
Int J STTT (2000) 3: 93–105 2000 Springer-Verlag

Regular contribution

Detecting races inRelay Ladder Logic programs

Alexander Aiken∗, Manuel Fähndrich∗∗, Zhendong Su∗

EECS Department, University of California, Berkeley 387 Soda Hall #1776, Berkeley, CA 94720-1776, USA;
E-mail: {aiken,zhendong}@cs.berkeley.edu

Abstract. Relay Ladder Logic (RLL) [5] is a program-
ming language widely used for complex embedded control
applications such as manufacturing and amusement park
rides. The cost of bugs in RLL programs is extremely
high, often measured in millions of dollars (for shutting
down a factory) or human safety (for rides). In this paper,
we describe our experience in applying constraint-based
program analysis techniques to analyze production RLL
programs. Our approach is an interesting combination of
probabilistic testing and program analysis, and we show
that our system is able to detect bugs with high proba-
bility, up to the approximations made by the conservative
program analysis. We demonstrate that our analysis is
useful in detecting some flaws in production RLL pro-
grams that are difficult to find by other techniques.

Key words: Constraints – Software – Static analysis –
Testing – Verification

1 Introduction

Programmable logic controllers (PLCs) are used exten-
sively for complex embedded control applications such as
factory control in manufacturing industries and for enter-
tainment equipment in amusement parks. Relay Ladder
Logic (RLL) is the most widely used PLC programming
language; approximately 50% of the manufacturing cap-
acity in the United States is programmed in RLL [6].
RLL has long been criticized for its low-level design,

which makes it difficult to write correct programs [22].

∗ Supported in part by the National Science Foundation, Grant
No. CCR-9416973, by NSF Infrastructure Grant No. CDA-
9401156, and a gift from Rockwell Corporation.
∗∗ Present address: Microsoft Research, One Microsoft Way, Red-
mond, WA 98052-6399, USA; E-mail: maf@microsoft.com

Moreover, validation of RLL programs is extremely ex-
pensive, often measured in millions of dollars (for factory
down-time) or human safety (for rides). One solution is to
replace RLL with a higher-level, safer programming lan-
guage. An alternative is to provide better programming
support directly for RLL. Since there are many existing
RLL applications, and many more will be written in this
language, we consider the latter approach in this paper.
We have designed and implemented a tool for analyz-

ing RLL programs. Our analyzer automatically detects
some common programming mistakes that are extremely
difficult to detect through inspection or testing. The in-
formation inferred by the analyzer can be used by RLL
programmers to identify and correct these errors. Our
most interesting result is an analysis to detect certain
race conditions in RLL programs. Tested on real RLL
programs, the analysis found several such races, includ-
ing one known bug that originally caused four hours of
factory down-time [6] (factory down-time generally costs
upwards of $3,000 per minute).
In this paper, we describe the design and implemen-

tation of our RLL program analyzer for detection of re-
lay races. Our analysis is constraint-based, meaning that
the information we wish to know about a program is
expressed as constraints [3, 4, 19]. The solutions of these
constraints yield the desired information. Our analysis is
built using a general constraint resolution engine, which
allows us to implement the analysis directly in the same
natural form it is specified. Constraint-based program an-
alysis is discussed further in Sect. 4.
Our analysis is similar to ternary simulation for test-

ing circuits. The underlying semantic model of the con-
straints is essentially the same as that of ternary simu-
lation, which is Kleene’s three-valued logic [21]. Ternary
simulation has been suggested and applied for the detec-
tion of hazards in combinatorial and sequential circuits [9,
10, 16, 27]. A detailed discussion of the relationship be-

94 A. Aiken et al.: Detecting races in Relay Ladder Logic programs

tween our approach and ternary simulation is postponed
to the related work section (Sect. 8).
Our system has two components: (a) a conservative

data and control flow analysis captures information about
a program in an initial system of constraints; and (b)
additional constraints binding program inputs to actual
values are added to the initial constraint system, which
is then solved to obtain the desired information. Part (a)
is done only once, but part (b) is done many times for
randomly chosen inputs. Our underlying constraint reso-
lution engine solves and simplifies the initial constraints
generated by (a), thereby greatly improving the perform-
ance of (b).
Beyond the particular application to RLL programs,

this system architecture has properties that may be of in-
dependent interest. First, the use of constraints greatly
simplifies the engineering needed to factor out the infor-
mation to be computed once from that which must be
reevaluated repeatedly — we simply add new constraints
to the initial system. Second, our system is (to the best
of our knowledge) a unique blend of conservative program
analysis (part (a), which approximates certain aspects of
computation) and software testing (part (b), which “exe-
cutes” the abstraction for concrete inputs). Third, we are
able to prove that classes of program errors are detected
with high probability, up to the approximations made by
the conservative analysis.
We expect that the engineering advantages of using

constraints will carry over to other static analysis tools.
The latter two results apply directly only if the pro-
gramming language has a finite domain of values (RLL
has Booleans only). Thus, our approach is suitable for
some other special-purpose languages (e.g., other con-
trol languages) but not necessarily for general purpose
languages.
The rest of the paper is structured as follows. First,

we give an overview of the language RLL (Sect. 2) and
of the race analysis (Sect. 3). Then we describe the con-
straint language used for the analysis (Sect. 4). The rules
for generating the base system of constraints come next
(Sect. 5), followed by a description of the relay race an-
alysis (Sect. 6). Finally, we present some experimental
results (Sect. 7), followed by a discussion of related work
(Sect. 8) and conclusions (Sect. 9).

2 Overview of RLL

By any standard RLL is a strange language, combin-
ing features of Boolean logic (combinatorial circuits),
imperative programming (assignment, goto, procedures,
and conditionals), and real-time computation (timers and
counters) with an obscure syntax and complex seman-
tics. Although widely used, RLL is not well-known in the
research community. We give a brief overview of RLL to-
gether with a more detailed, but still high-level, descrip-
tion of our analysis system.

RLL programs are represented as ladder diagrams,
which are a stylized form of circuits or data flow dia-
grams. A ladder diagram consists of a set of ladder rungs
with each rung having a set of input instructions and
output instructions. We explain this terminology in the
context of the example RLL program in Fig. 1. In the ex-
ample, there are two vertical rails. The one on the left
supplies power to all crossing rungs of the ladder. The
three horizontal lines are the ladder rungs of this pro-
gram. This example has four kinds of RLL instructions:
input (two kinds), outputs, and timer instructions. The
small vertical parallel bars | | and |/| represent input in-
structions, which have a single bit associated with them.
The bit is named in the instruction. For example, the | |
instruction (an XIC for “Normally Closed Contact” in-
struction) in the upper-left corner of the diagram reads
from the bit named A, and the |/| instruction (an XIO
for “NormallyOpened Contact” instruction) in the lower-
left corner of the diagram reads from the bit named C.
The small circles represent output instructions that up-
date the value of their labeled bits. The bits named in
input and output instructions are classified into external
bits, which are connected to inputs or outputs external
to the program, and internal bits, which are local to the
program for temporarily storing program states. External
inputs are generally connected to sensors, while external
outputs are used to control actuators. The rectangular
box represents a timer instruction (a TON for “Timer
On-Delay” instruction), where PR (preset) is an integer
representing a time interval in seconds, AR (accumula-
tor) keeps the accumulated value, and TB (time base) is
the step of each increment of the AR. The timer instruc-
tions are used to turn an output on or off after the timer
has been on for a preset time interval (the PR value).
Instructions are connected by wires, the horizontal

lines between instructions. We say a wire is true if power
is supplied to the wire, and the wire is false otherwise.
An RLL program operates by first reading all the

values of the external input bits and executing the rungs

PR: 50

AR: xx

TB: 0.1 sec

XIO (C)

XIC (B)

OTE (B)

OTE (C)

EN

DN

XIC (A)

TON

Fig. 1. An example RLL program

A. Aiken et al.: Detecting races in Relay Ladder Logic programs 95

in sequence from top to bottom and left to right. Pro-
gram control instructions may cause portions of the pro-
gram to be skipped or repeatedly executed. After the last
rung is evaluated, the output devices connected to the
external output bits are updated. Such a three-step ex-
ecution (read inputs, evaluate rungs, update outputs) of
the program is called a scan. Programs are executed scan
after scan until interrupted. Between scans, the input bit
values might be changed, either because the inputs were
modified by the previous scan (bits can be inputs, out-
puts, or both) or because of state changes in external
sensors attached to the inputs. Subsequent scans use the
new input values.
RLL has many types of instructions: relay instruc-

tions, timer and counter instructions, data transfer in-
structions, arithmetic operations, data comparison op-
erations, and program control instructions. Examples of
relay instructions are XIC, XIO, and OTE. We briefly
describe how these three instructions work for the expla-
nation of our analysis in Sect. 3. Let w1 and w2 be the
wires before and after an instruction respectively. Fur-
ther, let b be the bit referenced by an instruction.

XIC: if w1 and b are true, w2 is true; otherwise, w2 is
false.

XIO: if w1 is true, and b is false, w2 is true; otherwise,w2
is false.

OTE: the bit b is true if and only if w1 is true.

3 Overview of race analysis

In this section, we give a high-level overview of our RLL
program analyzer for detecting relay races.
In RLL programs, it is desirable that the values of out-

puts depend solely on the values of inputs and the internal
states of timers and counters. If under fixed inputs and
timer and counter states, an output x changes from scan
to scan, then there is a relay race on x. For example, in the
program in Fig. 1, we will see later that the bit B changes
value each scan regardless of its initial value. Relay races
are particularly difficult to detect by traditional testing
techniques, as races can depend on the timing of external
events and the scan rate.
Our analysis generalizes traditional data flow ana-

lyses [1]. Instead of data flow equations, set constraints [3,
4, 19] are used. Set constraints are more expressive than
data flow equations because the constraints can model
not only data flow but also control flow of a program.
Our analysis consists of two steps. In the first step, we

generate constraints that describe the data and control
flow dependencies of an RLL program. The constraints
are generated in a top-down traversal of the program’s ab-
stract syntax tree (AST). According to a set of constraint
generation rules (see Sect. 5), appropriate constraints are
generated for each AST node. These data and control flow
constraints are solved to yield another system of simpli-
fied constraints, the base system. The base system models

where and how a value flows in the program. The base
system is a conservative approximation of the program.
Whereas a wire can have only one value at a time during
program execution, the analysis assigns a set of possible
values to a wire. If during program execution, a wire or
a bit can be true (false), then true (false) is in the set that
denotes the values of the wire or the bit in the base sys-
tem; however, false (true) may be a value in that set, too.
The second step of the relay race analysis simulates

multiple scans and looks for racing outputs. We choose
a random assignment of inputs and add the correspond-
ing constraints to the base system. The resulting system
is solved; its minimum solution describes the values of the
outputs at the end of the scan. Since some output bits are
also inputs, the input assignment of the next scan is up-
dated using the outputs from the previous scan. Again,
we add this input assignment to the base system and
solve to obtain the minimum solution of the outputs after
the second scan. If an output changes across scans, a re-
lay race is detected. For example, consider the example
program in Fig. 1. Since the bottom two rungs do not in-
terfere with the first rung, consider these two rungs only.
Assume that B has initial value true. Then C also is true,
and so in the last rung, B becomes false. Thus, in the next
scan, B is initially false. Thus, C becomes false, which
makes B true at the end of this scan. Consequently, we
have detected a relay race on B: after the first scan B is
false, and after the second scan B is true.
The race analysis is conservative in the sense that it

cannot detect all of the relay races in a program. How-
ever, any relay races the analyzer detects are indeed relay
races, and we can prove that a large class of relay races is
detected with high probability.
We have implemented the race analysis in Standard

ML of New Jersey (SML) [24] using the BANE program
analysis toolkit [2]. Our analyzer is accurate and fast
enough to be practical — production RLL programs can
be analyzed. The relay race analysis not only detected
a known bug in a program that took an RLL program-
mer four hours of factory down-time to uncover, it also
detected many previously unknown relay races in our
benchmark programs.

4 Constraints

In this section, we describe the set constraint language
we use for expressing our analysis. Our expression lan-
guage consists of set variables, a least value ⊥, a greatest
value �, constants T and F, intersections, unions, and
conditional expressions. The syntax of the expression lan-
guage is

E ::= v | ⊥ | � | c | E1∪E2 | E1∩E2| E1⇒E2,

where c is a constant (either T or F) and v ∈ V is a set
variable.

96 A. Aiken et al.: Detecting races in Relay Ladder Logic programs

The abstract domain consists of four elements: ∅ (rep-
resented by ⊥), {T} (represented by T), {F} (repre-
sented by F), {T,F} (represented by �) with set inclu-
sion as the partial order on these elements. The domain
is a finite lattice with ∩ and ∪ being the meet and join
respectively. The semantics of the expression language is
given in Fig. 2.
Conditional expressions deserve some discussion.

Conditional expressions are used for accurately modeling
flow-of-control (see e.g., [4]). In the context of RLL, they
can be used to express Boolean relations very directly. For
example, we can express the Boolean expression v1 ∧v2
with the following conditional expression:

((v1∩T)⇒ (v2∩T)⇒T)∪

((v1 ∩F)⇒ F)∪

((v2 ∩F)⇒ F)

To see this expression does model the ∧ operator, notice
that if v1 =T and v2 = T, the above expression simpli-
fies to

((T∩T)⇒ (T∩T)⇒T) = ((T⇒T)⇒T) = T.

One can easily check that the other three cases are also
correct.
We use set constraints to model RLL programs in-

stead of Boolean logic for two reasons. First, although
the core of RLL is Boolean logic, other instructions (e.g.,
control flow instructions) are at best difficult to express
using Boolean logic. Second, RLL programs are large and
complex, so approximations are needed for performance
reasons. Set constraints give us the flexibility to model
certain instructions less accurately and less expensively
than others, making the analysis of RLL programs more
manageable.

ρ(⊥)=∅

ρ(�)={T,F}

ρ(T)={T}

ρ(F)={F}

ρ(E1∩E2)=ρ(E1)∩ρ(E2)

ρ(E1∪E2)=ρ(E1)∪ρ(E2)

ρ(E1⇒ E2)=

{
ρ(E2)if ρ(E1) �= ∅
∅ otherwise

Fig. 2. Semantics of set expressions

5 Constraint generation

In this section, we describe how we use inclusion con-
straints to model RLL programs. We also describe the
concrete semantics and abstract semantics of RLL. The

concrete semantics is given informally, while the abstract
semantics is described formally with a set of constraint
generation rules (see Figs. 3 and 4). It is straightforward
to present a formal concrete semantics for RLL, except
for timers which require the modeling of time. As we
shall see, our abstraction of timers ignores time alto-
gether. Thus, we avoid the complications of formaliz-
ing the semantics of timers by giving an informal con-
crete semantics.
Because of the scan evaluation model of RLL, it is suf-

ficient to give a model of the meaning of a single scan.
We give constraint generation rules for the primitive con-
structs of RLL. In the rules set variables denote the values
of bits and wires. Thus, a bit or wire may be assigned
the abstract values ∅ (meaning no value), {T} (definitely
true), {F} (definitely false) or {T,F} (meaning either
true or false, i.e., no information). Rules have the form

E, I → E′, S, v1, v2

where:

– E and E′ are mappings of bits to their correspond-
ing set variables. The operator + extends the mapping

such that (E+{b, v})(b′) =

{
v, if b′ = b
E(b′),otherwise

– I is the current instruction;
– S is the set of constraints generated for this instruc-
tion;

– v1 and v2 are set variables associated with the wires
before and after instruction I and are used to link in-
structions together.

The rule can be read as “under the variable mapping
E, for the instruction I, the constraint set S is gener-
ated, along with a modified variable mapping E′ and two
set variables v1 and v2 denoting the wire preceding and
following I respectively.” As an example, consider the fol-
lowing rule for the instruction XIC.

v1 and v2 are fresh variables
vct =E(b)

S = {AND(v1, vct) ⊆ v2}

E,XIC(b) → E,S, v1, v2

where AND(v1, vct) denotes the set expression

((v1∩T)⇒ (vct∩T)⇒T)∪

((v1∩F)⇒ F)∪

((vct∩F)⇒ F)

The rule says that for the instruction XIC we generate the
constraint AND(v1, vct) ⊆ v2, with the variable mapping
unchanged. In the rule, two fresh variables v1 and v2 are
created to denote the wires preceding and following the
instruction XIC(b). The statement vct = E(b) is used to
retrieve the set variable that is associated with the bit b
from the mapping E.
Figures 3 and 4 give some example inference rules for

generating the constraints describing the data and con-
trol flow of RLL programs. In Figs. 3 and 4, and in the rest

A. Aiken et al.: Detecting races in Relay Ladder Logic programs 97

v1 and v2 are fresh variables

vct =E(b)
S = {((v1∩T)⇒ (vct∩T)⇒T)∪ ((v1 ∩F)⇒F)∪ ((vct∩F)⇒F) ⊆ v2}

E,XIC(b) → E,S, v1, v2
[XIC]

v1 and v2 are fresh variables

vct =E(b)
S = {((v1∩T)⇒ (vct∩F)⇒T)∪ ((v1 ∩F)⇒ F)∪ ((vct∩T)⇒F) ⊆ v2}

E,XIO(b) → E,S, v1, v2
[XIO]

v1, v2, and vct are fresh variables

E′ =E+{(b, vct)}
S = {((v1∩T)⇒T)∪ ((v1 ∩F)⇒F) ⊆ vct}

E,OTE(b) →E′, S, v1, v2
[OTE]

v1, v2, and vct are fresh variables

v′ct =E(b)
E′ =E+{(b, vct)}

S = {((v′ct∩T)⇒T)∪ ((v1 ∩T)⇒T)∪ ((v1∩F)⇒ (v′ct∩F)⇒ F) ⊆ vct}

E,OTL(b) →E′, S, v1, v2
[OTL]

v1, v2, and vct are fresh variables

v′ct =E(b)
E′ =E+{(b, vct)}

S = {((v′ct∩F)⇒F)∪ ((v1∩T)⇒ F)∪ ((v1∩F)⇒ (v′ct∩T)⇒T) ⊆ vct}

E,OTU(b) →E′, S, v1, v2
[OTU]

Fig. 3. Some rules for generating constraints (part 1)

of this section, we use w1 and w2 to stand for the wires
preceding and following an instruction respectively. Fur-
thermore, b denotes the bit referenced by an instruction
unless specified otherwise. Below, we explain these rules
in more detail.

Contacts.
The instruction XIC is called “Normally Closed Con-
tact.” Ifw1 is true, then b is examined. If b is true, then
w2 is true. Otherwise,w2 is false. In the rule [XIC], two
fresh set variables v1 and v2 represent the two wires
w1 and w2. The set variable vct represents the refer-
enced bit b. The constraints express that w2 is true if
and only if both w1 and b are true. The instruction
XIO, called “Normally Opened Contact,” is the dual
of XIC. The wire w2 is true if and only if w1 is true and
the referenced bit b is false. The constraint generation
rule for XIO is similar to the rule [XIC].

Energise coil.
The instruction OTE or “Energise Coil” is pro-
grammed to control either an output connected to the
controller or an internal bit. If the wire w1 is true,
then the referenced bit b is set to true. Otherwise, b is
set to false. Rule [OTE] models this instruction. The
set variables v1 and v2 are the same as in the rule
[XIC]. The set variable vct is fresh, representing a new
instance1 of the referenced bit b. The new instance is
recorded in the mapping E′. Later references to b use
this instance. The constraints express that b is true if
and only if w1 is true.

Latches.
The instructions OTL and OTU are similar to OTE.

1 Due to the sequential evaluation of rungs, a particular bit can
take on distinct values in different parts of a program. An instance
of a bit captures the state of a bit at a particular program point.

98 A. Aiken et al.: Detecting races in Relay Ladder Logic programs

v1, v2, vdn, ven, and vtt are fresh variables

E′ =E+{(DN, vdn), (EN, ven), (TT, vtt)}

S =

((v1∩T)⇒T ∪ F) ⊆ vdn,
((v1 ∩T)⇒ (vdn∩F)⇒T) ∪ ((v1 ∩F)⇒ F) ∪ ((vdn∩T)⇒F) ⊆ vtt,

((v1 ∩T)⇒T) ∪ ((v1 ∩F)⇒ F) ⊆ ven

E,TON → E′, S, v1, v2
[TON]

v1, v2, vdn, and vcu are fresh variables

E′ =E+{(DN, vdn), (CU, ven)}

S =

{
((v1∩T)⇒ (v1∩F)⇒T)∪F ⊆ vdn,
((v1 ∩T)⇒T)∪ ((v1 ∩F)⇒F) ⊆ vcu

}

E,CTU → E′, S, v1, v2
[CTU]

v1, v2, dvi, 0≤ i≤ 15, are fresh variables

E′ =E+{(MOVswi , dvi) | 0≤ i≤ 15}
S = {((v1∩T)⇒E(MOVdwi)∪ (v1∩F)⇒E(MOVswi)) ⊆ dvi | 0≤ i≤ 15 }

E,MOV →E′, S, v1, v2
[MOV]

B = the set of bits in the program
v1, v2, nvb (for all b ∈B) are fresh variables

Rfname = the rungs in the file fname

E,Rfname →E′, S0
E′′ = {(b, nvb) | b ∈B}

S = ((v1∩T)⇒ S0)∪{(v1∩T)⇒E′(b) ∪ (v1∩F)⇒E(b) ⊆ nvb | b ∈B }

E, JSRfname →E′′, S, v1, v2
[JSR]

v is a fresh variable

E,R1 →E′, S0, v1, v2
E′, R2 →E′′, S1, v

′
1, v

′
2

S = {(v2∩T)⇒T ∪ (v′2∩T)⇒T ∪ (v2∩F)⇒ (v′2∩F)⇒F ⊆ v}

E,R1||R2 →E′′, S ∪ S0 ∪ S1 ∪ {v1 = v′1}, v1, v
[PAR]

Fig. 4. Some rules for generating constraints (part 2)

OTL is “Latch Coil,” and OTU is “Unlatch Coil.”
These two instructions appear in pairs. Once an OTL
instruction activates its bit b, then b remains true until
it is cleared by an unlatch instruction OTU, indepen-
dently of the wire w1 which activated the latch. The
unlatch coil (OTU) instruction is symmetric. In the
rule [OTL], the set variable v′ct represents the value of
the b prior to the instruction, while the variable vct de-
notes the new instance of b. The constraint expresses
that b is true if and only the wire w1 is true or b is true
before evaluating this instruction. The rule for OTU is
similar.

Timers.
Timers (TON) are instructions that activate an out-
put after an elapsed period of time. Three status bits
are associated with a timer: the done bit (DN), the
timing bit (TT), and the on bit (EN). The DN bit
is true if the wire w1 has remained true for a preset
period of time. The bit remains true unless w1 be-
comes false. The TT bit is true if the wire w1 is true
and the DN bit is false. The TT bit is false otherwise,
i.e., it is false if the wire w1 is false or the DN bit is
true. The EN bit is true if and only if the wire w1
is true. In the rule [TON], vdn, vtt and ven are fresh

A. Aiken et al.: Detecting races in Relay Ladder Logic programs 99

set variables representing new instances of the corres-
ponding bits. The constraint for the DN bit is

((v1 ∩T)⇒T)∪ F ⊆ vdn.

The constraint approximates timer operation by ig-
noring elapsed time. The DN bit can be false (the
timer has not reached its preset period), or if the wire
w1 is true, then the DN bit can be true (the timer may
have reached its preset period). The constraints for
the TT and EN bits are straightforward.

Remark 1. For the relay race analysis, we assume
that the DN bit does not change value across scans.
This assumption is reasonable since the scan time,
compared with the timer increments, is infinitesimal.
The DN bit essentially becomes an input bit in the
race analysis, and the constraint is accordingly simpli-
fied to E(DN) ⊆ vdn.

Counters.
A counter instruction has two associated status bits:
the done bit (DN) as in timers and the on bit (CU).
The DN bit becomes true if the wire w1 has made
a preset number of false to true transitions across
scans. The CU bit is true if and only if the wire w1 is
true. In the rule [CTU], vdn and vcu are fresh set vari-
ables representing new instances of the corresponding
status bits. The constraint for the CU bit is the same
as that for a timer’s EN bit. The constraint for the DN
bit is

((v1 ∩T)⇒ (v1 ∩F)⇒T)∪ F ⊆ vdn.

Notice that for the DN bit to be true, the wirew1 must
have made at least one false to true transition. The
variable that models the wire w1 is v1. The constraint
says that if v1 has both true and false, the DN bit
could be either true or false. If v1 does not have both
true and false, the DN bit is definitely false. Again, we
over-estimate the value of the DN bit.

Data transfers.
The MOV instruction is used for bit transfers. If the
wire w1 is true, the source (a 16 bit word) is moved
into the destination (also a 16 bit word). If w1 is false,
no action is taken. The fresh variables dvi, 0≤ i≤ 15
are new instances for the 16 bits of the destination. dv′i
are the variables that represent the old values of the
bits in the destination. The set variables svi represent
the 16 bits of the source. The constraints are

{(v1∩T)⇒ svi ∪ (v1 ∩F)⇒ dv′i ⊆ dvi | 0≤ i≤ 15}

The constraints simply say that if the wire before is
true then the source is moved to the destination, oth-
erwise there is no transfer of bits.

Subroutines.
JSR is the subroutine call instruction. If the wire w1
evaluates to true, the subroutine (a portion of ladder
rungs with label fname as specified in the JSR in-
struction) is evaluated up to a return instruction, after
which execution continues with the rung after the JSR
instruction. If w1 is false, execution continues immedi-
ately with the rung after the JSR instruction. In the
rule [JSR], B denotes the set of all bits in a program.
If S is a system of constraints and τ a set expression,
then the notation τ ⇒ S abbreviates the constraints

{τ ⇒ τ0 ⊆ τ1 | (τ0 ⊆ τ1) ∈ S}

The fresh variables nvb represent new instances of all
bits b ∈ B. Constraints S0 are generated for the lad-
der rungs of the subroutine together with a modified
mapping E′. The constraints

{(v1∩T)⇒E
′(b) ∪ (v1∩F)⇒E(b) ⊆ nvb | b ∈ B}

merge the two instances of every bit b from the two
possible control flows. If the wirew1 (modeled by v1) is
true, thenE′(b) (the instance after evaluating the sub-
routine) should be the value of the current instance,
otherwise, E(b) is the value of the current instance.

Parallel wires.
The rule [PAR] describes the generation of constraints
for parallel wires. Parallel wires behave the same as
the disjunction of two Boolean variables, i.e., the wire
after the parallel wires is true if any one of the two
input wires is true. In the rule v1 = v′1 is an abbrevi-
ation for the two constraints v1 ⊆ v′1 and v′1 ⊆ v1.
The fresh variable v is used to model the wire after the
parallel wires. The constraint

(((v2∩T)⇒ T) ∪

((v′2∩T)⇒ T) ∪

((v2 ∩F)⇒ (v′2∩F)⇒ F)) ⊆ v

says that the wire after the parallel wires is true if one
of the parallel wires is true. There are other rules for
linking instructions together. These rules are similar
to [PAR] and are also straightforward.

All solutions of the generated constraints conserva-
tively approximate the evaluation of RLL programs.
However, the best approximation is the least solution
(in terms of set sizes). We now present a theorem which
states that the constraints generated from an RLL pro-
gram together with constraints for restricting the inputs
have a least solution.

Theorem 1 (Existence of least solution). For any
RLL program P, let S be the constraint system generated
by the rules given in Figs. 3 and 4. Further let c be an in-
put configuration for P. The constraint system S together
with the corresponding constraints of c has a least solution,
Solleast.

100 A. Aiken et al.: Detecting races in Relay Ladder Logic programs

Next, we state a soundness theorem of our model of RLL
programs, namely that our model is a safe approximation
of RLL.

Theorem 2 (Soundness). Let P be an RLL program
and S be the constraint system generated by the rules given
in Figs. 3 and 4. Further let c be an input configuration for
P. The least solution Solleast to the constraint system S
together with the constraints restricting the inputs safely
approximates the values of the wires and bits in one scan,
meaning that if an instance of a bit or a wire is true (false)
in an actual scan, then true (false) is a value in the set
representing this instance.

Theorem 1 and Theorem 2 are proven in [26].

6 Relay race analysis

In this section, we describe our analysis for detecting re-
lay races in RLL programs. In RLL programs, it is desir-
able if the values of outputs depend solely on the values
of inputs and the internal states of timers and counters.
If under fixed inputs and timer and counter states, an
output b changes from scan to scan, then there is a relay
race on b.
Before describing our analysis, we give a more for-

mal definition of the problem. Consider an RLL program
P . Let IN denote the set of inputs, and let OUT de-
note the set of outputs2. Formally, an RLL program P
is a function mapping IN→ {T,F} to OUT→{T,F}.
Here we follow the convention that for any two sets S and
T , S→ T denotes the set of total functions from S to T .
Let C = IN→{T,F} denote the set of all possible input
configurations. Further, let

Ψi :OUT → {T,F}

be the mapping from the set of outputs to their corres-
ponding values at the end of the i-th scan.

Definition 1. An RLL program P is race free if for any
input configurations c ∈ C, by fixing c, it holds that for all
i≥ 1,Ψi =Ψ1. Otherwise, we say the program has a race.

Definition 1 states under what conditions a program ex-
hibits a race. Note that this definition assumes that out-
puts should stabilize after a single scan.
For any set S, we denote its powerset by ℘(S).

Definition 2. Let

P : (IN→{T,F})→ (OUT→{T,F})

be an RLL program. An approximation

A : (IN→ ℘({T,F}))→ (OUT→ ℘({T,F}))

2 Note that IN = set of external inputs + internal bits, and
OUT= set of external outputs + internal bits.

is an abstraction of P such that, for any configuration
c : IN→{T,F} and bit b ∈OUT of P , at the end of any
scan, the following condition holds: Pc(b) (the value of b in
the program P) is contained in Ac(b) (the value of b in the
abstraction A), i.e., Pc(b) ∈Ac(b).

Let A be an approximation of P . Let

Φi :OUT → ℘({T,F})

be the mapping from the set of outputs to their corres-
ponding values at the end of the i-th scan in A.

Definition 3. An approximation A of an RLL program
P is race free if for any fixed initial input configuration
c ∈C, and the resulting infinite sequence of abstract scans
S1, S2, S3, . . . , there exists

Ψ∗ :OUT → {T,F}

such that Ψ∗(b) ∈ Φi(b), for all b ∈OUT and i≥ 1.

Lemma 1. Let P be an RLL program and A an approxi-
mation of P . If P is race free, then so is A. In other words,
if A exhibits a race, so does P .

Lemma 1 states that if our analysis detects a race under
some input c, then the program will exhibit a race under
input c. We now deal with the problem of detecting races
in our approximation of RLL programs.

Theorem 3. For any approximation A of an RLL pro-
gram P and input c ∈ C, the approximation A races
under c if and only if there exists b ∈OUT such that⋂
i≥1Φi(b) = ∅.

Since two scans are necessary and sufficient for detecting
any races in an RLL program, one may suspect that the
same holds for any abstract model of the program as well.

Conjecture 1. Let A be an approximation of a program
P . If A has a race under the input configuration c, then
there exists an input configuration c′, under which

Φ1(b)∩Φ2(b) = ∅

for some bit b.

Surprisingly, Conjecture 1 does not hold, and we give
a counter example. Consider the example given in Fig. 6.
The truth table representation of a program is given in
Fig. 6a, and that for its approximation is given in Fig. 6b.
For the approximation, only under the input configura-
tion

{x= F, y =T}

does the approximation have a race, exhibited with three
scans:

{x= F, y =T}
1
→{x=T, y =�}
2
→{x=�, y = F}
3
→{x= F, y = F}

A. Aiken et al.: Detecting races in Relay Ladder Logic programs 101

where
i
→ denotes the transition of the i-th scan. Notice

that the race on x is detected after the third scan. For the
other three input configurations, the approximation does
not exhibit a race. Thus, the conjecture does not hold.
In principle, for any given input assignment, it may

be necessary to simulate scans until a repeating sequence
of output configurations is detected, which may require
a number of scans exponential in the number of inputs.
However, the following lemma shows that two scans are
sufficient to uncover the common case.

Lemma 2. Let A be an approximation of a program P .
If A has a race of bit b under input configuration c, such
that Φi(b)∩Φi+1(b) = ∅ for some scan i, then there exists
another input configuration c′ such that Φ1(b)∩Φ2(b) = ∅
under c′, i.e., it is sufficient to use two scans on every in-
put configuration to uncover the race on b.

We have verified experimentally that performing only two
scans works well; an experiment in which we performed
ten scans per initial input configuration detected no addi-
tional races. Theorem 3 and Lemma 2 thus lead naturally
to the algorithm in Fig. 5 for detecting relay races. The
general strategy for the analysis is:

1. Generate the base system of constraints using the con-
straint generation rules presented in Sect. 5.

2. Add constraints that assign random bits to the inputs.
3. Check whether the program races under this input as-
signment.

4. Repeat 2–3.

We make the assumption that all input bits are inde-
pendently assigned T or F uniformly at random. Under
this assumption, all input assignments are possible. In
practice, because of the nature of the external devices
and sensors the program interacts with, there may be
dependencies between inputs that make some input con-
figurations unrealizable. Our analysis can be made more
accurate by excluding unrealizable configurations, if in-
formation about these dependencies is available.
We use the example in Fig. 1 to demonstrate how the

race detection algorithm works. Consider the last two
rungs in the example RLL program in isolation. The base
system for these two rungs is given in the top of Fig. 7.

1 for every output b
2 Bsum(b) := {T,F};
3 Sinput := random assignment;
4 for Scan := 1 to 2
5 Bcurrent := Solleast(Sbase∪Sinput);
6 Sinput :=GetInput(Bcurrent);
7 Bsum :=Bsum∩Bcurrent;
8 if Bsum(b) = ∅ for some output b
9 then output b is racing;

Fig. 5. Algorithm for detecting races

x y x′ y′

F F F F
F T T F
T F F F
T T F F

x y x′ y′

F F F F
F � � �
F T T �
� F F F
� � � �
� T � �
T F F F
T � � F
T T � F

(a) Concrete Program (b) Approximation

Fig. 6. Truth tables for an example and an approximation

Assume the bit B is initially true. Adding the constraint
T ⊆ bB0 to the base system and solving the resulting sys-
tem, we obtain its least solution at the end of the first scan
(column 3 in Fig. 7). We see that at the end of the first
scan, the bit B is false. In the second scan, we add the con-
straint F ⊆ bB0 to the base system. The resulting system
is solved, and its least solution is shown in column 4 of
Fig. 7. We intersect the values of the output bits, i.e., bits
B (the last instance) and C, in the least solutions from the
first two scans. Since the intersections are empty, we have
detected a race.
If our analysis finds a race, then the program does

indeed exhibit a race. The absence of races cannot be
proven by our analysis due to approximations and due
to the finite subspace of input assignments we sample.
However, we can analyze the coverage of our random sam-
pling approach using the well-known Coupon Collector’s
Problem. Consider a hat containing n distinct coupons.
In a trial a coupon is drawn at random from the hat,
examined, and then placed back in the hat. We are inter-
ested in the expected number of trials needed to select all
n coupons at least once. One can show that the expected
number of trials is n lnn+O(n), and that the actual num-
ber of trials is sharply concentrated around this expected
value (for any constant c > 0, the probability that after
n(lnn+ c) trials there are still coupons not selected is

approximately 1− e−e
−c
). Notice that 1− e−e

−c
≈ 0.05

when c= 3, and this probability is independent of n. See
Appendix A for more details on the Coupon Collector’s
Problem.
Recall that we assume that the inputs bits are inde-

pendently assigned T or F uniformly at random. There-
fore, any assignment of n input bits restricted to k ≤ n
bits corresponds to an input assignment, selected uni-
formly at random, of these k bits. Thus, we have the
following theorem, which states that without many tri-
als, any race depending on a small number of inputs is
detected with high probability.

Theorem 4. Using the analysis of the Coupon Collec-
tor’s Problem, after approximately 2k ln(2k+3) random

102 A. Aiken et al.: Detecting races in Relay Ladder Logic programs

T⊆ w0

((T∩ bB0)⇒T)∪ ((F∩ bB0)⇒F)⊆ w1

((T∩w1)⇒T)∪ ((F∩w1)⇒F)⊆ w2

((T∩w2)⇒T)∪ ((F∩w2)⇒F)⊆ bC

T⊆ w3

((T∩ bB0)⇒F)∪ ((F∩ bB0)⇒T)⊆ w4

((T∩w4)⇒T)∪ ((F∩w4)⇒F)⊆ w5

((T∩w5)⇒T)∪ ((F∩w5)⇒F)⊆ bB1

bit or wire variable value after the first scan value after the second scan

wire preceding XIC(B) w0 T T

wire following XIC(B) w1 T F

wire preceding OTE(C) w2 T F

wire preceding XIO(C) w3 T T

wire following XIO(C) w4 F T

wire preceding OTE(B) w5 F T

first instance of B bB0 T F

last instance of B bB1 F T

the bit C bC T F

Fig. 7. Base system for the last two rungs of the example program in Fig. 1 with the least solutions at the end of the first and the second
scans given in the table

samples, any race depending on a fixed set of k or fewer
inputs has been detected with high probability (95%), up to
the approximations due to conservative analysis and per-
forming only two scans.

Note that the expected number of trials depends only on
the number of inputs participating in the race, not on the
total number of inputs. For example, the number of trials
required to find races involving 5 inputs with 95% proba-
bility is 200 whether there are 100, 1000, or 10000 inputs
to the program.
One alternative to random trials is the approach tak-

ing by, for example, logic programming. A program is de-
scribed as a set of logic formulae. One can query for what
values, if any, the formulae is satisfied. This approach can
be easily adapted to find races. Our base system corres-
ponds to a set of ternary logic formulae, which can be
represented as a ternary function f . In principle, we can
compute the function f ◦ f , which is f composed with f
itself. We then construct a goal formula g describing that
the program has a race. Finally we ask whether there is
a satisfying assignment for the formulae f , f ◦ f , and g,
i.e., whether f ∧ (f ◦ f)∧ g is satisfiable. Although pos-
sible in principle, we suspect that this approach is too
expensive. Since we need to compute the composition f ◦
f , the resulting formula is potentially very large. Thus, it
may be quite expensive to apply BDD-based (Binary De-
cision Diagram) or SAT-based decision procedures to find
satisfying assignments for f ∧ (f ◦ f)∧g.

7 Experimental results

We have implemented our analysis using a general con-
straint solver [2]. Inputs to our analysis are abstract syn-
tax tree (AST) representations of RLL programs. The
ASTs are parsed into internal representations, and con-
straints are generated using the rules in Figs. 3 and 4. The
resulting constraints are solved and simplified to obtain
the base system.

7.1 Benchmarks

Four large RLL programs were made available to us in
AST form for evaluating our analysis.

– Mini Factory
This is an example program written and used by RLL
programmers and researchers working on tools for
RLL programming.

– Big Bak
This is a production RLL program.

– Wdsdflt(1)
Another production application, this program has
a known race.

– Wdsdflt(2)
This program is a modified version of Wdsdflt(1) with
the known race eliminated. The program is included
for comparing its results with the results from the ori-
ginal program.

A. Aiken et al.: Detecting races in Relay Ladder Logic programs 103

Program Size #Vars. Secs/Scan Ext. Races Int. Races #Samples Time (s)
Mini Factory 9,267 4,227 0.4 55 186 1,000 844
Big Bak 32,005 21,596 4.0 4 6 1,000 7,466
Wdsdflt(1) 58,561 22,860 3.0 8 163 1,000 7,285
Wdsdflt(2) 58,561 22,860 3.0 7 156 1,000 7,075

Fig. 8. Benchmark programs for evaluating our analysis

Figure 8 gives a table showing the size of each program
as number of lines in abstract syntax tree form, number
of set variables in the base system, and the time to ana-
lyze one scan. All measurements reported here were done
on a Sun Enterprise 5000 with 512 MB of main memory
(using only one of the eight processors).
Our analysis discovered many relay races in these pro-

grams. The results are presented in Fig. 8. For each pro-
gram, we show the number of external racing bits (bits
connected to external outputs), the number of internal
racing bits (bits internal to the program), the number of
samples, and the total analysis time in seconds. By Theo-
rem 4, 1000 trials are sufficient to uncover races involving
7 or fewer inputs.
No relay races were known for the Mini Factory pro-

gram. Our analysis detected 55 external races, some of
which were subsequently verified by running a model fac-
tory under the corresponding inputs. Fewer races were
found in Big Bak, even though it is a much larger pro-
gram. Two likely reasons for this situation are that Big
Bak uses arithmetic operations heavily (which our an-
alysis approximates rather coarsely) and that Big Bak is
a production program and has been more thoroughly de-
bugged than Mini Factory. Our analysis discovered the
known relay race in Wdsdflt(1) (fixed in Wdsdflt(2))
among 8 external and 163 internal races. Note that some
of the reported races may be unrealizable if they depend
on input configurations that cannot occur in practice.

8 Related work

In this section, we discuss the relationship of our work
to work in ternary simulation of combinatorial and se-
quential circuits, data flow analysis, model checking, and
testing.
Ternary simulation. Ternary simulation was intro-

duced by Yoeli and Rinon [27] to analyze static hazards
using three-valued logic [21] in combinatorial circuits.
The method was extended by Eichelberger [16] to handle
general hazards in combinatorial circuits, and races and
oscillations in sequential circuits. Themethod was further
developed by Brzozowski and Yoeli [10] at the gate level
and by Bryant [9] at the transistor level.
Besides 0 (false) and 1 (true), three-valued logic has

an additional value 12 having the informal meaning “un-
known”, “don’t care”, or “transient” depending on the
context. The value 12 corresponds to {T,F} in our seman-
tic domain. One slight difference is the use of ∅ in our

semantic domain. One might argue that since for the re-
lay race analysis, each bit or wire can only be assigned an
abstract value {T}, {F}, or {T,F}, the value ∅ is never
used. Thus, there is no fundamental difference. However,
one can imagine that ∅ is useful for finding uninitialized
values.
It appears that ternary simulation has been used ex-

clusively for circuit analysis. While RLL has a circuit
programming metaphor, it is really a fairly complete pro-
gramming language with goto, procedures, and pointers.
Although it is possible to model these constructs with
ternary logic formulae, constraints give a much more nat-
ural model.
Data flow analysis. Data flow analysis is used pri-

marily in optimizing compilers to collect variable usage
information for optimizations such as dead code elimina-
tion and register allocation [1]. It has also been applied
for ensuring software reliability [17, 18]. Our approach
differs from classical data flow analysis in two points.
First, we use conditional constraints [4], which are essen-
tial for modeling both the Boolean instructions and con-
trol flow instructions. Second, the use of constraints gives
us the flexibility to analyze many input configurations by
adding constraints to a base system, instead of perform-
ing a global dataflow analysis repeatedly. Our approach
is more efficient because the base system can be solved
and simplified once and then used repeatedly on different
input configurations.
Model checking.Model checking [12, 13] is a branch

of formal verification that can be fully automated. Model
checking has been used successfully for verifying finite
state systems such as hardware and communication pro-
tocols [7, 8, 14, 15, 20]. Model checkers exploit the finite
nature of these systems by performing exhaustive state
space searches. Because even these finite state spaces may
be huge, model checking is usually applied to some ab-
stract models of the actual system. These abstract sys-
tems are symbolically executed to obtain information
about the actual systems. Our analysis for RLL programs
is similar to model checking in that our abstract models
are finite, whereas RLL programs are in general infinite
state systems. Similar to model checking, we make trade-
offs between modeling accuracy and efficiency, our ab-
straction approximates timers, counters, and arithmetic.
It is through these approximations that we obtain a sim-
pler analysis that is practical for production codes. On
the other hand, due to these approximations our analy-
sis cannot guarantee the absence of errors. Our approach
differs from model checking in the way abstract models

104 A. Aiken et al.: Detecting races in Relay Ladder Logic programs

are obtained. In model checking, abstract models are of-
ten obtained manually, while our analysis automatically
generates the model.
Testing. Testing is one of the most commonly used

methods for assuring hardware and software quality. The
I/O behaviors of the system on input instances are used
to deduce whether the given system is faulty or not [23].
Testing is non-exhaustive in most cases due to a large
or infinite number of test cases. One distinction of our
approach from testing is that we work with an abstract
model of the actual system. There are advantages and
disadvantages to using an abstract model. A disadvan-
tage is that there is loss of information due to abstraction.
As a result, the detection of an error may be impossible,
whereas testing the actual system would show the incor-
rect I/O behavior. Abstract models have the advantage
that a much larger space of possible inputs can be cov-
ered, which is important if the set of inputs exhibiting
a problem is a tiny fraction of all possible inputs. An ab-
stract model is also advantageous when it is very difficult
or very expensive to test the actual system. Both of these
advantages of abstract modeling apply in the case of de-
tecting relay races in RLL programs. [11] discusses some
other tradeoffs of using the actual system and abstract
models of the system for testing.

9 Conclusion

In this paper, we have described a relay race analysis for
RLL programs to help RLL programmers detect some
common programming mistakes. We have demonstrated
that the analysis is useful in statically catching such pro-
gramming errors. Our implementation of the analysis is
accurate and fast enough to be practical –
production RLL programs can be analyzed. The relay

race analysis not only detected a known bug in a pro-
gram that took an RLL programmer four hours of factory
down-time to uncover, it also detected many previously
unknown relay races in our benchmark programs.

Acknowledgements. We would like to thank Jim Martin for bring-
ing RLL to our attention and for making this work possible. We
would also like to thank Anthony Barrett for information on RLL,
providing us with abstract syntax trees of RLL programs, and run-
ning some experiments to validate our results. Finally, we thank
the anonymous referees for the helpful comments.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles,
Techniques and Tools. Reading, MA: Addison-Wesley, 1986

2. Aiken, A., Fähndrich, M., Foster, J., Su, Z.: A toolkit for
constructing type- and constraint-based program analyses. In:
Proc. 2nd Int. Workshop on Types in Compilation (TIC ’98),
pp. 78–96, March 1998

3. Aiken, A., Wimmers, E.: Type inclusion constraints and
type inference. In: Proc. 1993 Conference on Functional Pro-
gramming Languages and Computer Architecture, pp. 31–41,
Copenhagen, Denmark, June 1993

4. Aiken, A., Wimmers, E., Lakshman, T.K.: Soft typing with
conditional types. In: 21st Annual ACM Symposium on Prin-
ciples of Programming Languages, pp. 163–173, Portland, OR,
January 1994

5. Allen–Bradley, Rockwell Automation.: SLC 500 and Mi-
croLogix 1000 Instruction Set

6. Barrett, A.: Private communication
7. Browne, M., Clarke, E.M., Dill, D.: Checking the correctness

of sequential circuits. In: Proc. IEEE Int. Conf. on Computer
Design, pp. 545–548, 1985

8. Browne, M., Clarke, E.M., Dill, D., Mishra, B.: Automatic
verification of sequential circuits using temporal logic. IEEE
Trans. Comput. 35(12): 1035–1044, 1986

9. Bryant, R.E.: Boolean analysis of mos circuits. IEEE Transac-
tions on Computer-aided Design 6(4): 634–649, July 1987

10. Brzozowski, J.A., Yoeli, M.: On a ternary model of gate net-
works. IEEE Trans. Comput. C-28: 178–184, 1979

11. Carver, R.H., Durham, R.: Integrating formal methods and
testing for concurrent programs. In: Proc. 10th Annual Con-
ference on Computer Assurance, pp. 25–33, New York, June
1995

12. Clarke, E.M., Emerson, E.A.: Design and synthesis of syn-
chronization skeletons using branching time temporal logic.
In: Proc. Workshop on Logics of Programs 131. Berlin, Heidel-
berg, New York: Springer-Verlag, 1981, pp. 52–71

13. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verifi-
cation of finite-state concurrent systems using temporal logic
specifications. ACM Transactions on Programming Languages
and Systems 8(2): 244–263, 1986

14. Clarke, E.M., Grumberg, O., Hiraishi, H., Jha, S., Long, D.E.,
McMillan, K.L., Ness, L.A.: Verification of the futurebus+
cache coherence protocol. In: Claesen, L. (ed.): Proc. 11th Int.
Symposium on Computer Hardware Description Languages
and their Applications, North-Holland, April 1993

15. Dill, D., Clarke, E.M.: Automatic verification of asynchronous
circuits using temporal logic. In: Proc. IEEE 133: 276–282,
1986

16. Eichelberger, E.B.: Hazard detection in combinatorial and se-
quential switching circuits. IBM J. Res. Div. 9: 90–99, 1965

17. Fosdick, L.D., Osterweil, L.J.: Data flow analysis in software
reliability. ACM Computing Surveys 8(3): 305–330, Septem-
ber 1976

18. Harrold, M.J.: Using data flow analysis for testing. Techni-
cal Report 93-112, Department of Computer Science, Clemson
University, 1993

19. Heintze, N.: Set Based Program Analysis. PhD. thesis,
Carnegie Mellon University, 1992

20. Holzmann, G.: Design and Validation of Computer Protocols.
Englewood Cliffs, NJ: Prentice-Hall, 1991

21. Kleene, S.C.: On a notation for ordinal numbers. J. Symbolic
Ligic 3: 150–155, 1938

22. Krigman, A.: Relay ladder diagrams: we love them, we love
them not. In: Tech, pp. 39–47, October 1985

23. Lee, D., Yannakakis, M.: Principles and methods of testing fi-
nite state machines-a survey. In: Proc. IEEE, pp. 1090–1123,
August 1996

24. Milner, R., Tofte, M., Harper, R.: The Definition of Standard
M. MIT Press, 1990

25. Motwani, R., Raghavan, P.: Randomized Algorithms. Cam-
bridge University Press, 1995

26. Su, Z.: Automatic analysis of relay ladder logic programs.
Technical Report UCB/CSD-97-969, University of California
at Berkeley, 1997

27. Yoeli, M., Rinon, S.: Application of ternary algebra to the
study of static hazards. J. ACM 11: 84–97, 1964

Appendix A: The Coupon Collector’s Problem

In the Coupon Collector’s Problem, there are n different
coupons. At each trial a coupon is drawn uniformly at
random. The selected coupon is put back with the rest of
the coupons after it has been examined. We are interested

A. Aiken et al.: Detecting races in Relay Ladder Logic programs 105

in the expected number of trials needed to select all of the
n coupons.

Theorem 5 (Expected Value). The expected number
trials to select all the n coupons is n lnn+O(n).

Proof. Let X be a random variable defined to be the
number of trials needed to collect all of the n coupons.
Define a success to be a trial in which a new coupon is col-
lected. Define the random variables Xi, for 0≤ i≤ n−1,
to be the number of trials that follows the i-th success and
ends on the trial that collects the (i+1)-th coupon. Thus,
we have

X =
n−1∑
i=0

Xi.

Let pi be the probability of success on any trial after the
i-th coupon has been collected. This is the probability of
drawing one of n− i coupons from a pool of n coupons, so
that

pi =
n− i

n
.

The random variableXi is geometrically distributed with
parameter pi. Thus, its expectation

E[Xi] =
1

pi
=

n

n− i
.

By linearity of expectation, we have that

E[X] =E[
n−1∑
i=0

Xi]

=
n−1∑
i=0

E[Xi]

=
n−1∑
i=0

n

n− i

= n

n∑
i=1

1

i

= nHn

where Hn is the n-th Harmonic number. Since Hn =
lnn+Θ(1), we have

E[X] = n lnn+O(n).

The next theorem states that the actual value is
sharply concentrated around this expected value.

Theorem 6 (Sharp Threshhold). Let the random vari-
ableX denote the number of trials for collecting each of the

n types of coupons. We have, for any real constant c, and
m= n lnn+ cn,

lim
n→∞

Pr[X >m] = 1− e−e
−c
.

A proof for the above theorem can be found in [25].

Appendix B: Proofs of Lemmas and Theorems

B.1 Proof of Lemma 1

Proof. Since P is race free, by Definition 1, we have
Ψi =Ψ1 for all i ≥ 1. Since A is an approximation of P ,
by Definition 2, Ψi(b) ∈ Φi(b) for all i≥ 1. Thus, Ψ1(b) ∈
Φi(b) for all i≥ 1, and by Definition 3, the approximation
A is also race free.

B.2 Proof of Theorem 3

Proof. Let b ∈OUT be an output such that

⋂
i≥1

Φi(b) = ∅.

Since A is an approximation of the program P , we have
Φi(b) �= ∅. Thus, there exist positive integers i �= j such
that Φi(b) = {T} and Φj(b) = {F}. Therefore, there does
not exist a Ψ∗ :OUT → {T,F} such that Ψ∗(b) ∈ Φi(b)
for all b ∈OUT and for all i ≥ 1. Hence, A has a race
under c.
Conversely, suppose for all b ∈ OUT,

⋂
i≥1Φi(b) �= ∅

holds. Then, let Φ(b) =
⋂
i≥1 Φi(b) for all b ∈ OUT.

Clearly there exists a Ψ∗ :OUT → {T,F} such that
Ψ∗(b) ∈ Φ(b) for all b ∈OUT. Therefore, A does not race
under input c.

B.3 Proof of Lemma 2

Proof. Let Φci (b) denote the value of b at the end of the
ith scan starting with input configuration c. Without loss
of generality, assume Φci (b) = {T} and Φ

c
i+1(b) = {F}.

Consider the values of the inputs ci prior to scan i. Now
choose any configuration c′, s.t. c′(b) ⊆ ci(b) for all b.
Since our analysis is monotone in the input (Theorem 1),
we have Φc

′

1 (b) = {T} and Φ
c′

2 (b) = {F}. Hence, the race
on bit b can be detected within two scans, starting from
a configuration c′.

