
A Class of Polynomially Solvable Range Constraints for
Interval Analysis without Widenings and Narrowings

Zhendong Su1 and David Wagner2

1 Department of Computer Science, UC Davis, su@cs.ucdavis.edu
2 EECS Department, UC Berkeley, daw@cs.berkeley.edu

Abstract. In this paper, we study the problem of solving integer range con-
straints that arise in many static program analysis problems. In particular, we
present the first polynomial time algorithm for a general class of integer range
constraints. In contrast with abstract interpretation techniques based on widen-
ings and narrowings, our algorithm computes, in polynomial time, the optimal
solution of the arising fixpoint equations. Our result implies that “precise” range
analysis can be performed in polynomial time without widening and narrowing
operations.

1 Introduction

Many program analysis and verification algorithms and tools have the need to solve
linear integer constraints or its extensions, such as for checking array bounds to ensure
memory safety [15, 16, 35, 38] and for detecting buffer overruns for security applica-
tions [36], and for array dependency analysis for parallel compilers [6, 7, 29, 31–33].
However, solving integer linear constraints is a difficult problem [22], and only very
special cases have efficient algorithms [3, 30].

In this paper, we study constraints over integer ranges, e.g., the set {−1, 0, 1}, rep-
resented as [−1, 1]. These constraints can be used to express many interesting program
analyses [9,10,36]. Furthermore, we show that these constraints can be solved for their
optimal solution efficiently. A key property that makes integer range constraints effi-
ciently solvable is its simple join operation in the lattice of ranges. The join of two
ranges is defined as [l, u]t[l′, u′] = [inf{l, l′}, sup{u, u′}] (where inf and sup compute
the minimum and maximum of two numbers) instead of the union of the two ranges.
(This does not consider ⊥, the smallest range. See Section 2 for a complete definition
of the join operator.) This use of t is not as precise as the standard union. However,
it is sufficient for many analysis problems [10, 36] that need lower and upper bounds
information on values of integer variables.

For readers familiar with interval constraints for floating-point computation [4, 18,
19, 28] based on interval arithmetic [25], integer range constraints are different. Such
work deals primarily with rounding errors in real numbers, and the goal is to get an
approximate real interval that includes all solutions to the original constraints. Range
constraints deal with integer ranges, and the goal is to find the least solution, i.e., the
smallest ranges that satisfy all the constraints.

Our algorithm is based on a graph formulation similar to that used by Pratt [30] and
Shostak [34]. We use fixpoint computations to find the least solution. Our techniques

are closely related to those used in integer programming [20], especially those targeted
at program analysis and verification. We next survey some closely related work.

Tractable Linear Integer Constraints Pratt [30] considers the simple form of linear
constraints x ≤ y + k, where k is an integer, and gives a polynomial time algorithm
based on detecting negative cycles in weighted directed graphs. The graph representa-
tion we use in this paper borrows from Pratt’s method. Shostak [34] considers a slightly
more general problem ax + by ≤ k, where a, b, and k are integer constants. A worst
case exponential time algorithm is given for this kind of constraints by so-called “loop
residues.” Nelson [26] considers the same fragment and also gives an exponential time
algorithm. Aspvall and Shiloach [3] refine Shostak’s “loop residue” method and give
a polynomial time algorithm for the fragment with two variables. Because constraints
with three variables are NP-hard [22], this may be the most general class one can hope
for a polynomial time algorithm.

General Linear Integer Constraints General linear integer constraints are also con-
sidered in the literature. Some provers use the Fourier-Motzkin variable elimination
method [31], the Sup-Inf method of Bledsoe [5], or Nelson’s method based on Sim-
plex [27]. However, all the algorithms considered for integer programming have either
very high complexity or treat only special cases. In contrast, because of the special
structure of the range lattice and properties of affine functions, we are able to design
polynomial time algorithms for some common and rather expressive class of range con-
straints.

Dataflow and Fixpoint Equations Also related is work on dataflow equations in
program analysis [21,23], and lattice constraints in abstract interpretation [10–13], and
fixpoint computations in general [1,2,14]. There are some key differences. In this paper,
the lattice we consider is an infinite height lattice. For most work in dataflow analysis,
the lattices used are of finite height, in which case, termination with exact least solution
is guaranteed. For abstract interpretation and general fixpoint computation, although
infinite lattices are used in many cases, termination is not guaranteed, and sometimes
cannot be guaranteed. Techniques such as widening and narrowing are used to control
the termination of the analysis. In this work, we exploit an important property of ranges
and affine functions to achieve efficient termination. For example, Cousot and Cousot’s
interval analysis [10] is quite efficient in practice but may lose precision due to its
use of widenings (see the last part of Section 2 for an example); in comparison, our
algorithm efficiently finds the exact least fixpoint by exploiting the structure of affine
constraints, but only applies to a less general class of transfer functions. In fact, the
class of constraints we consider resembles the fixpoint equations in [10]. In [36], the
authors consider a simpler form of constraints than what is considered in this paper and
give a worst case exponential time algorithm.

We summarize here the contributions of the paper: (i) It describes a quadratic time
algorithm for solving a general class of affine range constraints (Section 3); (ii) It shows,
for the first time, that precise interval analysis can be performed in polynomial time; (iii)
It presents hardness and decidability results for satisfiability of some natural extensions
of our constraint language (Section 4); and (iv) Our techniques might be useful for
solving constraints in other lattices.

2 Preliminaries

Let Z denote the set of integers. The lattice of ranges is given by:

L
def
= {⊥} ∪ {[l, u] | l ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞} ∧ l ≤ u}

ordered by v, such that ⊥ v r for any r ∈ L and [l1, u1] v [l2, u2] if l2 ≤ l1 ≤
u1 ≤ u2. In the lattice, ⊥ (the empty range) is the smallest range, and [−∞,+∞] is the
largest range, also denoted by >. The meet u and join t are defined as follows:

– ⊥u r = ⊥ ∧ [l1, u1]u [l2, u2] = [l = sup{l1, l2}, u = inf{u1, u2}] (⊥ if l > u);
– ⊥ t r = r ∧ [l1, u1] t [l2, u2] = [inf{l1, l2}, sup{u1, u2}].

for any range r ∈ L. We select the lower bound and upper bound of a non-empty range
r = [l, u] by lb(r) = l and ub(r) = u.

The range expressions are given by E ::= r | X | n × X | E + E, where r ∈ L
denotes a range constant, X is a range variable, n × X denotes scalar multiplication
by n ∈ Z, and E + E denotes range addition. A range constraint has the form E u
r v X . When r = >, we simply write the constraint as E v X . Notice that we
require the right-hand side of a range constraint to be a variable, which is related to
“definite set constraints” [17]. We give some examples using these constraints below.
Readers interested in more information on the connection between range constraints
and program analysis may wish to consult, for example [9, 10].

Let V denote the set of range variables. A valuation ρ is a mapping from V to L, the
lattice of ranges. We extend ρ on variables to work on range expressions inductively,
such that, ρ([l, u]) = [l, u], ρ(n×X) = n× ρ(X), and ρ(E1 + E2) = ρ(E1) + ρ(E2),
where n× [l, u] = [inf{nl, nu}, sup{nl, nu}] and [l1, u1]+[l2, u2] = [l1+ l2, u1+u2].

We say a valuation ρ satisfies a constraint E u r v X if ρ(E) u r v ρ(X). A
valuation satisfies a set of constraints if it satisfies each one of the constraints. Such a
valuation is called a solution of the constraints.

Proposition 1 When f(X) = aX + b denotes an affine function, we have f([l, u] u
[l′, u′]) = f([l, u]) u f([l′, u′]) and f([l, u] t [l′, u′]) = f([l, u]) t f([l′, u′]).

Definition 1 (Range Saturation). A valuation ρ saturates a constraint f(X)u [c, d] v
Y if [c, d] v ρ(f(X)). It partially saturates the constraint if l = c or u = d, where
[l, u] = ρ(f(X)) u [c, d].

A set of constraints can have many solutions. For most static program analyses, we
are interested in the least solution, if it exists, because such a solution gives us the most
information. For the range constraints we consider, every set of constraints is satisfiable
and has a least solution.

Proposition 2 (Existence of Least Solution) Any set of range constraints has a least
solution.

Our goal is to compute such a least solution effectively. We denote by leastC the
least solution of the constraints C. We use least(X) for the least solution for a range
variable X if the underlying constraints are clear from the context. Next, we give some
example constraint systems, which may come from an interval analysis similar to [10]
of some small C program fragments. We give examples for both a flow-insensitive anal-
ysis and a flow-sensitive analysis. Notice that the interval analysis in [10] is traditionally
specified as a flow-sensitive one. A constraint-based formulation sometimes can allow
a more natural integration of flow-sensitivity and flow-insensitivity.

Example 1. Consider the constraints {[0, 0] v X,X + 1 v X} (with least solution
[0,+∞]) from the analysis of the following C program fragment:

int i = 0; /* yields the constraint [0,0] <= X */
while (i < 10) {

...
i = i+1; /* yields the constraint X + 1 <= X */

}

Notice that this is a flow-insensitive analysis. 3

Example 2. Consider the constraints {[10, 10] v X, (−2) × X v X} (with least
solution [−∞,+∞]), which come from the analysis of the following fragment:

int i = 10; /* yields [10,10] <= X */
while (...) {

...
i = -2*i; /* yields (-2)*X <= X */

}

Let us go back to Example 1. Notice that although the program ensures i ≤ 10,
the range we get says its value can be unbounded. To address this imprecision, we can
generate more precise constraints to use non-trivial intersection constants r, in E u
r v X . This use is motivated by the goal to provide more precise analysis of ranges
by modeling conditionals in while and if statements. In Example 1, we expect to
say that X has the range [0, 10]. We can model the example more precisely with the
constraints [0, 0] v X and (X + 1) u [−∞, 10] v X . Notice that the least solution of
these constraints is indeed [0, 10] and is what we expect.

Consider another program fragment:

int i = 0;
while (i < n) {

...
i = i+1;

}

3 For comparison, the following constraints may be used for a flow-sensitive analysis:

{[0, 0] v X0, X0 v X1, X3 v X1, X1 u [−∞, 9] v X2, X2 + 1 v X3}

where Xi’s denote the variable instances at different program points. See [10] for more.

L0

z = x− y− 3;
L1

if(z > 0){
L2

x = z + y + 3;
L3

y = x− z− 3;
L4

...

}

L1 : X0 − Y0 − 3 v Z1

L2 : Z1 u [1, +∞] v Z2

L3 : Z2 + Y0 + 3 v X3

L4 : X3 − Z2 − 3 v Y4

(a) Program after transformation. (b) Constraints.

Fig. 1. An example of how to analyze relationships between variables.

We would want to express the constraints {[0, 0] v X, (X +1)u [−∞, ub(Y)] v X},
where X and Y are the range variables for the program variables i and n respectively,
and ub(Y) denotes the upper bound of Y . The constraint (X+1)u[−∞, ub(Y)] v X
is equivalent to {[−∞, ub(Y)] v Z, (X + 1) u Z v X}, where Z is a fresh range
variable. In practice, we can restrict the meet operation to be with a range constant in
most cases, because the range variables X and Y usually do not belong to the same
strongly connected component and can be stratified (see Section 3).

Alternatively, it is sufficient to consider conditions for while and if statements
of the form x ≥ 0 (or x > 0) after some semantics-preserving transformations on the
original code. As an example, consider the following program fragment:

if (x > y + 3) {
...

}

We can transform it to the code fragment in Figure 1a, where z is a temporary variable
for storing intermediate results. We give labels for the few program locations. The gen-
erated constraints are given in Figure 1b. In the constraints, we use program location
labels on the range variables to distinguish the instances, i.e., the underlying analysis
is flow-sensitive. Essentially, we use range constraints to “project” the relevant infor-
mation from the condition z ≥ 0 onto x and y. It is perhaps interesting to notice that
ranges are extremely weak in relating variables.

For illustration, we provide here two simple examples to show that the standard
widening and narrowing techniques [10] may not give the optimal solution even re-
stricted to affine functions.

Example 3. Consider the following program fragment:

int i = 0;
while (...) {

if (...) { i = 1; }
}

[−2, 2] v X (X + 2) u [−3, 4] v Y

−Y + 1 v Z 2Z − 3 v X

−3Z + 10 v Y
[−2, 2] // X

(X+2)u[−3,4]// Y
−Y +1 // Z

2Z−3

dd

−3Z+10

��

(a) Example constraints. (b) Graph representation.

Fig. 2. Graph representation of constraints.

We obtain the constraints {[0, 0] v X, [1, 1] v X}. The optimal solution for X is [0, 1].
However, with widenings and narrowings at program back-edges, we get [0,+∞]. In
general, if we have a widening operation at the variable i and if i occurs in two loops
of affine constraints with different fixpoints, then widening and narrowing will give an
imprecise answer.

Example 4. Consider the constraints {[0, 0] v X, (−X + 1) v X}. The optimal solu-
tion for X is [0, 1], however, with widenings and narrowings, we get [0,+∞].

3 An Algorithm for Solving Range Constraints

Our algorithm is based on chaotic iteration [11]. We start by assigning each variable ⊥,
and then iterate through the constraints using the current valuation ρ. For each constraint
E u r v X , if ρ(E) u r v/ ρ(X), we set ρ(X) := (ρ(E) u r) t ρ(X). This process
repeats until all the constraints are satisfied. Although this process always converges for
any finite height lattices, it may not converge for infinite height lattices, e.g., consider
the constraints X + 1 v X and [0, 0] v X . Our approach is to extend chaotic iteration
with strategies to handle this kind of cyclic constraints.

We have a natural representation of constraints as graphs. Each vertex in the graph
represents a variable (or in some cases, a range constant r), and an edge from X to Y
labelled f(X) u r represents the constraint f(X) u r v Y . A constraint [l, u] v X is
represented as an edge from a node representing the range constant [l, u] to the node X .
Some example constraints and their graph representation are shown in Figure 2.

As mentioned above, our approach is to adapt chaotic iteration to propagate infor-
mation along edges of the graph until we reach a fixpoint. This fixpoint is the least one.
If the graph is acyclic, then we can simply propagate the constraints in its topologically
sorted order. In the rest of the section, we consider possibly cyclic graphs. We start with
a simple loop (Section 3.2), a multi-loop (Section 3.3), a strongly connected component
(Section 3.4), and finally a general graph (Section 3.5).

3.1 Constraint Transformation

Although possible, it is complicated to solve directly constraints with negative coeffi-
cients. For a simpler presentation, we first describe a constraint transformation to make
all constraints have positive coefficients.

1. Set ρ(X) := [l, u].
2. If [l′, u′] = f(ρ(X)) u [c, d] v ρ(X), then least = ρ.
3. Otherwise, we have a few cases:

(a) If l′ < l and u′ > u, then least(X) = [c, d].
(b) If l′ < l only, then least(X) = [c, u].
(c) If u′ > u only, then least(X) = [l, d].

Fig. 3. An algorithm for solving a simple loop.

Lemma 1. Any system of constraints can be effectively transformed to an equivalent
system where all constraints have positive coefficients.

Proof. For each variable X in the original system, create two variables X+ and X−.
The variable X+ corresponds to X , and X− corresponds to −X . We then apply the
following transformations on the original constraints:

– Replace each initial constraint [l, u] v X with two constraints:

{[l, u] v X+, [−u,−l] v X−}

– Replace each constraint of the form (aX + b) u [l, u] v Y , where a > 0, with two
constraints:

{(aX+ + b) u [l, u] v Y +, (aX− − b) u [−u,−l] v Y −}

– Replace each constraint of the form (aX + b) u [l, u] v Y , where a < 0, with two
constraints:

{(−aX− + b) u [l, u] v Y +, (−aX+ − b) u [−u,−l] v Y −}

One can verify that the two systems of constraints have the same solutions on the
corresponding X and X+, and in particular, they have the same least solution. In addi-
tion, the transformation is linear time and produces a new system of constraints linear
in the size of the original system.

Notice that this transformation also applies to affine functions with more than one
variables. Hence, in the rest of the paper, we consider only constraints defined over
positive affine functions.

3.2 A Simple Loop

Consider a loop with the constraints [l, u] v X and f(X) u [c, d] = (aX + b) u
[c, d] v X , where a > 0. We give an algorithm in Figure 3 to find its least solution. The
algorithm is similar to the widening operator defined on ranges [10].

Lemma 2. The algorithm in Figure 3 computes the least solution of a simple loop.

1. Set ρ(X) = [l, u].
2. Pick any constraint fi(X) u [ci, di] v X not satisfied by ρ, find its least solution ρ′

with the initial constraint ρ(X) v X (cf. Figure 3).
3. Set ρ = ρ′.
4. Go to step 2 until all constraints are satisfied.

Fig. 4. An algorithm for solving a multi-loop.

Proof. If [l′, u′] v [l, u], then clearly we have reached the least fixpoint, so we have
least(X) = [l, u]. Otherwise, we have three cases to consider. (1) If l′ < l and u′ >
u, since f(X) = aX + b is a positive affine function, lb(fn([l, u])) forms a strictly
decreasing sequence and ub(fn([l, u])) forms a strictly increasing sequence. However,
the lower bound can reach as low as c and the upper bound can reach as high as d. Thus,
we have least(X) = [c, d]. The other two cases are similar.

3.3 A Multi-Loop

We call constraints with more than one simple self loop a multi-loop. In particular,
assume we have the constraints [l, u] v X and fi(X) u [ci, di] v X , for 1 ≤ i ≤ n.
A multi-loop is considered because the solution to it hints at the basic idea for solving
the more complicated cases. Basically, to solve a multi-loop, we start with X assigned
the value [l, u]. Pick any constraint fi(X) u [ci, di] not satisfied by this valuation. We
find its least solution with [l, u] v X as the initial constraint and update the current
assignment to this least solution. This process repeats until all constraints are satisfied.
The algorithm is shown in Figure 4.

Lemma 3. The algorithm in Figure 4 computes the least solution to a multi-loop in
quadratic time.

Proof. It is obvious that the algorithm outputs the least solution when it terminates.
Thus, it remains to argue its time complexity. We show that step 2 is executed no more
than 2n times, i.e., the number of intersection bounds ci and di. Each activation of
step 2 causes the current valuation to partially saturate (cf. Definition 1) the particu-
lar constraint in question, i.e., at least one lb or ub of the constraint (ci’s or di’s) is
saturated. Because a bound cannot be saturated twice, step 2 is activated at most 2n
times. Thus, we have shown the algorithm runs in quadratic time in the size of the input
constraints.

3.4 A Strongly Connected Component

In this part, we show how to handle a strongly connected component, which forms the
core of our algorithm. The main observation is that one can view a strongly connected
component as a mutually recursive set of equations working on the set of range vari-
ables in the component simultaneously. Let X1, . . . , Xn be the set of variables in a

component C. We view C as a set of equations working on X1, . . . , Xn simultaneously
and use the same basic idea for a multi-loop.

Multiple Initial Constraints First, in dealing with a strongly connected component,
we need to consider the case where there are multiple initial constraints [l, u] v X
because there may be more than one incoming edges to a component, and each one cor-
responds to an initial constraint. To simplify our presentation, we apply another graph
transformation on a strongly connected component to convert it to an equivalent one
with a single initial constraint.

Lemma 4. In a constraint graph, a strongly connected component with multiple initial
constraints can be effectively transformed to an equivalent strongly connected compo-
nent with a single initial constraint (in linear time and space).

Proof. Let C be the original component. The transformation works as follows:

– Add a fresh range variable X∗ with the initial constraint [1, 1] v X∗.
– Replace each initial constraint [l, u] v X ∈ C, where l, u ∈ Z, with two constraints

{lX∗ v X,uX∗ v X}.
– Replace each initial constraint [−∞, u] v X ∈ C, where u ∈ Z with two con-

straints {uX∗ v X,X − 1 v X}.
– Replace each initial constraint [l,+∞] v X ∈ C, where l ∈ Z with two constraints

{lX∗ v X,X + 1 v X}.
– Replace each initial constraint [−∞,+∞] v X ∈ C with three constraints {X∗ v

X,X + 1 v X,X − 1 v X}.
– Finally, to make the new graph strongly connected, we add the following constraint

from any variable, say Y , to X∗:

Y u [1, 1] v X∗

One can verify that the new strongly connected component is equivalent to the orig-
inal component. The running time of the transformation is linear time, and it generates
a new constraint system of size linear in |C|.

Non-distributivity of Ranges One additional issue is with the non-distributivity of
ranges. One can easily verify that u does not distribute over t, i.e., in general, (r1 t
r2) u r3 6= (r1 u r3) t (r2 u r3). For example, [2, 2] = ([0, 1] t [3, 4]) u [2, 2] 6=
([0, 1] u [2, 2]) t ([3, 4] u [2, 2]) = ⊥. We show, however, this can be remedied to have
a slightly altered lemma of distribution of u over t.

Lemma 5 (Distributivity Lemma). If r1 u r3 6= ⊥ and r2 u r3 6= ⊥, then (r1 t r2)u
r3 = (r1 u r3) t (r2 u r3).

Proof. It suffices to show that (r1tr2)ur3 v (r1ur3)t(r2ur3) because (r1ur3)t
(r2 u r3) v (r1 t r2) u r3. Consider any a ∈ (r1 t r2) u r3. We have a ∈ (r1 t r2)
and a ∈ r3. If a ∈ r1 or a ∈ r2, then a ∈ (r1 u r3) or a ∈ (r2 u r3). Thus, it follows
that a ∈ (r1ur3)t (r2ur3). Now consider the case where a /∈ r1 and a /∈ r2. Because
a ∈ (r1 t r2), we have r1 u r2 = ⊥, and a must lie in the gap of r1 and r2. The
conditions r1 u r3 6= ⊥ and r2 u r3 6= ⊥ then guarantees that a ∈ (r1 u r3)t (r2 u r3).

X
f1 // Y

f2 // Z
f3

dd

f4

��
X0

f1��

X1

f1��
Y0

f2 // Z0

f3
33

f4 // Y1

f2 // Z1

(a) Original component. (b) After unrolling.

Fig. 5. An example of graph unrolling.

Lemma 6 (Saturation Lemma). For any given r1, r2, and r3 = [a, b], either (r1tr2)u
r3 = (r1ur3)t (r2ur3) or it holds that l = a or u = b, where [l, u] = (r1tr2)ur3.

Proof. If (r1 t r2) u r3 = ⊥, then clearly (r1 t r2) u r3 = (r1 u r3) t (r2 u r3).
Otherwise, let [l, u] = (r1 t r2) u r3) 6= ⊥. Assume that l 6= a and u 6= b. We must
have a < l ≤ u < b. Then (r1 t r2) = [l, u], which implies r1 v [a, b] and r2 v [a, b].
Thus, (r1 t r2) u [a, b] = (r1 t r2) = (r1 u [a, b]) t (r2 u [a, b]).

Graph Unrolling and Constraint Paths A strongly connected component can be
viewed in the following sense as a set of functions. We unroll the component start-
ing from X1 with, for example, a depth first search algorithm. Each time a back-edge
is encountered, we create a new instance of the target (if it has not been created). For a
variable Xi in a strongly connected component, we use Xi0 and Xi1 to denote its first
and second instances in its unrolling. We give an example in Figure 5, where Figure 5a
shows the original component and Figure 5b is the result after unrolling. Essentially,
we are building the depth-first tree (but we also consider the cross edges and back
edges). Notice that a depth-first tree with its cross edges is a directed acyclic graph,
i.e., a dag. Notice also in the unrolling for a strongly connected component with vari-
ables X1, · · · , Xn, the set of back-edges are exactly those edges between the subgraph
induced by X10, · · · , Xn0 and the one induced by X11, · · · , Xn1.

To solve a strongly connected component, we want to summarize all paths from
Xj0 to Xj1 by Fj(Xj) v Xj , where

Fj(r)
def
= r t

⊔

Xj0

f1
→···

fk
→Xj1

(fk ◦ · · · ◦ f1)(r).

Note that, even though there may be exponentially many terms in the definition
of Fj , nonetheless the output Fj(r) can be computed efficiently for any input r by
propagating information in topological sorted order along the edges of the unrolled
graph (as done for a dag).

For a strongly connected component, we need to consider a path of constraints. We
define formally its semantics.

Definition 2 (Path Constraints). A path from X0 to Xn is a path in the constraint
graph for C. The function for a path p is the affine function obtained by composing all
the functions along the edges on the path. More formally

1. Transform the component to have a single initial constraint, and let X∗ be the new node
added by the transformation.

2. Unroll the strongly connected component starting from the node X∗.
3. Compute the least solution ρ for the induced subgraph G0 with vertices X10, · · · , Xn0

and X∗

0.

4. If ρ satisfies every back-edge Xi0

fu[ci,di]

−−−−→ Xj1, then return ρ as the least solution.
5. Otherwise, update ρ through all the back-edges.

(a) If there is a new partially saturated constraint, then go to step 1.
(b) Otherwise, an unsatisfying cyclic path can be traced to apply the algorithm for a

simple loop. Update ρ and go to step 1.

Fig. 6. An algorithm for solving a strongly connected component.

– pf(X) = id u [−∞,+∞], where id is the identity function id(X) = X .

– pf(p
fu[c,d]
−−−−→ X) = f(pf(p)) u [c, d].

Notice that for a path p = X0 → · · · → Xn, pf(p) is of the form f(X0) u [c, d],
where f is an affine function and [c, d] is a constant range (by Proposition 1).

We apply the same basic idea as that for a multi-loop and Lemma 6 in our algorithm
for solving a strongly connected component, which is shown in Figure 6.

Lemma 7. The algorithm in Figure 6 solves a strongly connected component of the
constraint graph in quadratic time in the size of the component.

Proof. Correctness is again easy to establish since all the constraints are satisfied and
every step clearly preserves the least solution. We need to argue the time complexity of
the algorithm. The proof technique is similar to that for the algorithm in Figure 4. Again,
we argue that the body of the loop executes at most 2n times, where n is the number
of constraints. Lemma 6 guarantees that if step 5a is not activated, then the previous
least solution computation on G0 distributes. Thus, we can trace, in linear time, an
unsatisfying path, which can be converted to a simple loop for its least solution. In that
case, at least one bounds must be saturated. Because there are 2n bounds, the body of
the loops terminates in at most 2n steps. Putting everything together, the total running
time is quadratic in the size of the component.

3.5 A General Graph

Now it is easy to put everything together to solve an arbitrary set of affine, single-
variable range constraints. The idea is to first compute the strongly connected compo-
nent graph of the original graph representation of the constraints, and then process each
component in their topological sorted order. The total running time is quadratic.

Theorem 1. The least solution for a given system of range constraints can be computed
in quadratic time.

3.6 Affine Functions with More Than One Variables

In this part, we consider affine functions with more than one variable. They are needed
for modeling program statements such as x = y + z + 1 and for precise modeling
of loops and conditionals with statements of the above form.

We first consider constraints of the form a0 + a1X1 + . . . + anXn v X and then
extend the algorithm to the general case, where we allow intersections with constant
ranges. First notice it suffices to consider constraints of the form X+Y v Z along with
constraints of the base form, namely, f(X) v Y and [l, u] v X , where f(X) = aX+b
is an affine function over X .

We modify our graph representation of constraints to account for this new type of
constraint. The constraint X +Y v Z can be represented in a hyper-graph setting, with
a hyper-edge from X to the node for + and a hyper-edge from Y to +. We also have a
normal directed edge from + to Z labelled with the identity function. Graphically we
have

X
**T

T
T

+
id // Z

Y

44j
j

j

With this modified graph representation of constraints, we again use the same frame-
work for solving range constraints. The interesting case as before is how to handle a
strongly connected component of such a graph. The basic idea for the complete algo-
rithm is the same as before: we compute the strongly connected component graph (using
both → and 99K edges) and process each component in a topological sorted order of the
variables nodes.

Here is how we deal with a strongly connected component. The idea is to reduce
it to a system of basic constraints (single variable affine functions). Then we apply our
algorithm for solving the basic system. We first describe how we reduce a constraint
X+Y v Z to a set of basic constraints. We assume that X and Y have non-empty initial
ranges [lx, ux] and [ly, uy]. The constraint is reduced to the following basic constraints

X + [ly, uy] v Z Y + [lx, ux] v Z
[lx, ux] v X [ly, uy] v Y

For a strongly connected component in the original graph, we first need to get some
initial values for all the variables in the component. This can be easily done by propa-
gating the values in a breath-first fashion starting from the variables with initial ranges.
Assume every variable has a non-empty initial value. Otherwise these variables must
be the empty range and the constraints can be simplified and solved again. Then for
each constraint of the form X + Y v Z, we perform the transformation to basic con-
straints described above with their current initial ranges. The constraint representation
of the obtained constraints is still strongly connected. We then solve for its least solu-
tion. We use that to obtain another transformed constraint system. If the current least
solution satisfies these new constraints, then we have found the least solution for the
original general constraints. If not, we solve for the least solution of the transformed
constraints. We repeat this process until the least solution is found. The algorithm is
shown in Figure 7.

1. Scan a strongly connected component once to compute an initial valuation ρ that is
non-empty on all the variables.

2. Reduce the constraints to basic constraints, solve for the least solution ρ′ of the basic
constraints subject to ρ v ρ′, and then set ρ = ρ′.

3. If all constraints are satisfied, return ρ. Otherwise, go to Step 2.

Fig. 7. An algorithm for solving a strongly connected component with general affine functions.

Theorem 2. Range constraints over multivariate affine functions are solvable for their
least solution in quadratic time.

Proof. Correctness is easy. We argue that the algorithm for a strongly connected com-
ponent terminates in linear time. We can simply argue that step 2 is repeated at most
three times. Each time step 2 is repeated, it means for one variable, there is unsatis-
fied self-loop. At least one bound (either lb or ub) reaches −∞ or +∞. With another
application of step 2, we must have either reached the least solution, or one variable
reaches [−∞,+∞], thus the least solution [−∞,+∞] for every variable. Because the
transformation to basic constraints is quadratic and produces a quadratic size system,
the total running time of our algorithm for solving constraints over multivariate affine
functions is quadratic.

Finally, we consider constraints with multivariate affine functions and intersections
with constant ranges. The constraints are of the general form f(X1, · · · , Xn)u [c, d] v
X . We essentially combine the algorithms for multivariate affine functions and inter-
section constraints to obtain an algorithm for this class of constraints. The interesting
case is, as usual, that for a strongly connected component graph. The algorithm, in this
case, is exactly the same as the one shown in Figure 7, except the constraints are re-
duced to basic constraints with intersections. The complexity analysis is based on the
same idea as that for basic intersection constraints: with a repeated invocation of Step 2,
one lb or ub must be reached. The new system resulted from transformation to basic
constraints has a linear number of intersection bounds. Thus we only repeat the loop a
linear number of times. However, the size of the new system may be quadratic in the
original system. Thus, as the main result of the paper, we obtain a cubic time algorithm
for intersection constraints over multivariate affine functions.

Theorem 3 (Main). The system of constraints fi(X1, · · · , Xm) u [ci, di] v Yi, for
1 ≤ i ≤ n, can be solved for their least solution in cubic time.

4 Decidability and Hardness Results

One might ask whether we can lift the restriction, made earlier, that the right-hand sides
be variables. We can thus consider constraints of the form E1 v E2, where E1 and
E2 are range expressions. The interesting question is to ask whether such a system of
constraints is satisfiable.

We can show that deciding satisfiability for linear range constraints is NP-hard. The
proof is via a reduction from integer linear programming, which is NP-hard [22].

Theorem 4. The satisfiability problem for general range constraints of the form E1 v
E2 is NP-hard.

Proof. We reduce integer linear programming to the satisfiability of range constraints.
We simply need to express that a range has to be a singleton, i.e., [n, n] for some integer
constant n. This can be easily expressed with the constraint −Yi + Yi = [0, 0]. One can
verify that Yi is a singleton if and only if this constraint is satisfied.

Let X be an integer linear programming instance. We have m range variables
Y1, . . . , Ym. For each (x, b) ∈ X , we create a range constraint x1Y1 + . . . + xmYm v
[b,+∞]. We also add constraints of the form −Yi + Yi = [0, 0] to ensure that each Yi

is a singleton. It is then straightforward to verify that X has a solution if and only if the
constructed range constraints have a solution.

Analogous to Presburger arithmetic, we can consider the first-order theory of range
constraints, which we call Presburger range arithmetic. By adapting the automata-
theoretic proof of the decidability of Presburger arithmetic [8,37], we can easily demon-
strate the decidability of Presburger range arithmetic.

Theorem 5. Presburger range arithmetic is decidable.

If non-linear range constraints are allowed, the satisfiability problem becomes un-
decidable via a reduction from Hilbert’s 10th Problem [24].

Theorem 6. The satisfiability problem for non-linear range constraints is undecidable.

5 Conclusions and Future Work

We have presented the first polynomial time algorithm for finding the optimal solution
of constraints for a general class of integer range constraints with applications in pro-
gram analysis and verification. The algorithm is based on a graph representation of the
constraints. Because of the special structure of the range lattice, we are able to guar-
antee termination with the optimal solution in polynomial time. It is usually difficult
to reason about the efficiency and precision of abstract interpretation-based techniques
in general because of widenings and narrowings. Through a specialized algorithm, this
work shows, for the first time, that “precise” range analysis (w.r.t. the constraints) is
achievable in polynomial time. We suspect our techniques for treating non-distributive
lattices to be of independent interest and may be adapted to design efficient algorithms
for other constraint problems. Future work includes the handling of non-affine func-
tions and floating point computations, and the application of the algorithm to detect
buffer overruns and runtime exceptions such as overflows and underflows. It may be
also interesting to extend this work to allow symbolic constants in the constraints. Fi-
nally, it is interesting to compare the efficiency and precision of an implementation of
our algorithm with those algorithms based on widenings and narrowings.

Acknowledgments

We thank the anonymous reviewers of early versions of the paper for their helpful com-
ments.

References

1. K.R. Apt. The essence of constraint propagation. Theoretical Computer Science, 221(1–
2):179–210, June 1999.

2. K.R. Apt. The role of commutativity in constraint propagation algorithms. ACM Transac-
tions on Programming Languages and Systems, 22(6):1002–1036, 2000.

3. B. Aspvall and Y. Shiloach. A polynomial time algorithm for solving systems of linear
inequalities with two variables per inequality. SIAM Journal on Computing, 9(4):827–845,
1980.

4. F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer, and Boolean
constraints. Journal of Logic Programming, 32(1):1–24, July 1997.

5. W.W. Bledsoe. The Sup-Inf method in Presburger arithmetic. Technical report, University
of Texas Math Dept., December 1974.

6. W. Blume and R. Eigenmann. The range test: A dependence test for symbolic, non-linear
expressions. In Supercomputing ‘94. IEEE Computer Society, 1994.

7. W. Blume and R. Eigenmann. Symbolic range propagation. In Proceedings of the 9th
International Symposium on Parallel Processing (IPPS’95, pages 357–363, Los Alamitos,
CA, USA, April 1995. IEEE Computer Society Press.

8. A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite automata.
In Proceedings of Trees in Algebra and Programming (CAAP’96), volume 1059 of Lecture
Notes in Computer Science, pages 30–43. Springer-Verlag, 1996.

9. F. Bourdoncle. Abstract debugging of higher-order imperative languages. In SIGPLAN ’93
Conference on Programming Language Design and Implementation, pages 46–55, 1993.

10. P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Pro-
ceedings of the 2nd International Symposium on Programming, pages 106–130, 1976.

11. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
Symposium on Principles of Programming Languages, pages 234–252, 1977.

12. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Compu-
tation, 2(4):511–547, 1992.

13. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proceedings of the 5th ACM Symposium on Principles of Programming Lan-
guages, pages 84–97, 1978.

14. C. Fecht and H. Seidl. A faster solver for general systems of equations. Science of Computer
Programming, 35(2–3):137–161, November 1999.

15. R. Gupta. A fresh look at optimizing array bound checking. In Proceedings of the Conference
on Programming Language Design and Implementation, pages 272–282, 1990.

16. R. Gupta. Optimizing array bound checks using flow analysis. ACM Letters on Programming
Languages and Systems, 1(4):135–150, March-December 1994.

17. N. Heintze and J. Jaffar. A decision procedure for a class of Herbrand set constraints. In
Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science (LICS), pages
42–51, June 1990.

18. T.J. Hickey. Analytic constraint solving and interval arithmetic. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POLP-00),
pages 338–351, N.Y., January 19–21 2000.

19. T.J. Hickey, M.H. van Emden, and H. Wu. A unified framework for interval constraints and
interval arithmetic. In Principles and Practice of Constraint Programming, pages 250–264,
1998.

20. J.P. Ignizio and T.M. Cavalier. Introduction to Linear Programming. Prentice-Hall, 1994.
21. J.B. Kam and J.D. Ullman. Global data flow analysis and iterative algorithms. Journal of

the ACM, 23(1):158–171, January 1976.
22. R.M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,

editors, Complexity of Computer Computations, pages 85–103. Plenum Press, New York,
1975.

23. G.A. Kildall. A unified approach to global program optimization. In Conference Record
of the ACM Symposium on Principles of Programming Languages, pages 194–206. ACM
SIGACT and SIGPLAN, 1973.

24. Y.V. Matijasevič. On recursive unsolvability of Hilbert’s Tenth Problem. In Patrick Sup-
pes et al., editors, Logic, Methodology and Philosophy of Science IV, volume 74 of Stud-
ies in Logic and the Foundations of Mathematics, pages 89–110, Amsterdam, 1973. North-
Holland.

25. R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, New York, 1963.
26. G. Nelson. An nlog n algorithm for the two-variable-per-constraint linear programming sat-

isfiability problem. Technical Report STAN-CS-78-689, Stanford University, 1978.
27. G. Nelson. Techniques for program verification. Technical Report CSL-81-10, Xerox Palo

Alto Research Center, 1981.
28. W.J. Older and A. Velino. Constraint arithmetic on real intervals. In Frédéric Benhamou

and Alain Colmerauer, editors, Constraint Logic Programming: Selected Research, pages
175–196. MIT Press, 1993.

29. Y. Paek, J. Hoeflinger, and D.A. Padua. Efficient and precise array access analysis. ACM
Transactions on Programming Languages and Systems, 24(1):65–109, 2002.

30. V.R. Pratt. Two easy theories whose combination is hard. Unpublished manuscript, 1977.
31. W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence

analysis. Communications of the ACM, 35(8):102–114, August 1992.
32. W. Pugh. Constraint-based array dependence analysis. ACM Transactions on Programming

Languages and Systems, 20(3):635–678, May 1998.
33. R. Seater and D. Wonnacott. Polynomial time array dataflow analysis. In Languages and

Compilers for Parallel Computing (LCPC), 2001.
34. R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM,

28(4):769–779, October 1981.
35. N. Suzuki and K. Ishihata. Implementation of an array bound checker. In Conference Record

of the Fourth ACM Symposium on Principles of Programming Languages, pages 132–143,
Los Angeles, California, January 17–19, 1977. ACM SIGACT-SIGPLAN.

36. D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken. A first step towards automated detection
of buffer overrun vulnerabilities. In Symposium on Network and Distributed Systems Security
(NDSS ’00), pages 3–17, San Diego, CA, February 2000. Internet Society.

37. P. Wolper and B. Boigelot. An automata-theoretic approach to presburger arithmetic con-
straints. In Static Analysis Symposium, pages 21–32, 1995.

38. H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. In
Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design and
Implementation (PLDI), pages 249–257, Montreal, Canada, 17–19 June 1998.

