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Abstract
Complex systems exhibit emergent patterns of behavior at
different levels of organization. Powerful network analy-
sis methods, developed in physics and social sciences, have
been successfully used to tease out patterns that relate to
community structure and network dynamics. In this paper,
we mine the complex network of collaboration relationships
in computer science, and adapt these network analysis meth-
ods to study collaboration and interdisciplinary research at
the individual, within-area and network-wide levels.

We start with a collaboration graph extracted from the
DBLP bibliographic database and use extrinsic data to de-
fine research areas within computer science. Using topolog-
ical measures on the collaboration graph, we find significant
differences in the behavior of individuals among areas based
on their collaboration patterns. We use community structure
analysis, betweenness centralization, and longitudinal assor-
tativity as metrics within each area to determine how central-
ized, integrated, and cohesive they are. Of special interest is
how research areas change with time. We longitudinally ex-
amine the area overlap and migration patterns of authors, and
empirically confirm some computer science folklore.

We also examine the degree to which the research
areas and their key conferences are interdisciplinary. We
find that data mining and software engineering are very
interdisciplinary while theory and cryptography are not.
Specifically, it appears that SDM and ICSE attract authors
who publish in many areas while FOCS and STOC do not.
We also examine isolation both within and between areas.
One interesting discovery is that cryptography is highly
isolated within the larger computer science community, but
densely interconnected within itself.

1 Background and Motivation
Computer science is a diverse and growing area of schol-
arly activity, with many subareas, such as artificial intel-
ligence (AI), computational biology (CBIO), cryptography
(CRYPTO), databases (DB), graphics (GRAPH), program-

ming languages (PL), software engineering (SE), security
(SEC), theory (THEORY), among others. Some of these
areas are quite old, rooted in the earliest stirrings of the
field (e.g., THEORY) and others started much later (e.g.,
GRAPH). Some are quite large, attracting a large number
of researchers (e.g., DB and GRAPH) and others are smaller
(e.g., CRYPTO and SE). Some are in a stable phase (e.g.,
THEORY); others are growing rapidly (e.g., SEC).

There are other, more subtle differences in character
and style between areas. These differences, although they
are currently not rigorously quantified, nevertheless may
have important implications for the future of these areas.
These differences are recognized by researchers working in
the respective (or closely allied) areas, but have not been
rigorously studied. For example, some of these areas are
considered intellectually unified, while others are said to
include several distinct, thriving groups. Some areas tend
to interact strongly with others, with a tradition of mutual
enrichment, and others are more stand-alone. Some areas are
dominated by a few researchers, while others have a more
diffuse collaborative structure. In some areas, older and
younger researchers frequently collaborate, while in others,
researchers collaborate primarily with others like them.

These informal, folkloric differences between areas are
worthy of study, because such properties clearly can have
a strong influence on the intellectual vibrancy and diver-
sity of an area. In this paper, we begin to quantify and
study these differences to produce data that may provide
“actionable intelligence" for interested parties. For exam-
ple, researchers (students, new faculty) might well consider
these factors when deciding whether to enter (or leave) an
area. Funding agencies (industries, government foundations)
might consider the status and style of a field, choose to for-
mulate Broad Area Announcements (BAAs) and Calls for
Proposals to influence a field, for example, to become more
interdisciplinary, or more intellectually diverse, or to spread
their funding more broadly to increase centers of influence;
contrariwise, they could design funding initiatives to reverse
such trends if that seems appropriate.



How can we put these informal, folkloric differences on
a sounder, more quantitatively rigorous footing? We claim
that the solution lies in a range of different network analysis
methods that have been developed in quantitative social
science and statistical physics. We adapt these methods to
analyze the differences between computer science areas, and
identify areas that are more fragmented, more dominated by
fewer researchers, more interdisciplinary, and so on. We
use two broadly different classes of metrics: (1) one class
characterizes individuals and their collaborative styles, and
(2) the other characterizes the entire collaborative network
of all the researchers in an area. Both of these two classes
of experimental studies lead to observations that match well
with folkloric beliefs and intuitions about the fields, and also
indicate some surprising, perhaps worrisome, trends in some
areas.

Result Summary: This paper makes the following contri-
butions:

• We bring a new set of methods from physics and math-
ematical social science to study the structure and evo-
lution of collaboration patterns in the different areas of
computer science. These include measures of central-
ity in networks, and principal component analysis of
the publishing behavior of researchers in different ar-
eas. Our work illustrates the ability of these methods
to tease out more subtle properties of collaborative net-
works, going well beyond the Pareto distributions of
paper authorship and scale-free degree distributions in
collaborations that earlier researchers have noticed. We
also introduce new novel analysis methods such as lon-
gitudinal assortativity and area overlap.

• We compare different areas of computer science using
several indicators of collaborative style: (1) How in-
terdisciplinary are the fields? and (2) Are there well-
defined sub-areas within each field? We find for ex-
ample, that programming languages (PL) and software
engineering (SE) are quite interdisciplinary, whereas
AI and architecture (ARCH) are not. We also find
that a large area like databases (DB) is remarkably
well-integrated, without isolated subgroups, whereas a
smaller area, like software engineering (SE), is surpris-
ingly fragmented.

• We study researchers and their collaborative patterns
in each area. Do some researchers dominate some ar-
eas? Are some areas marked by assortative collabora-
tions (where researchers tend to collaborate with others
more like them)? We find, for example, that many areas
go through periods where a few researchers dominate
an area, but gradually evolve to a more diffuse collab-
orative network. However, one area—security (SEC)—
in fact shows a rapidly increasing dominance by a few

researchers. Some might argue that this is a worri-
some trend in an area of vital national importance. We
also notice that researchers in cryptography tend to be
much more assortative than in other areas. This should
perhaps raise concerns about the future health of this
area [12, 37].

Paper Outline: The rest of the paper is structured as fol-
lows. After discussing closely related work (Section 2), we
present our method of data collection (Section 3). In partic-
ular, we discuss which bibliographic database we use in our
analysis, how we divide the computer science community
into subareas, and how we extract collaboration networks
from the DBLP data. Section 4 presents the analysis meth-
ods we use to examine collaborative styles in different areas
and our findings, and Section 5 presents the methods and re-
sults of our analysis of how the areas interrelate in terms of
author overlap and migration. We conclude in Section 6 with
a discussion of possible future directions for further investi-
gation.

2 Related Work
Newman [26, 27] is among the earliest to study author col-
laboration networks from a number of sources, including
physics and medical databases, and finds power-law distri-
butions of papers per author, authors per paper, collabora-
tors per author, and so on. He also analyzes “clustering”
in these networks, which indicates that collaboration rela-
tionships are transitive. He also reports that these networks
have surprisingly small diameters, for their size. Newman
uses these global graph characteristics to compare distinct
disciplines—biology, physics, and mathematics. We focus
on a single community, computer science, and analyze its
sub-community structure. Elmmacioglu and Lee [11] find
that the collaboration network of DBLP authors has the same
typical properties: a small diameter (about six), a Pareto
distribution of papers published per author, and increasing
levels of collaboration. The small-world properties of au-
thor collaborations have also been described, for databases
(Nascimento [25]) and software engineering (Hassan and
Holt [16]). Both papers also consider closeness centrality
as a way of identifying the most important authors. Barabási
et al study the dynamics of collaboration networks [4] and
report decreasing diameters. They also report that prefer-
ential attachment is a good model for the manner in which
people acquire more collaborators. Ramasco et al [36] also
consider dynamics, but using a bipartite network of artifacts
and authors. They define growth models to explain observed
properties, such as degree distributions in the two-mode net-
work, as well as degree-degree correlations across authorship
edge: Do highly productive authors tend to write multiply-
authored papers? Our own work on network dynamics con-
siders the migration of researchers between different com-
puter science subareas, rather than the emergent distributions



of node properties.
Huang et al [18] construct a collaboration network from

1980 to 2005 from citeseer data and analyze it at various
levels of granularity. They overcome the name ambigua-
tion problem that we encountered in citeseer through the
use of a novel technique [17] involving online support vec-
tor machine to calculate distances between authors and us-
ing an efficient clustering algorithm (DBSCAN). They re-
port that the growth of the computer science collaboration
network exhibits the small world phenomenon. They divide
publications into 6 topic spaces and compare and contrast
the characteristics of these networks. A stochastic poisson
model for predicting future collaborations between authors
(SPOT) which uses the neighborhood of an author in the col-
laboration network is also introduced and evaluated. This
model predicts future collaboration at a much higher level
than through the use of Support Vector Regression. While
our study also examines collaboration networks in a longi-
tudinal fashion, we limit our analysis to top tier conferences
(for reasons explained in the next section) and analyze rela-
tionships between topic areas such as overlap and migration
of authors. We also examine within-area characteristics such
as betweenness centralization and modularity.

Backstrom et al [3] use DBLP data in their examination
of community growth. They find that the community growth
(based on the use of a conference as a community) is
influenced by key structural properties of the network such
as community size, number of collaborators on the network
fringe, and average distance between collaborators. They
use a decision tree to determine which properties are most
important. They also examine how ”hot“ topics move
between conferences, detect topic bursts over time based
on terms used in paper titles and use this data to see how
topically aligned conferences are based on their relationship
to topics chronologically.

Liu et al [23] consider the social network of digital li-
brary researchers, and use several metrics, including tra-
ditional social network measures, and a variant of page-
rank, called author rank. They find that high scores cor-
respond well with service on program committees. Rahm
and Thor [35] focus on citations, for papers in the area of
databases, and among other findings, report that conferences
in the database area have much more impact than journals.
Mohan and Srikant [24] focus on nurturance, wherein they
assess researchers by the degree of success achieved by those
they mentor. They consider both the activity (number of pa-
pers) and impact (number of citations) of mentees in gauging
the level of nurturance provided by a mentor. Researchers in
organizational science, such as Liebeskind et al [22] have
studied the impact of collaboration networks on technology
diffusion in businesses.

Our own work on community structure is preceded by
Girvan and Newman [14]. They describe an automated clus-
tering procedure that uses the strength and topology of net-

work connections to separate networks into sub-components
that are strongly connected within themselves and more
weakly to each other. They show that this approach discov-
ers intrinsic disciplinary boundaries within the collaboration
network of researchers within a large government laboratory
in the United States. Other researchers have also studied
the extent to which one type of relationship (e.g., collabo-
ration) influences another (e.g., disciplinary overlap). Cai et
al. [6] consider heterogeneous networks with different types
of links (e.g., each type corresponding to the collaboration
on papers in a specific conference). The task they are inter-
ested in is to see whether a given partition of the network
can be expressed as a linear combination of the strengths of
the different types of links. This approach can be used to
determine with the presence (or absence) of one type of re-
lationship can be explained by the presence (or absence) of a
combination of other types of relationships.

Our work is also related to work on topic discovery us-
ing bibliographic databases. Topic discovery is a burgeon-
ing field of research, where ”a topic is a semantic unit that
can function as a basic building block of knowledge discov-
ery” [19]. Our work analyzes sub-communities of computer
science, or areas, extrinsically defined as sets of conferences.
In terms of topics, these areas span a range of topics. Our
concern is the network properties of these areas, not their
constituent topics. Our belief is that these properties can
elucidate how collaboration, independent of topics, occurs
within the larger computer science community.

3 Data Collection
To perform our analysis, we first need to select a publicly
available bibliographic data source. After an analysis of
the bibliographic data available from various public data
sources, such as Google Scholar, Citeseer, and DBLP, we
found that all suffer from author name problems. These in-
clude cases where multiple authors have the same name, and
where the same author may have multiple names. However,
DBLP bibliographic information is maintained via massive
human effort with special attention paid to important issues
such as author name consistency [21]. In contrast, CiteSeer
and Google Scholar harvest information in a more automated
“search engine” manner [20]. Fortunately, the DBLP data is
publicly available in XML form which is easily parsed and
can be found at http://dblp.uni-trier.de/xml/. We
downloaded the DBLP XML dump as of February 4th, 2008,
parsed the data, and stored it in a MySQL database for easy
access and retrieval.

Although the DBLP data is fairly accurate, it still suffers
to some degree from the name consistency problem. We
therefore used heuristics such as text similarity of names,
number of collaborators in common, number of publication
venues in common, and dates of publication to identify pairs
of names that are likely the same author. The results of
this analsyis were manually inspected and correct matches



of names were added to our database to increase accuracy.
As our goal is to investigate whether there are different

styles of collaboration among subareas of computer science
and as well as how these areas interrelate, we need a mech-
anism to divide the large computer science community into
subareas. For this purpose, we define the research areas in
computer science as sets of first tier conferences. We re-
strict our definition to first tier conferences as practitioners
are more likely to associate these conferences with a single
area and further, such assignments are both less controversial
and better known than those for up and coming conferences.
The results of our analyses are highly sensitive to the map-
ping of first tier conferences into areas. To determine these
assignments, we surveyed expert opinion and consulted Cite-
seer’s impact rating [5, 7, 41].

Table 1 shows the areas of computer science research
that we investigate. We manually validated DBLP’s assign-
ment of papers to conferences as follows: Because some
conferences change their name, we examined several papers
in each conference and year to discover the name used that
year. Then we histogrammed the counts of papers for each
conference and year, looking for and fixing any irregular-
ities. As an example, we found that some papers marked
as FSE were from Fast Software Encryption, a cryptogra-
phy and security conference, while others were published in
Foundations of Software Engineering, a software engineer-
ing conference.

Areas Conferences
AI artificial intelligence AAAI, ACL, CIKM, CVPR,

and machine learning ICCV, ICDM, ICML, IJCAI,
KDD, NIPS, SDM, UAI

ARCH architecture ASPLOS, DAC, HPCA, ICCAD,
ISCA, MICRO, PACT

CBIO computational biology ISBM, RECOMB
CRYPTO cryptography CRYPTO, EUROCRYPT
DB databases EDBT, ICDE, ICDT

PODS, SIGMOD, VLDB
DIST distributed computing EURO-PAR, ICPP

IPDPS, PODC, PPOPP
GRAPH graphics Infovis, SI3D, SIGGRAPH
NET networks ICNP, INFOCOM, MOBICOM,

MOBIHOC, OPENARCH,
SIGCOMM

PL programming ICFP, ICLP, OOPSLA, PLDI,
languages POPL

SE software engineering ASE, CAV, FASE, FM, FSE,
ICSE, ISSTA

SEC security CCS, S&P, USS
SYS systems ATC, OSDI, RTSS, SOSP, USITS
THEORY theory COLT, FOCS, ISSAC, LICS,

SCG, SODA, SPAA, STOC
W3 world wide web ICIS, WWW

Table 1: Areas and Conferences

Once the process of assigning papers to conferences and
identifying top tier conferences in each area was complete,

we created the collaboration graphs. In all, there were 76,598
distinct authors, 83,587 papers, and 194,243 collaboration
pairs (where we count a collaboration between author a and b
only once even if they have collaborated on multiple papers).
Let C(p) represent some predicate or constraint on papers
that identifies only those publications that we are interested
in. An example is “publications in the area of Machine
Learning in 2003.” Let P be the set of all papers, A be the
set of all authors, and let W (a, p) be a predicate that is true
if and only if author a is an author, or writer, of paper p. We
then create the graph G = (V,E) as follows:

V = {a : a ∈ A, p ∈ P,C(p) ∧W (a, p)}
(3.1)

E = {(a, b) : a, b ∈ V, p ∈ P,C(p) ∧W (a, p) ∧W (b, p)}
(3.2)

Thus, each node in a graph is an author and each edge
connects two authors who have collaborated on a paper for
which the constraint C is true. It is important to note the
edges in these graphs are undirected. Furthermore, we can
weight the edges based on the number of papers that the two
authors have collaborated on. The graphs that result from
various choices of C represent the data used in our network
analyses.

In the following sections, we explain the various forms
of analysis we performed on the collaboration graphs we
extract, before we present the results of each analysis. We
found ample evidence for folkloric beliefs in our results, but
here present only a subset of those results due to space con-
straints. For completeness and repeatability, comprehensive
figures, data and code for each research area and analytic
method can be found at http://janus.cs.ucdavis.edu/
~cabird/sdm09/. Finally, we include information neces-
sary for repeatability such as locations of public data, exper-
imental parameters, and tools used.

4 Within-Area Analysis
We seek an understanding of the differences between the
various sub-disciplines of computer science research by
examining the collaboration graphs for each area in isolation.
In this section, we first describe the measures from complex
network theory that we employ to characterize the area
networks, then the results we obtained from applying them.

4.1 Degree Distribution The importance of node degree
to the whole-network behavior is well-studied and under-
stood, especially for highly connected vertices, or hubs [1].
Naturally occurring networks have long-tailed node degree
distributions, i.e., hubs do occur in them. Growth models,
most notably preferential attachment, have been proposed
that explain such distributions from first principles. We have
found that the computer science collaboration network, and
the networks of its sub-areas, both manifest the same long-



tailed, power-law-like degree distributions that previously
studied social networks exhibit. In fact, the degree distri-
butions of the sub-areas are almost identical, save for a scal-
ing factor, and thus do not make good discriminators in our
case. We demonstrate the scale-free nature of these networks
by showing the degree distribution for the entire collabora-
tion network in figure 1 and include the exponent of the best
power law fit, α, for each area in table 2. The best fit α was
obtained according to the methods from Clauset et al. [9]
using code obtained from them.
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Figure 1: Degree distribution of authors in the collaboration network
from first tier publications in DBLP

In naturally occurring networks, edges (or interactions)
depend not only on the vertex degree distribution but also
on the connectivities of the vertex neighbors, i.e., there is
apparent statistical dependence in the joint degree-degree
probability distribution [28]. To better characterize networks
in terms of node-node interactions, a number of network
measures have been developed that capture effects beyond
the first-order degree distributions. We describe and use
them next.

4.2 Assortativity Assortative mixing in networks is the
tendency of vertices to be connected to like vertices. For
example, highly connected vertices may be joined to other
highly connected vertices more often than to lowly con-
nected ones [28]. Scalar vertex properties other than degree
can be used to assess how much alike are vertices in the net-
work, so long as they are discrete or enumerative.

Here we follow the formal definitions from New-
man [28]. We define a set of properties over a graph’s ver-
tices; in our graph, these properties include degree and the
author’s career length. Each vertex is labeled with its value
for each property, e.g., a vertex of degree 4 has a label with
the value 4. Let exy be the fraction of all edges in the graph
that start at a vertex labeled x and end at a vertex labeled y.
e is known as the mixing matrix. For undirected networks

exy = eyx. Let ax be the fraction of all edges in the graph
incident to a vertex labeled x. By definition,

∑
xy exy = 1

and
∑
y exy = ax.

Assortativity is the Pearson correlation coefficient of the
property values of any two vertices connected by an edge:

(4.3) r =

∑
xy xy(exy − axay)

σ2
a

,

where σ2
a is the variance in the distribution of ax. The assor-

tativity ranges from 1, which indicates that all vertices are
connected only to vertices that have similar values for that
property, to -1, which indicates a perfect negative correlation
in the values of connected vertices. For example, social net-
works (like collaboration and coauthorship graphs) typically
have positive degree assortativity, while technological and
biological networks have negative degree assortativity [28].

4.3 Longitudinal Assortativity Assortativity is a static
measure of a graph at a particular point in time; it does
not incorporate longitudinal data, i.e., graph evolution. We
propose longitudinal assortativity to measure the correlation
of dynamic properties of nodes at the time that an edge is
created (i.e., a collaboration occurs). To apply this metric,
we timestamp edges and vertex properties (such as career
length or number of publications) when they change or are
added. We associate a single timestamp with each edge,
so our collaboration graph becomes a multigraph with an
edge for each collaboration between two authors. We then
use these timestamps to decompose the multigraph into
the sequence of multigraphs from which it evolved. Each
multigraph in this sequence contains only those property
values and edges whose timestamp is earlier than the point
in time under consideration. Since a property may have
many values whose timestamp is less than a given time, we
take the value with the greatest timestamp. The sequence
of multigraphs formed by updates itself forms a multigraph
in which each multigraph in the sequence is a disconnected
component. Longitudinal assortativity returns the value of
applying assortativity to this multigraph.
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Figure 2: Longitudinal Assortativity

Consider a small collaboration graph with 4 authors in
Figure 2c. The value at each node is number of publications.
Figure 2c evolved from Figure 2a in time step t0 and Fig-
ure 2b in time step t1. In Figure 2a, authors a and b wrote a
single paper together, while c and d wrote 10; in Figure 2b,



authors a and c publish 10, while b and d publish one. Notice
that at each time step, edges form between identical nodes.
However, this fact is lost when we calculate the assortativity
of Figure 2c: its assortativity is 0, since it connects an author
with a low publication count to two authors with medium
counts, and those two in turn to a single author with a high
number of publications. Longitudinal assortativity, in con-
trast, decomposes Figure 2c into Figures 2a and 2b, returns 1,
capturing the fact that publishing activity occurred between
identical nodes in the evolution of Figure 2c.

RESULTS: Here, we assess the degree to which computer
scientists in different research areas tend to publish with col-
laborators who are similar to them. We do this by calculat-
ing the longitudinal assortativity over the three properties:
number of publications, number of collaborators, and career
length (since first publication). The property at each time-
stamp represents the cumulative value of the property up to
that time (i.e. the number of publications in 1989 is the total
number an author has published up to 1989) A high value of
assortativity for the number of publications, for example, in-
dicates that researchers in the graph with high publication
counts work mainly with other high publication count re-
searchers, while researchers who have few publications col-
laborate with each other. Similarly, a negative value of as-
sortativity for career length indicates that those who have
published for many years often collaborate with authors who
have only been working in the field for a short time. Note that
each paper produces a clique of authors. While we would
expect to see negative assortativity in this graph with profes-
sors commonly working with students, it is surprising that
the assortativity is low, but positive. A scenario in which
one professor published one paper with each of his students
would lead to a star configuration and negative assortativity,
while a paper with 3 professors and 3 students (like this one)
would lead to a 6-clique and draw the assortativity closer to
0. We hypothesize that the assortativity of researchers based
on these measures is different in the different subdisciplines
of computer science.

Table 2 presents longitudinal assortativity values per
area, for each of the three properties. Here, assortativity
based on number of collaborators represents the degree as-
sortativity that is commonly measured in social networks.
Unlike most social networks in which the assortativity is
positive and generally quite large [33], the level of assor-
tativity is low in most areas in our collaboration network.
While CRYPTO’s assortativity is still low at .22, its differ-
ence from the mean is notable. Discussions with established
researchers in cryptography, and some of our own experi-
ence working in the area indicate that cryptography is a field
in which senior researchers tend to collaborate with other se-
nior researchers. There are some reasons for this: the field
is very technical, and has a high barrier to entry for junior
researchers and outsiders; however, the high level of assorta-

tivity casts doubt on the future vibrancy and dynamism of the
field, and suggests that greater efforts by established cryptog-
raphers to improve training of, and outreach to, newcomers
might be called for.

4.4 Betweenness Centralization Betweenness centrality
is a measure of the global status of a given vertex in a net-
work [13, 38]; it is a measure of the proportion of geodesics
that flow through a given vertex. A geodesic is a shortest
path between two vertices. In a connected, undirected graph
with n vertices, there are at least n(n − 1) geodesics. This
is a lower bound because there may be two shortest paths
of equal length between a pair of vertices. The betweenness
centrality of a vertex in a graph is calculated as the number
of geodesics passing through that vertex. In social networks,
actors with high betweenness represent gatekeepers or infor-
mation brokers because they lie along many paths of infor-
mation flow [38]. An author that is the sole link between two
groups of researchers will have high betweenness even if his
actual degree is relatively low. There are range of central-
ity metrics, all of which gauge the role played by a vertex in
the networks; betweenness centrality measures the degree to
which an individual mediates information and power flow in
a social network. In a collaborative network, where ideas and
influence flow between collaborating authors, an individual
with very high betweenness plays a key role in mediating
the transfer of ideas and influence within the collaborative
network.

While centrality is a property of individuals, centraliza-
tion is a property of a network, which measures the relative
difference between the highest and lowest values for the cen-
trality metric over all vertices in the graph. Collaboration
networks with high centralization have a few highly domi-
nant researchers, while lower centralization values indicate a
more integrated community where each author is relatively
equal in their centrality scores. Given a centrality metric of
vertices in a network, it is straightforward to calculate the
centralization for the entire network. Let bv(vi) be the be-
tweenness value of vertex vi and let v∗ be the vertex with the
highest betweenness in the graph. The betweenness central-
ization bg of the entire graph is

(4.4) bg =
∑n
i=1 (bv(v∗)− bv(vi))
n3 − 4n2 + 5n− 2

The numerator is the sum of differences of each vertex’s
betweenness centrality from the highest centrality score. The
denominator represents the maximum theoretical value of
the sum of differences for a graph with n vertices, which
obtains when the graph is in a star configuration. For
further details, please see the original paper by Freeman [13]
and the classic text by Wassermann and Faust [38]. High
betweenness centralization in a network indicates that there
are a few individuals who have a great deal of importance in



Area Pubs Authors edges 1st Pub Pub Assort Collab Assort Career Assort Modularity Largest Comm. α
AI 23420 22868 45544 1969 0.1001 0.1282 0.0033 0.822 1952 4.07
ARCH 8802 11607 31026 1973 0.0651 0.1046 0.0607 0.827 895 2.59
CBIO 1215 2459 6377 1993 0.0943 0.0997 0.0426 0.908 76 2.74
CRYPTO 2043 1342 2650 1981 0.1611 0.2291 0.1251 0.634 219 2.24
DB 8351 8053 22922 1975 0.1054 0.1333 0.0464 0.756 873 2.59
DIST 7886 11866 24863 1982 0.1207 0.1625 0.0629 0.901 495 3.06
GRAPH 1663 2750 5595 1985 0.0752 0.0967 0.0431 0.811 139 3.26
NET 5640 7035 13779 1983 0.0939 0.1450 0.0365 0.811 437 4.06
PL 3778 4391 7631 1973 0.0781 0.1135 0.0336 0.888 279 2.90
SE 5195 6708 12030 1976 0.0791 0.1239 0.0625 0.875 447 2.94
SEC 1025 1566 2410 1980 0.0673 0.0917 0.0076 0.822 88 3.49
SYS 2040 3500 7108 1971 0.0465 0.1078 0.0335 0.855 129 3.29
THEORY 11121 7264 16682 1960 0.1263 0.1472 0.0362 0.678 1191 2.19
W3 1778 3447 5843 1989 0.1473 0.1672 0.0561 0.916 178 3.71

Table 2: Summary of the Within-Area metrics results. Shown are the values for assortativity for each area and the network as a whole (all) based on
number of publications, collaborators, years since first publication, and modularity

mediating the flow of information and influence through the
network.

RESULTS: For most areas, betweenness centralization
had an initial peak, an early period most likely dominated
by pioneers, followed by a plateau signifying a more diffuse
flow of information within the community as illustrated in
figure 3.
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Figure 3: Centralization in databases shows a typical pattern: initial
spike, followed by decrease and stabilization, as more researchers enter the
field, and collaboration becomes more diffuse

We superimposed population growth, which is superlin-
ear, onto all plots to illustrate that this pattern is independent
of the growth of the fields. Of interest are the two areas that
did not follow the “peak-followed-by-plateau” pattern and
we discuss them next.

Figure 4, which depicts betweenness centralization over
time in PL, shows an initial peak, in 1975, followed by a
long trough, then a second peak in 1993. To shed light on
this phenomenon, we examined the raw data. The first peak
can be explained by the research activity of Jeffrey Ullman
whose research focused on parsing, dataflow, and compiler
optimizations. As the seventies drew to a close, research
in PL grew apace, but was no longer mediated by a few
pioneers.

Daniel Bobrow is the author with the highest between-
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Figure 4: Centralization in PL shows an initial peak after which
centralization falls into a valley before the normal pattern takes hold

ness in 1993. His publications are few, but span and integrate
disparate topics within PL. For instance, he and his coauthors
on “Common Loops Merging Lisp and Object-Oriented Pro-
gramming” bridge the functional and object-oriented sub-
communities, while he and his coauthors on “Objects in
Concurrent Logic Programming Languages” tie together re-
search in objects, concurrency, and logic.

Figure 5 concerns the vital field of computer security.
It shows the striking, rapid, and accelerating growth of the
number of researchers in the field (almost doubling in size
since 2002, to well over a thousand). Despite this tremen-
dous growth in the number of active authors in the field, we
find an even more dramatic, unrelenting increase in between-
ness centralization in security starting in 2002 to 2006, the
end of our data set. This trend centers on a small number
of researchers: Perrig, Reiter, and Song, all from Carnegie-
Mellon University, who have dominated the top conferences
in security — S&P, CCS, USENIX Security — since about
2001/2002 when all three joined CMU. The unusually high
betweenness scores of these researchers indicates, as per
social network theory (e.g., [39]) that these individuals are
playing a key “brokering" role in the flow of information and
ideas through the collaboration network. The high level of
centralization, compared to other fields, indicates these in-
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Figure 5: Centralization for Security shows an unusually rapid and con-
tinual growth in centralization, despite increasing number of researchers.
Is this healthy?

dividuals have an unusually high level of importance; the
continuing rapid growth of centralization indicates that their
importance is increasing. In a field so central to the secu-
rity and well-being of people and businesses, such a high
and growing level of importance focused on a small number
of researchers at a single institution is perhaps a cause for
concern, and certainly worth further examination.

4.5 Community Structure In 2002, Newman and Girvan
introduced a quantitative notion of the community structure
of a network, as “the division of network vertices into
groups within which the network connections are dense, but
between which they are sparser” [15]. Community structure
has been investigated in many types of networks in recent
years [2,3,30,34] due to advances in methods of identifying
these structures [8, 31, 40]. In our author collaboration
network, strong community structure in an area indicates that
the area consists of several distinct subgroups, each pursuing
their own agenda, with stronger collaborations within the
groups than between them. Weaker community structure in
an area indicates an integrated group of researchers.

Community structure algorithms partition a network
into groups of vertices, such that the connections within
groups are dense and the connections between the groups
are sparse. Newman & Girvan defined modularity, a
measure that uses the density and sparsity of the groups’
intra- and inter-connections to quantify community structure
strength [32]. We apply this measure to the research areas we
are studying. Consider a partition of a network into k com-
munities. Let us define a k × k matrix e whose element eij
is the fraction of all edges in the network that link vertices in
group i to vertices in group j. The row sum is ai =

∑
j eij

and the column sum is bj =
∑
i eij . The modularity measure

is

(4.5) Q =
∑
i

(eii − aibi)

Authorial collaboration is an undirected relationship.
Thus our adjacency and partition matrices are symmetric
and ai = bi. Q measures the fraction of the edges in the
network that connect vertices within the same group minus
the expected value of the same quantity in a network with the
same community divisions, but random connections between
the vertices (that is, the same division on a random network
with the same degree distribution). Values for Q range from
0 (networks of essentially random structure) to 1.

Finding the partition that maximizes the modularity for
a given network is an NP-complete problem [10]. Newman
& Girvan’s method is approximate, but empirically effec-
tive [31]. We refer the reader to their paper for details of
their algorithm.

Girvan & Newman’s original algorithm works well for
binary networks, but not networks with weighted edges. Our
networks contain weighted edges, representing the number
of papers jointly authored by each pair of researchers. A
weighted network can be represented as a parallel, or multi-
edge, binary network. We modified their algorithm to handle
such a parallel network, following the method described by
Newman [29]. Our implementation is available to others
wishing to use it.

RESULTS: In Table 3, we show the modularity, or degree
of community structure for different conferences as well as
the size of the largest identified community (largest comm.
in the table). In each case, the size of the largest community
is proportional to the size of the network, adding validation
to the modularity values. One striking observation is that the-
oretical conferences, including the core theory conferences
(STOC, FOCS), the algorithms conference (SODA), compu-
tational geometry (SCG), learning theory (COLT) and cryp-
tography (CRYPTO, EUROCRYPT) all show the lowest lev-
els of modularity, and thus are the most integrated. This
is perhaps reflective of the lower geographic and concep-
tual barriers to collaborative research in the more theoreti-
cal areas. In theoretical areas, the underlying topics tend to
have precise definitions, claims and arguments that can be
more readily communicated during short meetings at confer-
ences, or even over email. In less theoretical areas, there is
more folklore and intuition that is harder to communicate and
share. Therefore, we can expect that subcommunities will
coalesce around co-located, or otherwise socially connected
individuals. However, there are a few instances that we find
surprising. For example, we do not know why PODS, SIG-
MOD, and VLDB appear to be so tightly integrated.

It should be noted that modularity is not simply a
function of size; viz., larger communities aren’t naturally
more modular than smaller ones. For example, while the
cryptography community is quite small, both databases and
theory are some of the largest communities. All of these are
lower on the modularity scale.

In general, we believe that the community structure of



Conf Mod Conf Mod Conf Mod
STOC 0.675 ICCAD 0.894 ICDT 0.938
SCG 0.712 SOSP 0.895 POPL 0.939
FOCS 0.731 LICS 0.895 FSE 0.939
SODA 0.775 UAI 0.909 PPoPP 0.940
CRYPTO 0.805 MICRO 0.911 ICDM 0.940
COLT 0.819 SPAA 0.914 IJCAI 0.944
EUROCRYPT 0.825 SI3D 0.916 ISMB 0.946
SIGMOD 0.830 ICCV 0.917 S&P 0.947
PODS 0.840 ICSE 0.918 ISSTA 0.947
VLDB 0.843 RTSS 0.922 USS 0.950
PODC 0.844 ICFP 0.923 ICNP 0.951
CAV 0.857 KDD 0.926 IPDPS 0.952
SIGCOMM 0.860 RECOMB 0.926 InfoVis 0.954
ICIS 0.875 ICML 0.927 ATC 0.959
NIPS 0.876 ICLP 0.927 MOBICOM 0.959
DAC 0.884 AAAI 0.929 CIKM 0.960
ICDE 0.884 USITS 0.930 WWW 0.962
INFOCOM 0.886 PLDI 0.931 ICPP 0.962
OOPSLA 0.886 EURO-PAR 0.933 EDBT 0.964
SIGGRAPH 0.889 HPCA 0.934 FASE 0.965
ISCA 0.890 SDM 0.935 PACT 0.973
ISSAC 0.891 ACL 0.936 MOBIHOC 0.976
OSDI 0.891 ASPLOS 0.936 ASE 0.976
CVPR 0.891 CCS 0.937 FM 0.986

Table 3: Community structure of different conferences. In general,
theoretical conferences are the least modular, indicating that researchers
in the field are well-integrated. Systems conferences tend to be more
fragmented. Database conferences, while quite large, don’t have significant
sub-communities

different fields can reveal a great deal about the intellectual
fragmentation of an area. However, the interpretation of
these communities requires specialized knowledge of the
technical content and folklore of an area. We have therefore
created visualizations depicting the communities in each
conference and made them available at http://janus.cs.
ucdavis.edu/~cabird/sdm09/.

It is important to note that analysis and interpretation is
largely influenced by classification of areas within computer
science and mapping of papers to these fields.

5 Network-wide Metrics
We are also interested in the relationship between the re-
search areas in computer science, and how these relation-
ships change over time. The explanation of these “Network-
wide Metrics” are described below.

5.1 Area Overlap Many researchers publish in more than
one research area. We examine the relationship between
areas that “share” authors by examining area overlap, the
number of authors that have published in two areas during
the same time period. Since we have the venue and area for
each paper, calculating area overlap is fairly straightforward.
Let a and b be two research areas in computer science and
let A(a, t) be the set of authors who have published in area
a during time period t. The area overlap is defined in terms
of these two sets.

(5.6) Oa(b, t) =
|A(a, t) ∩A(b, t)|
|A(a, t)|

This measure is an asymmetric ratio, normalized on the

size of the area that we’re examining overlap for. We have
defined it, rather than employ the symmetric Jaccard Index
because it better captures our intuitive notion of the overlap
of one field with another and allows for relative comparison.
To see this, assume that in 1990 |PL| = 10, |AI| = 100, and
|PL ∩ AI| = 5, while in 2000 |PL| = 20, |SEC| = 20, and
|PL∩SEC| = 10. Under our index the overlap of PL with AI
in 1990 and SEC in 2000 are both 0.5, indicating that in each
case, half of the authors publishing in PL are also publishing
in the other area as well. In contrast, the Jaccard Index yields
0.09 in 1990 and 0.33 in 2000, neither of which accurately
reflects the overlap of PL with each area. We examine this
measure across time to see how the relationship between
various subdisciplines has changed and report our findings
below.

5.2 Migration The migration patterns of researchers over
time are an interesting area of study that can give a high-level
view of relationships between areas and longitudinal trends.
We analyze migration patterns by assigning each researcher
to a specific area for each year based on publication history
and examining how their assigned areas change.

For each author, we create a score for each computer
science research area based on past publication history that
favors recent publications. The intuition behind this method
is that an author’s publication history captures their interests,
but those interests also change with time. For example, a
prolific author may publish heavily in databases for 10 years,
change interests, and publish strictly in graphics for the next
6. If we simply aggregated this author’s output, we could
mis-classify her current area as databases when she is in fact
focused on graphics. We therefore introduce a decay into
the publication count in the following two scoring equations.
Publications lose twenty percent of their weight with each
year in the first score, while publications retain their full
weight during their initial three years followed by a drop of a
third each year thereafter in the second score. Let P (r, a, y)
be the number of publications by author r in area a in year
y. We calculate the research “score” for each author per area
per year in the following two ways.

S1(r, a, y) =
5∑
i=1

P (r, a, y − i) · 6− i
5

(5.7)

S2(r, a, y) =
3∑
i=1

P (r, a, y − i) +
5∑
i=4

P (r, a, y − i) · 6− i
3

(5.8)

From these scores, we determine the research area of
researcher r for a particular year y, Ai(r, y) by choosing the
area with the highest score.
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Figure 6: Overlap of DB with other areas over time.

A1(r, y) = argmax
a

S1(r, a, y)(5.9)

A2(r, y) = argmax
a

S2(r, a, y)(5.10)

For all authors over the span of their careers, we found
that A1 and A2 differed in less than one percent of the
(researcher, year) cases.

Computing the migration of authors between areas is
fairly straightforward. Let R(a, y) be the set of researchers
who have area a as their main research area in year y.
The number researchers that migrated from area a to area b
between y and y+1 is |R(a, y)∩R(b, y+1)|. We normalize
this measure to derive the proportion of total authors in a that
entered b.

|R(a, y) ∩R(b, y + 1)|
|R(a, y)|

(5.11)

RESULTS: We use area overlap and migration to examine
the changing relationships between different research areas.
Of particular note are cases where the overlap and migration
with one area wanes while another is rising.

Figure 6 depicts one example, which shows the number
of authors who published in both software engineering and
other disciplines in the same year over time. In the mid to late
80’s, 8–10% of the authors publishing in the top tier database
conferences were also publishing in SE. This “interest” dies
off by the mid to late 90’s with a nearly monotonic increase
in the proportion of authors from DB publishing in machine
learning conferences (AI). This confirms the folklore that the
two areas are converging.

Our overlap metric is an asymmetric ratio which is
normalized and thus comparable. Table 4 shows areas
with highest and lowest overlap 2005. A row that reads
Area1 → Area2 x% indicates that x% of the authors that
published in Area1 also published in Area2. For instance,
the first row indicates that just over 13% of the authors that

published in top cryptography conferences also published in
top security conferences. The first three rows show that there
cryptography, security, and theory have many authors in
common. Compared to overlap values from prior years (not
shown) this confirms the folklore that the areas of software
engineering and programming languages are moving closer
together and attracting the same authors. We also see a rise
in the authors in computational biology that are publishing
in machine learning conferences (AI) as new algorithms and
analysis techniques are devised for dealing with the scale and
kinds of data now available. Of the 182 possible area pairs,
32, or 18% had no overlap whatsoever.

Areas Proportion
CRYPTO→ SEC 13.39%
CRYPTO→ THEORY 12.60%
SEC→ CRYPTO 8.99%
W3→ DB 8.64%
SYS→ NET 8.17%
DB→ AI 7.86%
W3→ AI 7.65%
PL→ SE 7.02%
SYS→ DIST 6.76%
PL→ DIST 6.73%
CBIO→ AI 6.08%
THEORY→ DIST 6.04%
SEC→ NET 5.82%
SYS→ ARCH 5.35%
THEORY→ AI 5.05%
NET→ DIST 4.98%
PL→ ARCH 4.97%
SEC→ PL 4.23%
ARCH→ DIST 4.09%
SEC→ SE 3.70%

Table 4: Pairs of areas with highest overlap

Turning to migration over time, One key result is that
migration partitions the areas into a set in which the net
flows are nearly zero, i.e., each migration path had roughly
the same people leaving as entering, and a set in which the
flows are not zero. All areas except for DB, SE, PL, NET,
and W3 had a net flow of nearly 0 along all migration paths.
Among these areas, we find a flow of people from DB to PL
and thence to NET and no corresponding flow of equivalent
magnitude in the other direction.

5.3 Interdisciplinariness We quantify each author’s pub-
lication record as a vector whose components are the scores
calculated, at a particular point in time, using Equation 5.8
from section 5.2. We call this vector a publication profile.
For each area and conference, we create a matrix from the
publication profiles of its authors. Since a publication profile
is a snapshot of an author’s activity, these matrices may con-
tain distinct publication profiles for an author who publishes
more than once in the interval under consideration. Principal
Components Analysis (PCA) of the resulting matrices illu-
minate the degree to which the associated conference or area
is diverse or interdisciplinary.

A scree plot shows how much of the variance in each
author’s publication profile is described by each eigenvector



of the covariance matrix. If the scree plot falls sharply, then
the first few eigenvectors explain a large amount of variance
in the data set. In our context, this means that the profiles of
the authors for the conferences are fairly uniform and implies
that the conference is not very diverse. We also examine
the loadings on the principal eigenvectors to see which areas
contain the most variation in their author profiles. Areas
that have low loadings have low variance. In our data, we
have found that this is almost always indicative of negligible
publication counts. For each venue, we report the variance
explained in the first two eigenvectors and the areas with
highest loadings.

The following example illustrates one limitation of our
approach. Suppose a conference attracts only authors who
each have equally strong publication records in the same
three areas. In this case, the principal eigenvector accounts
for the majority of the variance, leading to a conclusion
that the conference is not interdisciplinary. This contrasts
starkly with the publication profiles of the authors, who are
interdisciplinary by definition. We observe that in practice,
this does not occur in the data.

RESULTS: Table 5 contains the cumulative variance ex-
plained in the first three eigenvectors produced via PCA, in
its columns labeled Var 1–3. The columns Area 1–3 capture
the areas of highest loading across these three eigenvectors.
Although eigenvectors are linear combinations of all areas,
we found that each eigenvector had one or two areas (di-
mensions) that predominated. We see that SYS accumulates
the least proportion of its variance in its first three eigenvec-
tors, while architecture’s sum rises sharply. This confirms
the folklore that systems is highly interdisciplinary, while ar-
chitecture, which differs from other areas in that it is closer
to the metal and must consider physical constraints, is not.
Since it is foundational, we expect theory to appear often in
the loading columns and indeed it does, appearing 8 times.

Area Var 1 Var 2 Var 3 Area 1 Area 2 Area 3
AI 0.72 0.89 0.94 AI DB THEORY
ARCH 0.84 0.91 0.93 ARCH DIST SE
CBIO 0.59 0.74 0.87 AI DB CBIO
CRYPTO 0.57 0.87 0.93 CRYPTO THEORY SE
DB 0.70 0.85 0.94 DB AI THEORY
DIST 0.47 0.60 0.73 DIST ARCH THEORY
GRAPH 0.47 0.76 0.89 AI GRAPH THEORY
NET 0.54 0.67 0.77 NET THEORY DB
PL 0.26 0.47 0.61 PL ARCH DIST
SE 0.41 0.73 0.79 SE ARCH CRYPTO
SEC 0.27 0.46 0.61 CRYPTO THEORY SEC
SYS 0.26 0.44 0.59 SYS NET DIST
THEORY 0.68 0.77 0.84 THEORY AI DB
W3 0.45 0.77 0.84 DB AI W3

Table 5: PCA Results by Area

To confirm widely held beliefs about the interdisci-
plinary reputations of particular conferences, we performed
the same analysis on SDM, ICSE, FOCS, and STOC. SDM
and ICSE are widely believed to draw authors who have di-
verse research interests, while FOCS and STOC are thought

to attract authors who are more narrowly focused. Our analy-
sis confirms these stereotypes. Figure 7 shows the proportion
of variance explained by each principal component.
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Figure 7: Scree plot for PCA of FOCS and ICSE

6 Conclusions and Future Work
In this paper, we have presented a quantitative study of col-
laboration patterns of the computer science research com-
munity. In particular, we have examined the collaboration
network derived from the DBLP bibliographic database. We
first divided the network into computer science subareas and
then applied various network analysis metrics to find differ-
ences in the research styles of the areas and how these areas
interrelate in terms of author overlap and migration. Our
results are informative—they not only confirm computer sci-
ence folklore, but also highlight some patterns that we found
surprising. For example, we found that the areas differed
greatly in their level of integration and the degree to which
they are interdisciplinary. We have also identified areas that
are dominated by a few researchers. These findings may
highlight potential problems within our community and sug-
gest policies and actions to guide us towards a more effective
scientific community.

There are many potential directions for future research.
First, this exploratory work has generated a number of
preliminary results for which we intend to to formulate, test,
and validates hypotheses. Second, we plan to extend our
analysis to journals and less well recognized conferences
besides those first tier conferences considered in this work
to investigate whether the patterns are similar or different.
Finally, we plan to examine people’s citation patterns to
see whether or how they may correlate with collaboration
patterns. The goal is to gain a good understanding of the
structure and dynamics of our research community.
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