since nodes of the n-ary tree have unique i successors.

Note that PDLn respects the substitution property:
whenever A1 |=| A2 then A[A1/A2] |=| A. To see this
note that if A1 |=| A2 then the equivalence A ↔ A′ is
valid not only at the root of all models but also at all
other nodes of all models. This is because all subtrees
of complete n-ary trees are again complete n-ary trees.

Theorem 1 Satisfiability of PDLn formulas is in
DEXPTIME.

A PDLn formula is satisfiable iff it can be satis-
fied by a deterministic rooted graph with edge labels
in {1, . . . , n}. The proposition thus follows from the
DEXPTIME upper bound for deterministic PDL [2, 11],
which is a corollary to the analogous result for PDL.

3.3 Flat Core PDLn

We next investigate lower complexity bounds for PDLn.
It is known from Vardi and Wolper [36] that satisfiabil-
ity of deterministic PDL is DEXPTIME-complete. This
result clearly carries over to PDLn.

An analysis of Spaan’s proofs [31] reveals that nested
[∗] modalities are not needed for DEXPTIME-hardness.
But we can even do better, i.e., restrict the language
further.
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B ::= p1 ∧ p2 | ¬p | [i]p where 1 ≤ i ≤ n
C ::= p | [∗] (p↔ B) | C1 ∧ C2

Figure 2: Syntax of flat corePDLn.

We define the fragment flat core PDLn in Figure 2.
A formula of flat core PDLn is a conjunction of proposi-
tional variables and expressions of the form [∗] (p↔ B).
Note that [∗] modalities cannot be nested. Furthermore,
all Boolean sub-formulas B are flat in that Boolean con-
nectives only apply to variables.

Theorem 2 Satisfiability of flat core PDLn formulas
is DEXPTIME-complete.

We prove this theorem in Appendix A based on a
new idea: we show how to express the emptiness of
intersections of tree automata in PDLn, a problem that
was shown DEXPTIME-hard by Seidl [30].

3.4 Inversion

We now consider a variant of PDLn

with inverted modalities [R]−, which ad-
dress all nodes π′π reached by prefixing
some π′ ∈ L(R) to the actual node π.

[  ]π

π’

[R]−[  ]π
π π’

[R]
root

π π

M,π |= [R−]A if for all π′ ∈ L(R): M,π′π |= A

Inverted flat core PDLn is defined in analogy to flat
core PDLn except that all modalities are inverted.

B ::= p1 ∧ p2 | ¬p | [i]
−p for 1 ≤ i ≤ n

C ::= p | [∗] (p↔ B) | C1 ∧ C2

We will freely omit inversion for [∗] operators, as these
are never nested below modalities. We can translate flat
core PDLn formulas C into formulas C− of the inverted
flat core, and vice versa, by replacing the operators [i]
through [i]−. Models can be inverted too: M−(p, π) =
M(p, π−1) where π−1 is the inversion of π.

Lemma 1 M |= C iff M− |= C−.

4 Uniform Subtype Satisfiability

In this section, we investigate the complexity of uniform
subtype satisfiability. We first show how to encode uni-
form subtype constraints into inverted PDLn. We then
give a translation from inverted flat core PDLn back
to uniform subtype satisfiability. Both translations are
polynomial time and preserve satisfiability (Proposi-
tion 2 and 3). The complexity of PDLn (Theorem 2)
thus carries over to uniform subtype satisfiability.

Theorem 3 Uniform subtype satisfiability over possi-
bly infinite trees is DEXPTIME-complete.

4.1 Uniform Subtype Constraints into PDLn

We encode uniform subtype constraints over infinite
trees into inverted PDLn. The translation relies on
ideas of Tiuryn and Wand [34], but it is simpler with
modal logics as the target language, rather than infinite
sets of regular path constraints. We first present our
translation for covariant uniform signatures and then
sketch the contravariant case.

Let Σ be a uniform covariant signature and n > 1
the arity of its function symbols. We fix a finite set
of type variables V and consider subtype constraints ϕ
over Σ with V (ϕ) ⊆ V . For all x ∈ V and f ∈ Σ we
introduce propositional variables Px=f that are true at
all nodes π ∈ {1, . . . , n}∗ where the label of x is f .

The well-formedness formula wff V states that all
nodes of tree values of all x ∈ V carry a unique label f :

wff V =df

∧

x∈V [∗] (
∨+

f∈ΣPx=f )

A polynomial time encoding of subtype constraints
is presented in Table 3. Inverted modalities [i]−

are needed to translate x=f(x1, . . . , xn) since α |=
x=f(x1, . . . , xn) if and only if α(x)(ε) = f and
α(x)(iπ) = α(xi)(π) for all words iπ ∈ {1, . . . , n}∗.

Proposition 1 A uniform subtype constraint ϕ over a
covariant signature Σ with V (ϕ) ⊆ V is satisfiable if
and only if wff V ∧ [[ϕ]] is satisfiable.

Proof. A solution of ϕ is a function α : V → treeΣ.
Let n be the arity of function symbols in Σ, so that
all trees in treeΣ are complete n-ary trees with nodes
labeled in Σ, i.e., total functions of type {1, . . . , n}∗ →
Σ. A variable assignment α thus defines a PDLn model
Mα : Pr × {1, . . . , n}∗ → Σ that satisfies for all x ∈ V
and π ∈ {1, . . . , n}∗:

Mα(Px=f , π) ↔ α(x)(π) = f

We can now show by induction on the structure of ϕ
that α |= ϕ iff Mα, ε |= wff V ∧ [[ϕ]]. ¤

Proposition 2 Uniform subtype satisfiability with co-
variant signatures over possibly infinite trees is in DEX-
PTIME.

Proof. It remains to show that our reduction is in
polynomial time. This might seem obvious, but it
needs some care. Exclusive disjunctions of the form
p1∨

+

. . .∨
+

pn as used in the well-formedness formula
can be encoded in quadratic time through

∨n
i=1(pi ∧

∧

1≤j 6=i≤n ¬pj). Equivalences p ↔ ¬p′ as used can be
encoded in linear time by (p ∧ ¬p′) ∨ (¬p ∧ p′). ¤
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[[x=f(x1, . . . , xn)]] =df Px=f ∧
∧

g∈Σ

∧

1≤i≤n[∗] (Pxi=g ↔ [i]−Px=g)

[[x≤y]] =df [∗]
∨

f≤Σg
(Px=f ∧ Py=g)

[[ϕ1 ∧ ϕ2]] =df [[ϕ1]] ∧ [[ϕ2]]

Table 3: Expressing uniform covariant subtype constraints in inverted PDLn.

Contravariance. Our approach smoothly extends to
uniform subtyping with contravariant signatures. The
key idea is that we can express polarities in inverted flat
core PDLn by using a new propositional variable ppol .
For example, consider the uniform signature Σ = {→},
where → is the usual function type constructor. The
variable ppol is true in nodes with polarity 1 and false
otherwise:

ppol ∧ [∗] (ppol ↔ [1]−¬ppol ) ∧ [∗] (ppol ↔ [2]−ppol ).

Limitation due to Inversion. Inversion is crucial to
our translation and has a number of consequences. Most
importantly, we cannot express the formula [∗](p →
[+]p′) in inverted PDLn, which states that whenever
p holds at some node then it holds for all its proper
descendants.

As a consequence, we cannot directly translate sub-
type constraints over standard signatures into PDLn

(which we consider in Sections 5). The difficulty is to
encode tree domains in the presence of leafs. Suppose
we want to define that p holds for all nodes outside the
tree domain. We could do so by imposing [∗](pc → [+]p)
for all constants c, but this is impossible in inverted
PDLn.

This is not a problem for uniform signatures, be-
cause every tree there is an infinite, complete n-ary tree.
This shows that we do not need to express tree domains
when considering satisfiability. Unfortunately, the same
technique does not extend to entailment and other first-
order fragments that require negations.

4.2 Back Translation

To prove DEXPTIME-hardness of uniform subtype sat-
isfiability, we show how to express inverted flat core
PDLn by uniform subtype constraints, indeed only with
covariant signatures. Our encoding of Boolean logic is
inspired by Tiuryn [33], while the idea to lift this en-
coding to PDLn is new.

Let C be a formula of inverted flat core PDLn and
m ≥ 0 be the maximal i for which [i] occurs in C.
We construct uniform subtype con-
straints with function symbols ordered
in a crown: Σ(m) = {t1, t2, f1, f2}. All

f1 f2

t1 t2
function symbols have arity m and satisfy ti ≤Σ(m) fj

for all i, j ∈ {1, 2}. We use propositional variables p,
q, and r as type variables in the subtype constraint we
are constructing too, i.e., V = Pr . Let booli = {ti , fi}
for i ∈ {1, 2} be two Boolean lattices.

In Table 4, we encode Boolean formulas so that
they hold in all nodes of a tree. The subtype con-
straints all-ti(p) and all-fi(p) hold for the unique trees
that are completely labeled by ti and fi respectively.
The subtype constraint all-booli(p) holds for trees that
are labeled in booli . The constraints lower(p, q) and
upper(p, q) require the existence of lower and upper
bounds respectively for trees p and q. These bounds
are used to define the diagonal pairs diag(p, q) in the
crown.

Lemma 2 diag(p, q) |=| ∀π. (p(π) = t1 ∧ q(π) = f2) ∨
(p(π) = f1 ∧ q(π) = t2).

Proof. Since p is a tree labeled in bool1 , all nodes π
satisfy α(p)(π)=t1 or α(p)(π)=f1. In the first case (the
second is analogous) the constraint upper(p, q) entails
α(q)(π)6=t2. Since q is a bool2 tree, α(q)(π)=f2. ¤

The subtype constraint all(p1 ∨ p2 ∨ ¬p3 ∨ ¬p4) ex-
presses a universally valid Boolean clause. In its defini-
tion, we use the diagonal operator in functional syntax
to increase readability. Solutions of such formulas are
variable assignments α : Pr → {1, . . . , n}∗ → Σ(m).
We freely identify t = t1 and f = f1, and thus the
Booleans bool with bool1 . For variable assignments
α into trees over Booleans, we define PDLn-models
Mα : Pr × {1, . . . , n}∗ → bool by Currying:

Mα(p, π) = α(p)(π)

Lemma 3 For all variable assignments α, α |=
all(p1 ∨ p2 ∨ ¬p3 ∨ ¬p4) if and only if Mα is defined and
Mα |= [∗](p1 ∨ p2 ∨ ¬p3 ∨ ¬p4).

Proof. Let A = p1 ∨ p2 ∨ ¬p3 ∨ ¬p4. We as-
sume α |= all(A). The model Mα exists since A |=
∧

1≤i≤4 all-bool1(pi). We show Mα |= [∗]A by contra-
dicting the existence of a path π with:

α |= p1(π)=f1 ∧ p2(π)=f1 ∧ p3(π)=t1 ∧ p4(π)=t1.

Each of these four disjuncts forbids one of four possible
values for α(q)(π), as we argue below, where q is the
existentially quantified variable in all(A). This is clearly
impossible.
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all-ti(p) =df ∃q. q=ti(q, . . . , q)
all-fi(p) =df ∃q. q=fi(q, . . . , q)

all-booli(p) =df ∃q1∃q2. (all-fi(q1) ∧ q1≤p≤q2 ∧ all-ti(q2))
upper(p1, p2) =df ∃q. p1≤q ∧ p2≤q
lower(p1, p2) =df ∃q. q≤p1 ∧ q≤p2

diag(p, q) =df all-bool1(p) ∧ all-bool2(q) ∧ upper(p, q) ∧ lower(p, q)
all(p1 ∨ p2 ∨ ¬p3 ∨ ¬p4) =df ∃q.

∧

1≤i≤4 all-bool1(pi)

∧upper(q, p4) ∧ upper(q, diag(p2))
∧lower(q, p1) ∧ lower(q, diag(p3))

all(p1 ∨ p2) =df ∃q. all(p1 ∨ p2 ∨ ¬q ∨ ¬q) ∧ all-f1(q)

Table 4: Boolean operations expressed by subtype constraints.

1. if α(p1)(π)=f1 then α(q)(π) 6= f2 since α |=
lower(q, p1);

2. if α(p2)(π)=f1 then α |= diag(p2)(π)=t2
(Lemma 2). This implies α(q)(π) 6= t1 since
α |= upper(q, diag(p2)).

3. if α(p3)(π)=t1 then α |= diag(p3)(π)=f2
(Lemma 2). This implies α(q)(π) 6= f1 since
α |= lower(q, diag(p3)).

4. if α(p4)(π)=t1 then α(q)(π) 6= t2 since α |=
upper(q, p4). ¤

Encoding clauses with two positive and two negative
literals is sufficient to encode all other clauses needed
in the back translation [[C]]

−1
shown in Table 5.

Proposition 3 Let C be a flat core inverted PDLn

formula. For all variable assignments α to trees over
Σ(m), α |= [[C]]

−1
if and only if Mα is defined and

Mα |= C.

For n = 0, subtype constraints become ordering con-
straints for some given ordering, while PDL 0 satisfia-
bility becomes a Boolean satisfiability problem that is
well-known to be NP-complete. We thus obtain a new
NP-completeness proof for ordering constraints inter-
preted over a given ordering relation [27].

5 Equivalence of Subtype Problems

We next show the equivalence of uniform subtype sat-
isfiability with structural and non-structural subtype
satisfiabilities over possibly infinite trees. Subtype sat-
isfiability over finite trees will be treated in Section 6.

Theorem 4 Structural, non-structural, and uniform
subtype satisfiability over possibly infinite trees are
equivalent and DEXPTIME-complete.

The proof relies on so called 1-subtype orders which
are subtype orders over signatures with a single non-
constant, and the corresponding constraints.

1-subtype satisfiability is the satisfiability problem
of subtype constraints over 1-subtype orders. This
problem is parametric in the arities and polarities
of the non-constant, the partial order on constants
(B,B≤), and whether or not {⊥,>} is included in
the signature.

We present the proof in four steps. We first show
how to reduce structural subtype satisfiability to 1-
subtype satisfiability (Section 5.1) and then do the same
for the non-structural case (Section 5.2). Next, we re-
duce 1-subtype satisfiability to uniform subtype sat-
isfiability (Section 5.3). Finally, we translate uniform
subtype satisfiability back to both structural and non-
structural subtype satisfiability (Section 5.4).

5.1 Structural to 1-Subtype Satisfiability

In this part, we show how to reduce structural to 1-
subtype satisfiability. We first use a standard technique
to characterize the shapes of solutions to a structural
subtype constraints. We consider type expressions as
terms over Σ.

Definition 1 Let ϕ be a constraint over Σ and ? be
an arbitrary, fixed constant. For any type expression
t, t? denotes the same type expression as t except all
constants in t are replaced with ?. Define the shape
constraint sh(ϕ) as:

sh(t1 = t2) =df t?1 = t?2

sh(x≤y) =df x = y

sh(ϕ1 ∧ ϕ2) =df sh(ϕ1) ∧ sh(ϕ2)

The constraint ϕ is called weakly unifiable iff sh(ϕ) is
unifiable.
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[[p]]
−1

=df ∃p1 . . . ∃pn. all-bool1(p) ∧ p=t1(p1, . . . , pm)

[[[∗] (p↔ [i]−q)]]
−1

=df all-bool1(p) ∧ all-bool1(q)
∧ ∃q1 . . . ∃qn.(t1(q1, ...qm)≤q≤f1(q1, ...qm) ∧ p=qi)

[[[∗] (p↔ ¬q)]]
−1

=df all(p ∨ q) ∧ all(¬p ∨ ¬q)

[[[∗] (p↔ (q1 ∧ q2))]]
−1

=df all(¬p ∨ q1) ∧ all(¬p ∨ q2) ∧ all(p ∨ ¬q1 ∨ ¬q2)

[[C1 ∧ C2]]
−1

=df [[C1]]
−1
∧ [[C2]]

−1

Table 5: Inverted core flat PDLn in subtype constraints.

Consider a signature Σ = B∪{×,→}. We construct
a signature s(Σ) =df B ∪ {f, c}, where f is function
symbol of arity four and c is a fresh constant. Our
approach is to use f to capture both × and →, i.e., all
the non-constant function symbols in Σ. The first two
arguments of f are used to model the two arguments of
× and the next two to model the two arguments of →.
Thus, f is co-variant in all arguments except the third
one.

Given a constraint ϕ over Σ, we construct s(ϕ) over
s(Σ):

s(x = y × z) =df x = f(y, z, c, c)

s(x = y → z) =df x = f(c, c, y, z)

s(x = b) =df x = b ∀b ∈ B

s(x≤y) =df x≤y

s(ϕ1 ∧ ϕ2) =df s(ϕ1) ∧ s(ϕ2)

Lemma 4 If ϕ is weakly unifiable, then ϕ is satisfiable
over Σ iff s(ϕ) is satisfiable over s(Σ).

The proof of the above lemma requires the following
result. Let ϕ be a constraint over a structural signature
Σ. We have the following result due to Frey [9] that
relates the shape of a solution of ϕ to that of a solution
of sh(ϕ).

Lemma 5 (Frey [9]) If ϕ is satisfiable, let α be a so-
lution of sh(ϕ). Then ϕ has a solution β that is of the
same shape as α, i.e., for all x ∈ V (ϕ) = V (sh(ϕ)),
sh(α(x) = β(x)) is unifiable.

5.2 Non-Structural to 1-Subtype Satisfiability

We handle non-structural signatures Σ = B ∪
{⊥,>,×,→}, similarly. The new signature is defined
in exactly the same way as for the structural case by
s(Σ) = B ∪ {⊥,>, f, c}. Constraints are also trans-
formed in the same way, except including two extra
rules for ⊥ and >:

s(x = ⊥) =df x = ⊥

s(x = >) =df x = >

However, weak unifiability is not sufficient for the
initial satisfiability check. To see that, consider, for ex-
ample, x≤y×z∧x≤u→ v, which is satisfiable, but not
weakly unifiable. To address this problem, we intro-
duce a notion of weak satisfiability. It is similar to weak
unfiability, except subtype ordering is also retained.

Definition 2 Let ϕ be a constraint over Σ, and ? be
an arbitrary and fixed constant. We define t? as be-
fore, except ⊥? =df ⊥ and >? =df >. Define the weak
satisfiability constraint ws(ϕ) as:

ws(t1 = t2) =df t?1 = t?2

ws(x≤y) =df x≤y

ws(ϕ1 ∧ ϕ2) =df ws(ϕ1) ∧ ws(ϕ2)

The constraint ϕ is called weakly satisfiable iff ws(ϕ)
is satisfiable.

Lemma 6 If ϕ is weakly satisfiable, then ϕ is satisfi-
able over Σ iff s(ϕ) is satisfiable over s(Σ).

The proof of this lemma requires the following result.
Let ϕ be a constraint over a non-structural signature
Σ. If ws(ϕ) is satisfiable, then ws(ϕ) has a minimum
shape solution α by a simple extension of a theorem of
Palsberg, Wand and OKeefe on non-structural subtype
satisfiability over lattices [24]. We claim that if ϕ is
satisfiable, then ϕ also has a minimum shape solution
that is of the same shape as α.

Lemma 7 If ϕ is satisfiable over Σ, let α be a min-
imum shape solution for ws(ϕ), and in addition, α is
such a solution with the least number of leaves assigned
?. Then ϕ has a solution β that is of the same shape as
α, i.e., for all x ∈ V (ϕ) = V (ws(ϕ)), sh(α(x) = β(x))
is unifiable. Furthermore, β is a minimum shape solu-
tion of ϕ.

Proof. Let γ be a solution for ϕ. We construct a variable
assignment β for ϕ from α and γ:

β(x)(π) =df

{

γ(x)(π) if α(x)(ϕ) = ?
α(x)(π) otherwise.
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One can show that dom(α) = dom(β), because if
α(x)(π) = ?, γ(x)(π) must be a constant. We verify
that β |= ϕ:

• Consider a literal of the form x = f(x1, . . . , xn)
for n > 0. Both α(x) = f(α(x1), . . . , α(xn))
and γ(x) = f(γ(x1), . . . , γ(xn)). Thus,
if α(x)(π) = ? = (f(α(x1), . . . , α(xn))(π),
β(x)(π) = γ(x)(π) = f(γ(x1), . . . , γ(xn))(π) =
f(β(x1), . . . , β(xn))(π). Otherwise, β(x)(π) =
α(x)(π) = f(α(x1), . . . , α(xn))(π) =
f(β(x1), . . . , β(xn))(π).

• Consider a literal of the form x = b for b ∈ B ∪
{⊥,>}. Clearly, β(x) = b.

• Consider a literal of the form x≤y. We use a simple
case analysis on the possible values of α(x)(π) and
α(y)(π) for each address π. ¤

Lemma 5 and Lemma 7 together imply the follow-
ing corollary, which is used next in Section 6 to treat
subtype satisfiability interpreted over finite trees.

Corollary 1 A subtype constraint ϕ is satisfiable over
finite trees if and only if ϕ is satisfiable over finite trees
of height bounded by |ϕ|. This holds for both structural
and non-structural signatures.

5.3 1-Subtype to Uniform Satisfiability

In this part, we give a reduction from 1-subtype to uni-
form subtype satisfiability. This reduction is uniform
for subtyping with and without ⊥ and >.

Proposition 4 Over possibly infinite trees, 1-subtype
satisfiability is linear time reducible to uniform subtype
satisfiability.

Proof. Let Σ be a 1-subtype signature. We define a
uniform signature s(Σ ) by extending the arities of all
function symbols to the maximal arity of Σ (i.e., the
arity of the only non-trivial function symbol), such that:

• s(Σ ) =df Σ ;

• ∀f ∈ s(Σ).aritys(Σ)(f) =df max;

• ≤s(Σ) =df ≤Σ

where max is the maximal arity of Σ.
We next translate a subtype constraint ϕ over Σ to

a constraint s(ϕ) over s(Σ ):

s(x=f (x1 , . . . , xmax)) =df x=f(x1, . . . , xmax) (1)

s(x=b) =df x=b(y1, . . . , ymax) (2)

s(x1 ≤ x2 ) =df x1 ≤ x2 (3)

s(ϕ1 ∧ ϕ2 ) =df s(ϕ1 ) ∧ s(ϕ2 ) (4)

s(x=⊥) =df x=⊥(u1, . . . , umax) (5)

s(x=>) =df x=>(v1, . . . , vmax) (6)

where the yi’s, ui’s, and vi’s are fresh variables, and
rules (5) and (6) are additional ones for a non-structural
signature.

Lemma 8 A subtype constraint ϕ over a standard sig-
nature Σ is satisfiable if and only if s(ϕ) is satisfiable
over the uniform signature s(Σ ).

Proof of (⇐). For this implication, we define a trans-
formation of cut : trees(Σ) → treeΣ:

• cut(f(τ1, . . . , τmax)) =df f , if f ∈ Σ0;

• cut(f(τ1, . . . , τmax)) =df f(cut(τ1), . . . , cut(τmax)),
otherwise.

We fix a solution α of s(ϕ) and show that the variable
assignment cut ◦α satisfies ϕ over Σ. We need to verify
that cut ◦ α satisfies all literals of ϕ:

1. Consider a literal of the form x=f(x1, . . . , xmax)
in ϕ (for arity(f) = max). We know that α |=
x = f(x1, . . . , xmax). In addition, the following
sequence of implications holds:

α |= x=f(x1, . . . , xmax)
⇔ α(x) = f(α(x1), . . . , α(xmax))
⇒ cut(α(x)) = f(cut(α(x1)), . . . , cut(α(xmax)))
⇔ cut ◦ α |= x=f(x1, . . . , xmax)

2. Consider a literal of the form x=b in ϕ. We know
α |= x = b(y1, . . . , ymax) for some fresh variables
yi. Similarly, we have the following sequence of
implications:

α |= x=b(y1, . . . , ymax)
⇔ α(x) = b(α(y1), . . . , α(ymax))
⇒ cut(α(x)) = b
⇔ cut ◦ α |= x=b

3. Consider a literal of the form x ≤ y in ϕ. We
know D2 = dom(cut(α(x))) ∩ dom(cut(α(y))) ⊆
dom(α(x)) ∩ dom(α(y)) = D1. We thus have:

α |= x ≤ y
⇔ α(x) ≤ α(y)
⇔ ∀π ∈ D1.α(x)(π) ≤Σ α(y)(π)
⇒ ∀π ∈ D2.cut(α(x)(π)) ≤Σ cut(α(y)(π))
⇔ cut ◦ α |= x ≤ y

4. For a non-structural signature, literals of the form
x=⊥ and x=> are treated similarly as x=b in the
second case.

(⇒) We now consider the inverse implication. We
first define a mapping ext : treeΣ → trees(Σ):

• ext(f(τ1, . . . , τmax)) =df f(ext(τ1), . . . , ext(τmax))
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• ext(b) =df b(?
∞, . . . , ?∞), where ? is an arbitrary,

fixed constant in B of Σ, and ?∞ denotes the com-
plete, infinite tree where each node is labeled ?, i.e.,
the unique solution to the equation x = ?(x, . . . , x).

• For a non-structural signature, ext(⊥) and ext(>)
are defined respectively as the smallest tree and the
greatest tree (over the two max-ary symbols ⊥ and
> in s(Σ )). They are defined mutually recursively
and are unique solutions to the following equations:

x = ⊥(x1, . . . , xmax)

y = >(y1, . . . , ymax)

where xi = x and yi = y if the i-th argument is
co-variant; and xi = y and yi = x otherwise.

As an example, for a standard signature with the
function type constructor →, ext(⊥) and ext(>)
give the unique solution to the equations x =
⊥(y, x) and y = >(x, y).

We first state and prove the following lemma regard-
ing ext .

Lemma 9 If τ1 ≤ τ2, then ext(τ1) ≤ ext(τ2).

Proof. We use a proof by contradiction. We prove for a
non-structural signature. For structural signatures, the
proof is exactly the same, except discarding all cases
involving ⊥ or >.

For τ1 ≤ τ2, assume that ext(τ1) 6≤ ext(τ2). Then
there is a shortest path π such that ext(τ1)(π) 6≤

π

ext(τ2)(π). Clearly, π 6= ε, and we let π = π′.i for
some π′ and i ∈ {1, . . . ,max}. We have a few cases:

1. When π ∈ dom(τ1) ∧ π ∈ dom(τ2): This case is
impossible because it contradicts the assumption
that τ1 ≤ τ2.

2. When π ∈ dom(τ1) ∧ π 6∈ dom(τ2): ext(τ2)(π
′)

must be > if par(π′) = 1 or ⊥ if par(π′) =
−1 . In either case, it is clear that ext(τ1)(π) ≤

π

ext(τ2)(π), a contradiction.

3. When π 6∈ dom(τ1) ∧ π ∈ dom(τ2): This case is
symmetric to the previous one.

4. When π 6∈ dom(τ1) ∧ π 6∈ dom(τ2): We know
ext(τ1)(π

′) and ext(τ2)(π
′) must be constants. In

addition, ext(τ1)(π
′) ≤π′

ext(τ2)(π
′), because π

is the shortest path such that ext(τ1)(π) 6≤π

ext(τ2)(π). This would, however, imply that
ext(τ1)(π) ≤

π ext(τ2)(π), a contradiction. ¤

We can now finish the proof of Lemma 8. Let α |= ϕ.
We construct a variable assignment β for s(ϕ):

• β(x) =df ext(α(x)) for all variables x ∈ V (ϕ);

• β(x) =df ?
∞ for the yi’s;

• β(x) =df ext(⊥) for a co-variant ui or contra-
variant vi;

• β(x) =df ext(>) for a contra-variant ui or co-
variant vi.

We need to show that β |= s(ϕ). There are a few
kinds of literals in s(ϕ):

1. Consider a literal of the form x = f(x1, . . . , xmax)
of s(ϕ), derived from x = f(x1, . . . , xmax) of ϕ. We
know that α |= x = f(x1, . . . , xmax), i.e., α(x) =
f(α(x1), . . . , α(xmax)). Thus, we have:

β(x) = ext(f(α(x1), . . . , α(xmax)))

= f(ext(α(x1)), . . . , ext(α(xmax)))

= f(β(x1), . . . , β(xmax))

= β(f(x1, . . . , xmax))

Hence, β |= x = f(x1, . . . , xmax).

2. Consider a literal of the form x = b(y1, . . . , ymax),
derived from x = b in ϕ. We know that α |= x = b,
i.e., α(x) = b. We thus have:

β(x) = ext(α(x))

= ext(b)

= b(β(y1), . . . , β(ymax))

= β(b(y1, . . . , ymax))

Hence, β |= x = b(y1, . . . , ymax).

3. Consider a literal of the form x ≤ y, derived from
x ≤ y in ϕ. We know α |= x ≤ y, i.e., α(x) ≤
α(y). By Lemma 9, we have β(x) = ext(α(x)) ≤
ext(α(y)) = β(y). Thus, β |= x ≤ y.

4. For a non-structural signature, we have lit-
erals of the form x=⊥(u1, . . . , umax) and
x=>(v1, . . . , vmax). For the case with ⊥, we
know α |= x = ⊥. We thus have:

β(x) = ext(α(x))

= ext(⊥)

= ⊥(β(u1), . . . , β(umax))

= β(⊥(u1, . . . , umax))

The case for > is similar. ¤

With Lemma 8, we have finished the proof of Propo-
sition 4.
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5.4 Uniform to (Non-)Structural Satisfiability

In this part, we prove the last step of the equivalence
(Theorem 4), namely, how to reduce uniform subtype
satisfiability to structural and non-structural subtype
satisfiabilities.

Proposition 5 Uniform subtype satisfiability is linear
time reducible to structural and non-structural subtype
satisfiability over possibly infinite trees.

To simplify its proof we assume a uniform subtype
problem where all function symbols have arity three
with their first two arguments being contravariant and
the last one covariant. This proof can be easily adapted
to uniform signatures with other arities and polarities.

We construct a reverse translation ¯̄s of s (defined in
Section 5.3) in two steps. Let Σ be a uniform signature
with symbols of arity three. We first define a standard
signature s̄(Σ) by including symbols in Σ as constants
and adding →:

• s̄(Σ) =df Σ ∪ {→};

• ∀g ∈ Σ.arity s̄(Σ)(g) =df 0;

• arity s̄(Σ)(→) =df 2;

• ≤s̄(Σ) =df ≤Σ;

We now translate a subtype constraint ϕ over Σ to
a constraint s̄(ϕ) over s̄(Σ):

s̄(x=g(x1, x2, x3)) =df x=(x3 → x2)→ (x1 → g)
s̄(x1 ≤ x2) =df x1 ≤ x2
s̄(ϕ1 ∧ ϕ2) =df s̄(ϕ1) ∧ s̄(ϕ2)

where we use a non-flat constraint in the first line
for a simpler presentation. The arguments x1, x2 are
again contravariant and x3 is covariant in the constraint
s̄(x=g(x1, x2, x3)). Thus, s̄ preserves all polarities.

In our second step, we force every variable to be
mapped to a fixed, infinite shape. We extend s̄(Σ) to
¯̄s(Σ ) with four new constants a1, a2, a3, and a4 with
the following ordering:

a1 ≤ c a2 ≤ c
c ≤ a3 c ≤ a4

for all constants c ∈ s̄(Σ). We define ¯̄s(ϕ) as the con-
junction of s̄(Σ) and the following constraints:

(1) u1 ≤ x∧u2 ≤ x∧x ≤ u3∧x ≤ u4, for each variable
x ∈ V (s̄(Σ)); and

(2)
∧

i=1,2,3,4 ui=(ui → ui)→ (ui → ai)

The constraints (1) and (2) in ¯̄s(ϕ) determine the
shape of any variable x ∈ V (s̄(ϕ)). We claim, in the
following lemma, that any solution to ¯̄s(ϕ) must be of
a particular shape and must also map variables x ∈
V (s̄(ϕ)) to trees over s̄(Σ).

Lemma 10 When the constraint ¯̄s(ϕ) is interpreted
over any (non-)structural signature ¯̄s(Σ ) or ¯̄s(Σ ) ∪
{⊥,>}, every variable assignment α |= ¯̄s(ϕ) satisfies
that for all paths π ∈ (1(1∪2) ∪ 21)∗:

α(x)(π′) = → if π′ is a prefix of π

α(x)(π22) =

{

ai if x = ui

c ∈ Σ otherwise.

Lemma 11 A subtype constraint ϕ over a uniform sig-
nature Σ is satisfiable if and only if the constraint ¯̄s(ϕ)
over ¯̄s(Σ ) is satisfiable. This statement also holds if
we replace the structural signature ¯̄s(Σ ) by the non-
structural signature ¯̄s(Σ ) ∪ {⊥,>}.

Proof. We define a transformation of map : treeΣ →
tree¯̄s(Σ) on trees for all g ∈ Σ:

map(g(τ1, τ2, τ3)) =df (map(τ3)→ map(τ2))
→ (map(τ1)→ g)

With that it can be easily verified that if there exists
a solution α |= ϕ over an uniform signature Σ then
map(α) |= ¯̄s(ϕ) holds over ¯̄s(Σ ). For the other direc-
tion we assume an assignment α |= ¯̄s(ϕ). Then there
also exists an assignment β = map−1(α) according to
the shape of any solution of ¯̄s(ϕ) stated in Lemma 10.
Again, it can be easily verified that β |= Σ.

The proof also holds in the case where we add ⊥ and
> to ¯̄s(Σ ) since both symbols cannot occur in any node
of any solution of ¯̄s(Σ ) (again Lemma 10). ¤

6 Finite Subtype Satisfiability over Posets

The complexity of finite structural subtype satisfiability
was shown to be PSPACE-complete by Tiuryn [33] and
Frey [9]. Here, we establish the same complexity for the
non-structural case.

6.1 PSPACE-hardness

Proposition 6 Non-structural subtype satisfiability
over finite trees is PSPACE-hard.

The analogous result for the structural case was
shown by Tiuryn [33]). To lift this result, we show how
to reduce non-structural to structural subtype satisfia-
bility.

Lemma 12 Structural subtype satisfiability is polyno-
mial time reducible to non-structural subtype satisfiabil-
ity (both for finite and infinite trees).

Proof. Let Σ be a structural signature. We construct
a non-structural signature:

s(Σ) =df Σ ∪ {⊥,>, a1, a2, a3, a4}
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with the ai’s four new constants. In addition,

≤s(Σ) =df ≤Σ ∪{(a1, c), (a2, c), (c, a3), (c, a4) | c ∈ Σ0}

Let ϕ be a constraint over Σ. We construct s(ϕ)
over s(Σ). Consider ϕ’s shape constraint sh(ϕ) (see
Definition 1). If sh(ϕ) is not unifiable, we simply let
s(ϕ) =df >≤⊥. Otherwise, consider the most general
unifier (m.g.u.) γ of sh(ϕ). We let sh(ϕ)′ be the same
as sh(ϕ) except each occurrence of ? is replaced with a
fresh variable. We make two copies of sh(ϕ)′, sh(ϕ)′L
and sh(ϕ)′R (for left and right), where each variable x
is distinguished as xL and xR respectively. For each
variable x ∈ V (ϕ), if γ(x) is either ? or belongs to
V (ϕ), we say x is atomic. For a variable x, let force(x)
denote the constraint:

a1≤x ∧ a2≤x ∧ x≤a3 ∧ x≤a4

Notice that Lemma 12 holds both for finite and in-
finite trees.

We can now construct s(ϕ), which is the conjunction
of the following components: (1) ϕ itself; (2) sh(ϕ)′L; (3)
sh(ϕ)′R; (4) For each atomic x ∈ V (ϕ), force(xL) and
force(xR); (5) For each fresh variable x in sh(ϕ)′L and
sh(ϕ)′R, force(x); and (6) For each variable x ∈ V (ϕ),
xL≤x≤xR. One can show that ϕ is satisfiable over Σ
iff s(ϕ) is satisfiable over s(Σ). ¤

6.2 A PSPACE Algorithm

Theorem 5 Finite non-structural subtype satisfiability
is PSPACE-complete.

It remains to prove membership in PSPACE. We
present a proof based on K-normal modal logic which
applies uniformly to the non-structural and the struc-
tural cases.

We assume a signature Σ that contains at least one
constant c and non-constant symbol f . Satisfiability
would be trivial otherwise. We adapt our reduction to
uniform signature for the finite case. Let s(Σ) be the
uniform signature for Σ. With the following formulas we
define an additional subtype ordering @s(Σ) by g@s(Σ)f
for all g ∈ s(Σ) and one fixed symbol f :

finiten(x) =df ∃y1...∃yn+1. xvy1
∧ ∧n

i=1yi=f(yi+1, ...yi+1)
∧ yn+1=c(yn+1, ...yn+1)

finiten(V ) =df ∧x∈V finiten(x)

The following proposition holds by Theorem 4 and
Corollary 1.

Proposition 7 A subtype constraint ϕ is satisfiable
over finite Σ-trees if and only if the constraint s(ϕ) ∧
finite|ϕ|(V (ϕ)) is satisfiable over uniform signatures
s(Σ).

We can easily adapt the translation of sub-
type constraints over uniform signatures into inverted
core PDLn from Table 3 to handle the formulas
finite|ϕ|(V (ϕ)) as well. This yields a satisfiability pre-
serving encoding into inverted core PDLn for the finite
case. We finally alter this encoding to a translation into
the following modal logic:

D ::= B | [{1, . . . , n}|ϕ|]B | D1 ∧D2

Because all trees in finite solutions of ϕ have at most
linear depth it is correct to replace all [∗] modalities by
[{1, . . . , n}|ϕ|], both, in the reduction of Table 3 and in
the well-formedness property wff V . This gives a trans-
lation into formulas D.

Proposition 8 Satisfiability of inverted linearly depth-
bounded PDLn formulas D is in PSPACE.

Proof. We translate the problem to satisfiability of K-
normal modal logic over the complete infinite n-ary tree
(which is known to be in PSPACE [31]). It is defined by
the syntax of PDLn formulas A restricted to the single
modality [{1, 2}]:

E ::= p | ¬E | E ∧ E′ | E ↔ E′ | ¤E

We denote i repetitions of ¤ by ¤i. The only compli-
cation is to translate formulas [i]B. In the case of bi-
nary trees (other cases of n are analogous) we do so by
translating [1]B to ¤(p→ B) and [2]B to ¤(¬p→ B),
where we use a new variable p that is true at all paths
π1 and false at paths π2. Following [12] p can be ax-
iomatized by:

∧m
i=1¤

i−1(〈{1, 2}〉¤m−ip ∧ 〈{1, 2}〉¤m−i¬p).

7 Conclusions

We have given a complete characterization of the com-
plexity of subtype satisfiability over posets through a
new connection of subtype satisfiability with modal log-
ics, which have well understood satisfiability problems.
Our technique yields a uniform and systematic treat-
ment of different choices of subtype orderings: finite
versus recursive types, structural versus non-structural
subtyping, and considerations of symbols with co- and
contra-variant arguments.

Our technique, however, does not extend beyond
satisfiability to other first-order fragments that require
negations, such as subtype entailment, whose decidabil-
ity is a longstanding open problem over non-structural
signatures. Negations can certainly be modeled by our
modal logic, but only over uniform signatures. In fact,

12



there must not exist reductions from standard signa-
tures to uniform ones that preserve subtype entailment,
for example. Otherwise, such a reduction would have
implied that the first-order theory of non-structural
subtyping, which is undecidable [32], were a fragment
of S2S, which is decidable [28].
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A Proving DEXPTIME-hardness

We prove that satisfiability of flat core PDLn

is DEXPTIME-hard and thus DEXPTIME-complete
(Theorem 2).

We proceeds in two steps. We first introduce a new
dialect of PDLn that we call the core of PDLn , and
express emptiness of intersections of tree automata in
that language. This proofs DEXPTIME hardness [30]
of core PDLn. In the second step, we normalize core
PDLn into flat core PDLn. This relies on a flattening
procedure inspired by techniques of Spaan [31].

A.1 Core PDLn

The core of PDLn is a fragment of PDLn that is slightly
richer than flat core PDLn. Formulas C of core PDLn

are conjunctions of propositional variables and expres-
sion [∗]B, where B is an arbitrary, possibly non-flat
Boolean expression.

B ::= p | ¬B | B ∧B′ | B ↔ B′ | [i]B
C ::= B | [∗]B | C ∧ C

The modalities are again restricted to immediate [i] suc-
cessors (where 1 ≤ i ≤ n) and arbitrary [∗] descendants
such that [∗] cannot be nested below other modalities.

In Table 6 we define a set of standard operators on
Boolean expressions in core PDLn formulas. Note that
all operators affect the size of formulas linearly. Our

or. B1 ∨B2 =df ¬(¬B1 ∧ ¬B2)
implication. B1 → B2 =df ¬B1 ∨B2

exclusive or. B1∨
+

B2 =df ¬(B1 ↔ B2)
false value. false =df p0 ∧ ¬p0

for some p0 ∈ Pr
true value. true =df ¬false

Table 6: Operators on Boolean expressions.

syntax provides for equivalences, to avoid the exponen-
tial blow up in the standard:

A1 ↔ A2 |=| A1 → A2 ∧A2 → A1

But expressing nested equivalences through two-sided
implications might blow up sizes exponentially.

Proposition 9 Satisfiability of core PDLn formulas is
DEXPTIME-hard.

Proof. This can be proved by a closer inspection of
DEXPTIME-hardness proofs for PDL [3, 11, 31] or de-
terministic PDL [36]. Here, we give a new direct proof
by encoding emptiness of intersections of tree automata.

Let Σ be a finite ranked signature. A tree au-
tomaton A over a signature Σ consists of a finite set
states(A) of states, a subset final(A) ⊆ states(A) of fi-
nal states, and a set rules(A) of transition rules of the
form f(q1, . . . , qn) → q where q1, . . . , qn, q ∈ states(Ai)
and n = arityΣ(f). The language of a tree automaton
L(A) contains all those ground terms over Σ that can
be evaluated into a final state by rule application.

We first encode trees over Σ in PDLn with max
successors where max is the maximal arity of func-
tion symbols in Σ. We introduce fresh propositional
variables pf for every symbol f ∈ Σ to represent f -
labeled nodes, and a propositional variable pdom to ex-
press tree domains. A model M encodes a tree τ if for
all π ∈ {1, . . . ,max}∗:

M,π |= pdom iff π ∈ dom(τ) and
M,π |= pf iff τ(π) = f

Lemma 13 There exists a formula treeΣ in the core
of PDLn whose models represent precisely the trees in
treeΣ.

Proof. We use a couple of well-formedness conditions
for representations of possibly infinite trees. Formula
labelΣ says that the root of every ground term belongs
to its domain and every node of the domain is labeled
in Σ.

labelΣ =df pdom ∧ [∗](pdom →
∨

f∈Σ

+

pf )

14



Condition arityΣ requires that every node of a tree ful-
fills the arity required by its label.

arityΣ =df [∗](
∧

f∈Σ pf → (
∧arityΣ(f)

i=1 [i]pdom∧
∧max

j=1+arityΣ(f)
[j]¬pdom))

Property prefix restricts tree domains of ground terms
to be prefixed-closed:

prefix =df [∗]pdom →

(

max
∧

i=1

[i] pdom

)

Possibly infinite trees are now definable:

treeΣ =df labelΣ ∧ arityΣ ∧ prefix ¤

We next want to restrict models to representation
ground terms, i.e., to finite trees over Σ, but unfortu-
nately, finiteness cannot be expressed in PDLn. Lemma
14 indicates a way out of this problem. It is sufficient
to restrict the depth of terms exponentially, rather then
to impose finiteness.

Lemma 14 Let (Ai)
n
i=1 be a finite sequence of tree au-

tomata over the same signature. If the intersection
∩n
i=1L(Ai) is nonempty, then it contains some tree of

depth bounded by
∏n

i=1 |states(Ai)|.

Proof. We can construct a tree automaton for the inter-
section with at most

∏n
i=1 |states(Ai)| and then apply

the pumping lemma for regular tree languages. ¤

It is thus sufficient to encode ground terms whose
depth is bounded exponentially in the size of the given
intersection of tree automata. This can be expressed by
a PDLn formula of polynomial size, which simulates a
counter.

Lemma 15 For every n ≥ 0, there exists a formula
ground−termΣ(n) in the core of PDLn describing all
finite trees over Σ with depth bounded by 2n.

Proof. Condition counter(n) describes an n-bit counter
that counts the depth of nodes starting from the root.
We consider tree models with propositional variables
(pi)

n
i=1 that represent the n bits of the counter. Lets

identify the Boolean values t with the digit 1 and f
with 0. For every model M and node π the sequence
M(pn, π) . . .M(p1, π) is the binary representation of the
depth of node π in tree M , modulo 2n.

all(n) =df

∧n
i=1 pi

counter(0) =df true
counter(n) =df counter(n−1) ∧ ¬pn

∧[∗]((¬pn ∧ ¬all(n−1))→ ∧n
i=1[i]¬pn)

∧[∗]((¬pn ∧ all(n−1))→ ∧n
i=1[i]pn)

∧[∗]((pn ∧ ¬all(n−1))→ ∧n
i=1[i]pn)

∧[∗]((pn ∧ all(n−1))→ ∧n
i=1[i]¬pn)

flat1(p) =df [∗] (Pp ↔ p ∧ p)
flat1(¬B) =df [∗] (P¬B ↔ ¬PB) ∧ flat1(B)

flat1(B ∧B′) =df [∗] (PB∧B′ ↔ (PB∧PB′))
∧flat1(B) ∧ flat1(B

′)
flat1([i]B) =df [∗] (P[i]B ↔ [i]PB) ∧ flat1(B)

flat1(B ↔ B′) =df [∗] (PB↔B′ ↔ (PB→B′∧PB′→B))
∧flat1(B→B′) ∧ flat1(B

′→B)

flat2(B) =df PB ∧ flat1(B)
flat2([∗]B) =df [∗]PB ∧ flat1(B)

flat2(C ∧ C) =df flat2(C) ∧ flat2(C
′)

Table 7: Flattening core PDLn formulas.

The formula depth(n) bounds the depth of nodes in
the domain to 2n.

depth(n) =df counter(n) ∧ [∗](all(n)→ ¬pdom)

We can now define ground terms:

ground−termΣ(n) =df treeΣ ∧ depth(n) ¤

Let (Ai)
n
i=1 be a sequence of tree automata over a

signature Σ with disjunct state sets. We encode simul-
taneously accepting runs of all tree automata (Ai)

n
i=1.

We use propositional variables pq for all states q ∈
]n
i=1states(Ai).

run(Ai) =df [∗] (∧q∈states(A) ((pq ∧ pf )→
∨ f(q1,...,qn)→q∈rules(Ai) ∧

n
i=1 [i]pqi

))
accept(Ai) =df ∨q∈final(Ai)pq ∧ run(Ai)

Lemma 16 The intersection ∩n
i=1L(Ai) is the set of

ground terms that yield models of the following PDLn

formula for k = maxni=1 |states(Ai)| :

ground−term(dlog(k)e ∗ n) ∧ ∧n
i=1accept(Ai)

A.2 Flattening

Proposition 10 Every core PDLn formula C is satis-
faction equivalent to some flat core PDLn formula, that
can be computed in linear time.

The idea of the proof is to introduce new propo-
sitional variables for all sub-term positions of a given
PDLn formula. We fix a finite set Pr0 of propositional
variables and an injective generator function:

P : PDLn → (Pr − Pr0)

that maps a PDLn formulas A to propositional variables
PA. Given this generator, Table 7 defines two flattening
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M ′(p, π) =df M(p, π) if p ∈ Pr0
M ′(p, π) =df arbitrary if p 6∈ Pr0 ∪ P (B)

M ′(Pp, π) =df M ′(p, π)
M ′(P¬B , π) =df ¬M ′(B, π)

M ′(PB1∧B2 , π) =df M ′(B1, π) ∧M ′(B2, π)
M ′(PB1↔B2 , π) =df M ′(B1, π)↔M ′(B2, π)

M ′(P[i]B , π) =df ∀ 1 ≤ i ≤ n.M ′(B, πi)

Figure 3: Extending models to new variables PB .

functions flat1 and flat2, for core PDLn formulas of type
B and C respectively.

Formulas flat1(B) and flat2(C) are clearly flat core
PDLn formulas for all core PDLn formulas B and
flat2(C), except for sub-formulas [∗]PB which can be
expressed through [∗](PB ↔ true) and thus by the flat
formula: [∗](PB ↔ Ptrue ∧ Ptrue) ∧ flat1(true).

The sizes of flat1(B) and flat2(C) remain linear in
those of B and C respectively, when sharing common
subconstraints flat1(B1) and flat1(B2) in translations
of equivalences flat1(B1 ↔ B2), i.e., in flat1(B1 → B2)
and flat1(B2 → B1).

Lemma 17 (Correctness) For all core PDLn formu-
las C with Pr(C) ⊆ Pr0:

C |=| ∃Pr−Pr0. flat2(C)

The proof relies on the following two Lemmas.

Lemma 18 For all core PDLn formulas B with vari-
ables Pr(B) ⊆ Pr0:

|= ∀Pr0 ∃Pr−Pr0. flat1(B)

Proof. We fix a model M : Pr × {1, . . . n}∗ → {0, 1} of
B and define a model M ′ : Pr × {1, . . . n}∗ → {0, 1}
of flat1(B) in Figure 3. The definition of M ′(PB , π) is
by induction on the structure of terms B. Clearly, M ′

differs from M only on variables in Pr − Pr 0. We can
show M ′ |= flat1(B) for all formulas B with variables
Pr(B) ⊆ Pr0 by induction on the structure of B. ¤

Lemma 19 flat1(B) |= [∗] (PB ↔ B) for all core
PDLn formulas B.

Proof. By induction on the structure of formulas B.

1. Let B = p then flat1(p) |= [∗] (Pp ↔ p) (Table 7).

2. Let B = B1 ∧ B2 (the remaining cases B = ¬B′

or B = B1 ↔ B2 are analogous). It holds that
flat1(B) |= [∗] (PB ↔ (PB1 ∧ PB2) (Table 7).
It further holds for i ∈ {1, 2} that flat1(B) |=
[∗] (PBi

↔ Bi) by induction on Bi. We conclude
flat1(B) |= [∗] (PB ↔ B1 ∧B2).

3. Case B = [i]B′. It hold that flat1(B) |= [∗] (PB ↔
[i]PB′) (Table 7) and flat1(B) |= [∗] (PB′ ↔ B′)
by induction on B′. It follows that flat1(B) |=
[∗][i] (PB′ ↔ B′) also holds. Again we conclude
flat1(B) |= [∗] (PB ↔ [i]B′). ¤

Proof. [of Correctness Lemma 17] By induction on C.
Let C = [∗]B (the case C = B will be subsumed). To
prove is [∗]B |=| ∃Pr−Pr0 ([∗]PB ∧ flat1(B)) for all
core PDLn formulas B with Pr(B) ⊆ Pr0 (see Table
7). Lemma 19 yields flat1(B) |= [∗] (PB ↔ B) and thus
[∗]PB ∧ flat1(B) |= [∗]B. Since Pr(B) ⊆ Pr0 this is
equivalent to ∃Pr−Pr0.[∗]PB ∧ flat1(B) |= [∗]B. The
converse follows from Lemma 18:

[∗]B |=| [∗]B ∧ ∀Pr0. ∃Pr−Pr0. flat1(B)
|= [∗]B ∧ ∃Pr−Pr0. flat1(B)
|= ∃Pr−Pr0 ([∗]B ∧ flat1(B))

16


