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Abstract

Algorithms for and the Complexity of Constraint Entailment
by

Zhendong Patrick Su
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Alexander S. Aiken, Chair

This thesis attempts to settle some of the longstanding open problems in scalable
type systems. In particular, we show that the first-order theory of subtyping con-
straints is undecidable, and in the case where all type constructors are unary and con-
stants, it is decidable via an automata-theoretic reduction. This automata-theoretic
approach is extended to handle the general problem of subtype entailment. Finally, we
provide efficient algorithms for simplifying conditional equality constraints, arguably

the simplest type language with subtyping.
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Chapter 1
Introduction

This thesis considers algorithmic and complexity issues in designing scalable pro-
gram analysis. On one hand, we search for efficient algorithms for implementing
scalable analyses, and one the other, we show some of the fundamental limitations

we face in achieving this goal.

1.1 Scalable program analysis

Program analysis concerns techniques that can be used to discover properties
about runtime behaviors of programs. Most program analyses are static, meaning
that properties are inferred without actually running the program, but simply by
looking at the program’s source code.

Scalable program analysis is becoming more and more important, because of the
tremendous growth in the size and complexity of programs, and because of applica-
tions of program analysis such as advanced compiler optimizations [ASU86|, software
engineering tools [0J97], and type systems for advanced languages [TS96]. Today, it
is challenging to design effective analyses for large software systems.

Many static analyses can be viewed as constraint resolution problems. In such
constraint-based analyses [NNH99, Aik99], we first generate constraints that describe
the relationships among the constructs in a program. Analysis then reduces to finding

a “best” solution of these constraints. To analyze large systems, we need to solve the



constraints efficiently.

Constraint-based program analysis is attractive in part because a number of sys-
tems developed in this style seem to scale very well. Examples of this class of analysis
include type systems for functional programming languages such as ML [MTH90] and
for object-oriented languages such as Java [GJS96| (a detailed example is given in
Chapter 2). Most of these analyses are syntaz-directed, meaning that the constraints
that describe the data- or control-flow of a program are gathered by a simple recursive
traversal of the abstract syntax tree representation of the program being analyzed.
After generation, the constraints are fed into a constraint resolution engine for pro-
cessing to get the desired information about the program—for example, whether there
is a type error or whether the value of a particular variable is constant.

Since the generated constraints are usually linear in the size of the program being
analyzed, scalability of the analyses depends primarily on the efficiency of constraint
resolution. At this point one can reasonably argue that we have a rather good un-
derstanding of the various satisfaction problems that arise in program analysis and
type systems [AWL94, And94, FFK 96, Hei94, JM79, MW97,PS91, Rey69,Shi88, FF97,
FFSA98, SFA00].

However the problem of constraint simplification, that is, replacing one constraint
set with a simpler but equivalent one, is not at all well understood. Constraint sim-
plification arises naturally in polymorphic subtyping systems, which bring together
parametric polymorphism (as in ML [Mil78]) with subtyping (as in object-oriented
languages such as Java [GJS96]). In such type systems, we have polymorphically
constrained types, polymorphic types that are constrained by a set of subtyping con-
straints. For such a type system to be practical, scalable, and understandable to the
user, it is important to simplify the constraints associated with a type.

Another area where constraint simplification arises is polymorphic program anal-
yses with constraints, in which a function (or module) is analyzed, and information
about this function is summarized with a constraint set. At different call sites of
the function, the constraint set is instantiated with fresh constraint variables and
duplicated. This duplication of the constraint set provides better analysis results by

distinguishing the different call sites (in contrast to monomorphic analyses, in which



a single constraint set is used at all the call sites). For these polymorphic analyses to
be practical, simplifying the constraint set is important.

There are two facets to the problem of simplifying constraints. First, the du-
plication of the constraints is a costly step. Recent work [RFO01] address this issue
by applying ideas from interprocedural dataflow analysis [RHS95] to polymorphic
label-flow in type-based program analysis [Mo0s96]. Instead of copying the constraints
themselves, we only need to remember how the instance variables are instantiated.
This method may be viewed as an alternative and better implementation of the du-
plication of the generic constraints.

The second problem we face is that the original constraint set to be copied can be
large and complicated. This problem is orthogonal to the first problem. It is beneficial
to replace a large constraint system with an equivalent and smaller one, provided the
computation needed to perform this simplification is not itself too expensive. The
constraints can be more efficiently manipulated when they are simple. In addition, in
terms of presenting a polymorphically constrained type to the programmer, it needs
to be simplified as much as possible for better understanding and easier manipulation.

This second problem is what we consider in this thesis.

1.2 Constraint logics

Constraint formalisms are the vehicles for specifying particular program analyses
and types systems. They influence both how an analysis should be designed and how
efficiently an analysis can be realized.

In this section, we briefly discuss two popular constraint formalisms for expressing
program analyses and type systems. Additional background information is given in

Chapter 2.

1.2.1 Equality constraints

Equality constraints have been widely used in two areas, logic programming [L1087]

and static type systems, such as the Hindley/Milner style type systems [PW78].



Equality constraints are popular in part because they are easily understood and ef-
ficient algorithms exist for solving equality constraints [PW78]. A slightly less effi-
cient but simpler implementation can be obtained using the union/find data struc-
ture [Tar75]. Many program analyses can be formulated as unification problems based
on equality constraints [PW78 Das00, Ste96, EHM 99, Hen88, PL.99].

One problem with equality constraints is the undirected nature of how informa-
tion flows, because the computation is based on computing equivalence classes. Thus,
information about a term is merged with the information of all the terms that are
“reachable” from this particular term. Usually, analyses based on equality constraints
are not very precise, which often becomes especially evident when applied to large
problems. To address this problem, many analyses support directed flow of informa-
tion. This added expressiveness leads to the notion of subtyping, which we discuss

next.

1.2.2 Subtyping constraints

Many programming languages have some form of subtyping. The most com-
mon use is in the sub-classing mechanisms in object-oriented languages such as
Java [GJS96] and C++ [Str95]. Also common is the notion of “coercion” [Mit84], for
example automatic conversion from integers to floating point numbers. Subtyping
constraints of the form 7, < 75 are used to capture that the type 7 is a subtype of 7.
For example, the constraint int < real means that at any place a floating point num-
ber is expected, an integer can be used instead. Notice that with equality constraints,
this would require that the two types are the same, and it becomes impossible to pass
an argument of type int to a function expecting a real.

Since the original results of Mitchell [Mit91], type checking and type inference
for subtyping systems have received steadily increasing attention. The primary mo-
tivations for studying these systems today are program analysis algorithms based on
subtyping (see, for example, [AWL94, And94, FFK*96, Hei94, MW97, PS91, Shi88])
and, more speculatively, richer designs for typed languages ( [OW97]).

Types in subtype systems are typically interpreted over trees over some base



elements (drawn from a finite lattice or a partial order [DP90]). The trees can be
infinite if recursive types are allowed. There are two choices for the subtype relation.
In a system with structural subtyping only types with the same shape are related,
and they are related by some additional structural rules besides the subtype relation
of the base elements. In a system with non-structural subtyping, there is a “least”
type L and a “largest” type T. Types are related by the same set of rules as in the
structural case with the additional rules that L is smaller than any type and T is
larger than any type. A more detailed introduction to structural and non-structural
subtyping is given in Chapter 2.

In a subtype system (or in any program analysis based on the notion of subtyp-
ing), the subtyping relation dictates an order on the types, which in turn provides a
notion of “directional flow of information”. This added power of subtyping is much
more expressive than equality, and at the same time, much more subtle. With this
directivity, instead of an equivalence computation as for equality constraints, we have
a “reachability” computation. This leads to some very interesting and intriguing
problems, as we will discuss next.

Subtyping algorithms invariably involve systems of subtype constraints 7 < 75,
where the 7; are types that may contain type variables. There are two interesting

questions we can ask about a system of subtyping constraints C"

1. Does C have solutions (and what are they)?

2. Does C imply (or entail) another system of constraints C'? That is, is every

solution of C also a solution of C'?

For (1), the basic algorithms for solving many natural forms of subtyping con-
straints are by now quite well understood (e.g., see [Reh98]). For (2), there has been
much less progress on subtype entailment, although entailment is as important as
constraint resolution in applications of subtyping. For example, a type-based pro-
gram analysis extracts some system of constraints C' from a program text; these
constraints are the model of whatever program property is being analyzed. A client

of the analysis (e.g., a program optimization system) interacts with the analysis by



asking queries: Does a particular constraint 71 < 75 hold in C? Or in other words,
does C entail 7y < 757 As another example, in designing a language with expressive
subtyping relationships, checking type interfaces also reduces to a subtype entail-
ment problem. While no mainstream language has such expressive power today,
language researchers have encountered just this problem in designing languages that
blend ML-style polymorphism with object-oriented style subtyping, which leads to

polymorphically constrained types (see, again, discussion in [OW97]).

1.3 Main technical problems

In this section, we give an overview of the main problems that we consider in this
thesis. More background material is discussed in Chapter 2.

Our focus is on algorithms for designing scalable and expressive type systems
and static program analysis. There are three fundamental problems that are closely
related to constraint simplification and are the basic building blocks for designing
expressive type systems and powerful program analyses.

Corresponding to polymorphic type schemes in Hindley/Milner style type sys-
tems, polymorphic subtype systems have so-called polymorphically constrained types
(also known as constrained types), in which a type is restricted by a system of con-
straints [AW93, TS96, AWP97]. An ML style polymorphic type can be viewed as a

constrained type with no constraints. For example,
a — f\{a <int — int,int — o < 5}

is a constrained type: a function type o — [ restricted by the constraints {a <
int — int,int — o < 8}. Let 7\C be a constrained type, and let p be a satisfying
valuation for C. The type p(7) is called an instance of 7\C.

1.3.1 Entailment

In practice, constrained types can be large and complicated. Thus it is important
to simplify the types [Pot96, MW97, FA96] to make the types and the associated



constraints smaller. Type and constraint simplification is related to the following
decision problem of constraint entailment: A constraint system C entails a constraint

c written C F ¢, if every solution of C' also satisfies the constraint c.

1.3.2 Existential entailment

Let C; and C3 be two constraint systems and E be a finite set of variables. For
convenience, in the following discussions, we use 3F as a shorthand for 9z, ..., dz,,
where F = {z1,...,z,}. For a constraint system C, the type variables in C' are called
the free variables of C', denoted by fv(C).

The notion of ezistential entailment, written C; F dE.C5, is a more powerful
notion of entailment.! The entailment holds if for every solution of Cy, there exists
a solution Cy such that both solutions coincide on variables fv(Cy) \ E (We assume
w.l.o.g. that fv(C;) N E = ). This notion is interesting because usually for a
constrained type, we are only interested in variables appearing in the type, and there
are often many “internal” variables in the constraints we may wish to eliminate. This
notion of entailment allows more powerful simplification and is likely to be more

expensive.

1.3.3 Subtyping constrained types

In polymorphic subtype systems, we may need to determine whether one con-
strained type is a subtype of another constrained type [TS96]. Let 7 \C; and 75\C»
be two constrained types. We wish to check whether 7\C; < 75\Cy which holds if
for every instance 75 of 75\ Cy, there exists an instance 7| of 71\C; such that 71 < 77.

Although extensive research has been directed at these problems [Reh98, HR97,
HR98,FF97,NP99,NP01,TS96, AWP97,FA96, Pot96, MW97, Pot01], their decidability
and exact complexity have been open for many years. In this thesis, we propose new
methods for attacking these open problems. We show that a more general problem

is undecidable, which provides some technical evidence that some of these problems

! Existential entailment is also called restricted entailment, written C; Eg Co, where E' = fv(Cs)\
E.



might be undecidable. In addition, the new techniques introduced are used to settle

the decidability of some interesting fragments of these problems.

1.4 Thesis contributions

The main topic of this thesis is the study of a general theory of subtyping con-
straints, which embodies the various forms of the subtype entailment problem. We
hope that with this general theory, one can gain further understanding about the
various open entailment problems under the non-structural type order.

Here are the contributions of the thesis:

e We show that the first-order theory of subtyping constraints is undecidable
(Chapter 3). This result suggests that open problems involving entailment over
non-structural subtyping might in fact be undecidable. The result holds for any
type language that includes a bottom element L (or a top element T) and any

binary or greater arity type constructor.

e In the case where all type constructors are unary and constants, we show that
the first-order theory is decidable via an automata-theoretic reduction (Chap-
ter 4). Furthermore, we show how to extend this proof technique to handle
subtyping entailment under an arbitrary type signature. We conjecture that
this automata-theoretic approach may be useful in resolving other entailment

problems.

e Finally, inspired by practical applications, we strengthen the non-structural type
relation (see Chapter 5 for details). Under this restricted non-structural type
order, we devise novel polynomial time algorithms for entailment and existential

entailment (Chapter 5).



Chapter 2
Background

In this chapter, we review basic concepts and results from the literature on subtype
systems. We define the various choices of type expression languages, type orders, and
the notion of subtyping constraints. We then review previous results on satisfiability
of subtyping constraints interpreted over these choices of subtyping languages. Finally

we survey previous results on constraint simplification and entailment.

2.1 Subtype languages and subtyping constraints

Subtyping systems are generalizations of the usual equality-based type systems
such as the Hindley/Milner type system of ML [Mil78]. Before discussing any type
system, we first need to discuss its type language. There are two components to a

subtype language: how to form a type and how to order the types.

2.1.1 Types as trees

Types can be viewed as trees built from some regular tree grammar [GS84]. For
the purpose of this thesis, we take this syntactic (or operational) view in defining our
type languages and their interpretations. We are not concerned with domain-theoretic
interpretations of types, such as with ideals [MPS86|. Please refer to [Mit96] for more

information on these topics.
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Let ¥ be a ranked alphabet. Elements in the alphabet are called constructors
in the type language. Each constructor f has an associated arity, indicating the
number of arguments that f expects. The set of constructors with arity n is denoted
Y. Type constructors with arity zero are type constants, and they form the basis of

a type language. We consider types as trees following [KPS93].

Definition 2.1.1 (Tree) A tree t over a ranked alphabet 3 is a mapping from a
prefix-closed set pos(t) C N* into 3. The set of positions pos of ¢ satisfies:

e pos(t) is nonempty and prefix-closed;
e for each 7 € pos(t), if t(7) € ¥, then {i | 7i € pos(t)} ={1,...,n}.

Intuitively, the set of positions pos(t) defines the structure of the tree ¢, and each
position is labeled with an element from the alphabet.

A tree t is finite (resp. infinite) if pos(t) is a finite (resp. infinite) set.

Simple types [Mit91] are interpreted over finite trees, while recursive types [AC91]
are interpreted over reqular trees, which are possibly infinite trees with finitely many

sub-terms.
Example 1 (Types) Consider the type language generated by the alphabet:
{L, T,—}

where — is the usual function type constructor, and | and T are two type constants.
An example simple type is (L — T) — L. An example recursive type, written in

the p-term notation, is po.cv — L.

Recursive types are usually specified with the fixpoint notation: po.7, and, are

also called p-terms [Pie02].

2.1.2 Subtype orders

In a subtype system, we also need to decide how to order the types, i.e., to specify

a relation among the types. One can view an equality-based type system such as that
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for ML [Mil78] as an instance of a subtype system. In an equality-based type system,
all the types are put in a discrete partial order [DP90].

Two subtype orders arise naturally in practice: the structural subtype order and
the non-structural subtype order. In discussing these type orders, we work with a type

language generated from the alphabet:
Y=B|x|—>

where B is the set of type constants and x and — are two binary constructors for
building product types (or records) and function types. The types are specified by
the following grammar:

T=B|TXT|T—>7T

Structural subtype order

In the structural type order, the type constants B form the basis of the type order.
The constants are put in a partial order (B, <). We can then lift the order < to work

on all types with the following structural rules:
o 1 X7 <7 x75iff 4 < 7] and 7 <73, for any types 71, T2, 71, and 75;
o1 =T <7 —7iff if <7 and 7 < 79, for any types 71, To, 71, and 7.

The resulting order on the types is again a partial order. In practice, we assume
that (B, <) forms a lattice. Thus the derived order on all the types also forms a lattice.
This restriction is purely for the purpose of efficiency for the problems associated
with a subtype system. If we allow general partial orders, even satisfiability becomes
PSPACE-hard [Tiu92]|.

Non-structural subtype order

Notice that for the structural order, two types are related only if they have exactly
the same shape. In the non-structural type order, this restriction is lifted. Two types

may be in the subtype relation even if they do not have the same shape. This notion
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of type order is arguably more popular and natural than the structural type order,
and it is used in many subtype systems and subtype-based program analysis.

In the non-structural type order, two distinguished constants are added to the
type language, a smallest type L and a largest type T. The revised type language is
given by:

T=1|T|B|rx7|T>T7T
The non-structural type order is given by:
o | <7<, for any T;
o 1 X1 <1 x75iff 4 < 7] and , < 79, for any types 71, 7o, 71, and 7;
o1 =1 <7 — 7 iff if <7 and 7 < 795, for any types 71, To, 71, and 7.

Besides the structural rules, two rules are added, which essentially say that L is

smaller than any type and T is larger is any type.

2.1.3 Type variables, expressions, and constraints

In a type inference system, we may not know all types at all times. In the case
where the exact type for an expression is not known, we use a type variable to denote
the type of such an expression. The exact type of the expression is determined later.
We assume that there are a denumerable set of type variables V. The complete type

expression language is given by the following grammar:
T=V|L|T|B|7xX7T|[T—>T7T

We write T'(X) to denote the set of finite ground types (types without variables),
where Y is the alphabet:
{_]_,T’._>.’. X }

The set T'(X,V) denotes the set of all types built also with variables drawn from V.
A subtype constraint is an inequality of the form 7 < 7, for type expressions
71 and To. A subtype constraint system is a conjunction of a finite set of subtyping

constraints. When it is clear from the context, we drop the word “subtype” and
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simply say a constraint or a constraint system. For a constraint system C', the type
variables in C' are called the free variables of C, denoted by fv(C).

A waluation p is a function mapping type variables V to ground types T'(X). A
valuation p is sometimes referred to as a ground substitution. As is standard, we

extend valuations homomorphically to substitutions from 7'(X,V) to T(X):

o p(r1 = m) = p(11) — p(72);
e p(11 X 7o) = p(11) X p(T2).

A valuation p satisfies a constraint 71 < 7, written p F 7y < 75 if p(11) < p(72)
holds in the lattice T'(3). A valuation p satisfies a constraint system C, written p E C,
if p satisfies all the constraints in C. A constraint system C'is satisfiable if there is a
valuation p such that p F C. The set of valuations satisfying a constraint system C is
the solution set of C, denoted by S(C'). We denote by S(C)|x the set of solutions of
C restricted to a set of variables E by projecting the solutions on those variables in F
only. The satisfiability problem for a constraint language is to decide whether a given
system of constraints is satisfiable. It is well-known that the satisfiability of a subtype
constraint system can be decided in polynomial time by a test for consistency of the
given constraint set according to a set of syntactic rules when the type constants B
form a lattice [PO95a, Pot96, KPS94]. More information on checking satisfiability of

constraint systems is given in Section 2.3.

2.2 Subtype systems

In this section, we introduce a generic subtype system [Mit91, Mit84] for A-
calculus [Bar91] to illustrate the relationship between type systems, and satisfiability
and entailment of typing constraints. This type system extends the simply typed
A-calculus [Hin97] by adding a rule of subsumption.
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(var)

AUu{z:7}Fa:T

Au{z:m}Fe:n
AFEXz:me:m =7

(abs)

AFe:m—1m AlFey:n
AFeer:m

(app)

A|_61T1 7'1S7'2
Al e:n

(sub)

Figure 2.1: The generic subtyping system.

The type system is given in Figure 2.1, and it is given in the style of a type
checking system [Car96, CW85|. There are four type rules in this type system. Each

rule consists of a logical judgment of the form:
AFe:T

which reads “under the type environment A, expression e has the type 7”. Here A is a
type environment that consists of elements of the form z : 7 (unique for each variable
x) to specify the type bindings for A-bound variables. The first three rules (var, abs,
and app) are precisely those for the simply typed A-calculus [Hin97]. The var rule is
used to retrieve the type of a variable x from the environment A. The abs and app
rules are for typing A-abstractions and applications. These are all standard. The rule
that is unique to a subtype system is the sub rule. It says that if an expression has
type 7, then it should also has the type of any supertype of 7.

We say that a judgment is derivable if it is provable in the system. An expression
e has the type 7 within this type system if the judgment I e : 7 if derivable, in which
case, we say that e is typable.

We give next an inference version of the type system in Figure 2.1 to show the
connection between typability and satisfiability of typing constraints. The system is

given in Figure 2.2. In this system, we build subsumption into the other three rules.
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(var)

AUu{z:7}Fax:1,{}

AU{z:m}tFe:n,C
AFXze:a,CU{rn = <a}

(abs)

Al—elz'rl,C’l A}_62:7—2,02
At eer:a,CiUCU{m <1 — a}

(app)

Figure 2.2: The generic subtyping system formulated with constraints.

The judgments are now of the form:
Akle:7,C

with an additional element C at the end. It reads “under the type environment A,
the expression e has type 7 if the constraints C have a solution”. The constraint set
C is accumulated from the sub-expressions to produce a global constraint set. In the
rules, the type variable « is fresh, meaning not already in use. The var rule is the
same as before, except with an empty constraint set. In the abs rule, a subsumption
step is inserted at the end for Az.e. In the app rule, a subsumption step is inserted

for the judgment A e : 7, C; to get:
Abe:m = a,CiU{n <7m—a}l

It is a standard result that an expression is typable in the type checking system
if and only if the typing constraints in the type inference system are satisfiable. In
addition, each solution of the constraints corresponds to a valid type derivation for
that expression.

Instantiating with different type structures, we get specific instances of the generic
subtype system. Mitchell introduced and studied finite structural subtyping [Mit91],
which was subsequently studied by Fuh and Mishra [FM90,FM89] and others. Tiuryn
and Wand [TW93|, among others, have studied the natural generalization of finite
structural subtyping to structural recursive subtyping. Amadio and Cardelli [AC91,
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AC93] introduced non-structural recursive subtyping. The type inference problem for
non-structural subtyping has been studied extensively [KPS94, KPS93,P0O95a,0W92,
PWO97].

2.3 Algorithms for subtype satisfiability

In this section, we recall previous work on checking the satisfiability of subtype
constraints. These algorithms are all based on the idea of checking consistency in
the closure of the constraints w.r.t. some closure rules. This is similar to the use of
unification closure in solving equality constraints over first-order terms.

In this section, we assume that the base elements of the subtype language form a
lattice, instead of an arbitrary partial order. If arbitrary partial orders are allowed,
it becomes PSPACE-hard to check satisfiability of subtype constraints under the
structural subtype order over both finite and recursive type trees [Tiu92]. Even in
the special case of atomic satisfiability, where all constraints are between atoms—
variables and constants, satisfiability is NP-hard [PT96]. Atomic satisfiability can be
checked in linear time if lattices are used instead [RM99]. Thus, it becomes necessary
to restrict our attention to lattices only for the purpose of efficiency.

Before describing any algorithms, we first define weak unifiability and constraint
closure. We follow [Reh98] in the following discussions, and more information can be

found in [Reh98|.

Definition 2.3.1 (Weak unifiability) Let C be a constraint set, and x be an ar-
bitrary and fixed constant. For any type expression 7, 7* denotes the same type
expression as 7 except all constants in 7 are replaced with x. Define the constraint
set E¢ by:

Be ¥ (o in<nen

The constraint set C is called weakly unifiable if and only if Fo is unifiable. We
require an occurs-check [ASU86, PW78]| for the case of unifiability over finite types.

Definition 2.3.2 (Constraint closure) Let C be a constraint set. We say that C

is closed if the following conditions are satisfied:
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e (transitivity)

1 <1 €C, 7 <713 € (C implies that 4 < 13 € C;

e (product decomposition)

71 X 9 < 7] X 79 € C implies that ; < 7{ € C and 7, < 75 € C.

e (function decomposition)

T — 7o <7 — 75 € C implies that 7{ <7y € Cand 7, <75 € C.

We next define the notion of consistency for a closed constraint set. The definitions
differ slightly for the structural and the non-structural subtype orders. We discuss

them separately.

Definition 2.3.3 (Structural consistency) Let C be a closed constraint set. We
call C' ground consistent if for all constants a and b, if a < b € C, then a < b holds in
the base lattice of constants. A closed constraint set C'is called structurally consistent

if C is both weakly unifiable and ground consistent.

Definition 2.3.4 (Non-structural consistency) Let C be a closed constraint set.
We call C' non-structurally consistent if for all 7 < 7 € C, one of the following

conditions is satisfied:
o7 = 1;
o 7o =1T;
e either 7, or 7 is a variable;

e the top-level constructors of 71 and 75 are the same, i.e., either 77 = oy X o
and 7y = 09 X 0} or 7y = 07 — o} and T, = g9 — o), for some type expressions

o1, 01, 09, and d).

Next, we briefly discuss how to check satisfiability of subtype constraints inter-

preted over various choices of the type lattice.
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2.3.1 Finite structural subtype satisfiability

In the case of finite structural subtype order, Tiuryn [Tiu92] shows that satisfia-
bility can be decided in polynomial time. The technique, as for all the other variants,
is to show that satisfiability is equivalent to structural consistency. Structural consis-
tency can be decided in two steps. First, we check for weak unifiability, which can be
done in linear time [PW78]. Second, we compute the closure of the constraints, which
can be done in cubic time with a dynamic transitive closure computation [Yel93]. Fi-
nally, checking for ground consistency can be done in quadratic time, because the
size of the closure of the constraints is worst-case quadratic in the size of the original

constraints.

Theorem 2.3.5 (Tiuryn [Tiu92]) A constraint set C is satisfiable in the type
structure of finite structural types if and only if C' is weakly unifiable and ground

consistent. In particular, satisfiability with structural, finite subtyping over a lattice

is in PTIME.

This case, as pointed out by Rehof in his thesis [Reh98], can be reduced to matrix
multiplication, which can be performed in sub-cubic time [Str69]. Thus, structural,
finite subtyping does not suffer from the “cubic bottleneck” problem [HM97b, MR97].

2.3.2 Recursive structural subtype satisfiability

In the case where recursive types are allowed, a theorem similar to that of Theo-

rem 2.3.5 can be stated.

Theorem 2.3.6 A constraint set C' is satisfiable in the type structure of recursive
structural types if and only if C' is weakly unifiable and ground consistent. In partic-

ular, satisfiability with recursive structural subtyping over a lattice is in PTIME.

This theorem immediately suggests a cubic time algorithm for checking recursive
structural subtype satisfiability. First, checking weak unifiability requires almost
linear time. Second, computing constraint closure takes cubic time. Finally, checking
ground consistency takes quadratic time. In this case, no sub-cubic time algorithm

is known for computing the constraint closure.
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2.3.3 Recursive non-structural subtype satisfiability

Because the case of recursive non-structural subtype satisfiability is simpler than
that for the finite case, we discuss the recursive case first.

It is shown by Palsberg and O’Keefe [PO95b] and Pottier [Pot96] that satisfiability
in this case can also be decided in PTIMEL. In particular, the problem is again shown
to be equivalent to consistency of the constraints. Because consistency can be checked
in cubic time again by reducing to dynamic transitive closure [Yel93], the problem

can, in fact, be solved in cubic time.

Theorem 2.3.7 (Palsberg & O’Keefe [PO95b], Pottier [Pot96]) A constraint
set, C' is satisfiable in the type structure of recursive non-structural types if and only if

C is non-structurally consistent. In particular, recursive non-structural satisfiability

is in PTIME, and can be decided in cubic time.

In fact, by following MacQueen, Plotkin, and Sethi [MPS86] and subsequently
applied by Aiken and Wimmers [AW93], we can view the type structure as a com-
plete metric space [Apo74|. The satisfiability, and in fact, finding all solutions of the
constraints can be reduced to the problem of solving contractive equations in this
metric space. We first compute the closure of the constraints. If the constraints are
consistent, we inductively order the variables, and reduce the constraints to a set
of contractive equations [AW93, AW92]. By Banach’s Fixpoint Theorem, contrac-
tive equations have solutions [MPS86, Apo74]. Thus, this gives another proof that
satisfiability is equivalent to consistency.

The algorithms given in [PO95b, Pot96] do not appear to handle more than one
non-trivial type constructor. As sketched here, the algorithms work for an arbitrary

type signature.

2.3.4 Finite non-structural subtype satisfiability

Kozen, Palsberg, and Schwartzbach [KPS94] show that satisfiability for partial
types [OW92, Tha94|, that is, types without either T or L, but not both, can be

decided in cubic time both for finite and recursive types. Palsberg, Wand, and
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O’Keefe [PWO97] extend this work to show that finite non-structural subtyping sat-
isfiability can be decided in cubic time as well. Here is the basic idea. First, we
check for consistency of the constraints, which can be done in cubic time. Then,
from the closure of the constraints, we construct a special kind of automaton that has
quadratic number of states and cubic number of transitions. Finally we search for a
cycle in the constructed automaton. If the automaton is acyclic, then the constraints

have a finite solution. Otherwise, the constraints have only regular solutions.

Theorem 2.3.8 (Palsberg, Wand, & O’Keefe [PWO97]) It is decidable in cu-

bic time whether a constraint set has a finite solution over non-structural subtyping.

2.3.5 Structural vs. non-structural subtyping

There are some technical differences between structural and non-structural sub-
typing in the complexity of the satisfiability and entailment problems.

The first separation is at the level of checking for satisfiability. Finite structural
subtyping constraints can be solved in sub-cubic time [Reh98] by a reduction to matrix
multiplication [Str69] through stratification (that is, by solving a separate problem for
each level of the types). Since recursive types cannot be stratified into levels, it is open
(and appears unlikely) whether this method can be extended to structural recursive
subtyping. Satisfiability of non-structural subtyping constraints can be decided in
cubic time over both finite and recursive type structures.

There are two independent approaches [HM97b, MR97] that attempt to charac-
terize the difficulty of devising sub-cubic time algorithms for certain dataflow and
control-flow analyses [Shi88 PS91, And94, AC91,PO95b], which are equivalent to sat-
isfiability problem for non-structural subtyping constraints. Both approaches reduce
to or show equivalence of some well-known hard problems to these dataflow or control-
flow analysis problems. Heintze and McAllister [HM97b] consider the class of 2NPDA,
those problems that can be solved with a two-way nondeterministic pushdown au-
tomata [HU79]. It was shown, in 1968, that any problem in the class of 2NPDA
can be solved in cubic time [AHU68], but no sub-cubic time algorithm exists for any

arbitrary 2NPDA problem. Heintze and McAllister show that control-flow analysis
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is, in fact, 2NPDA-complete, which means that if there is a sub-cubic time algorithm
for the standard control-flow analysis, then any problem in the class of 2NPDA can
also be solved in sub-cubic time. Melski and Reps [MR97]) consider the problem of
CFL graph reachability, which has been used extensively in formulating many pro-
gram analysis problems [Rep98, HRB88, Cal88]. They show the intercovertibility of
CFL reachability problems and set-based analysis [Hei92], a certain type of dataflow
analysis.

As we will see in the next section, there are also some results at the level of
entailment (a problem that we introduce in the next section) for various choices
of the type structure that separate structural and non-structural subtyping (Sec-
tion 2.4). Finite structural subtyping entailment is coNP-complete [HR97] and finite
non-structural subtyping entailment is PSPACE-hard [HR98]. Both structural re-
cursive subtyping entailment and non-structural recursive subtyping entailment are
PSPACE-hard [HR98]. In the class of structural recursive subtyping entailment, the
problem is known to be in PSPACE, and thus PSPACE-complete [HR98]. However,

for non-structural subtyping, even the decidability of entailment is open.

2.4 Constraint entailment

We give here the formal statement of the problems that we consider in this thesis.
We state the problems in general terms, where the various unspecified parameters can
be instantiated accordingly in later chapters. We mainly consider two fundamental

entailment problems.

Definition 2.4.1 (Entailment) Let C; and C be two constraint sets. We say that
C1 entails Cy, written C F Cy if for all valuations p, if p F C, then it also holds that
P = 02.

Definition 2.4.2 (Existential entailment) Let C; and C, be two constraint sets
and F a set of variables. We say that C ezistentially entails Cy, written C F 3F.Cy,
if for every valuation p F C1, there exists a valuation p’ F Cy such that p and p' agree
on variables fv(Cy) \ E.
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Existential entailment is a more powerful notion than entailment. In the literature,
the term restricted entailment is also used, which is written C; Fp Cy, where E' =
fv(Cy) \ E. Notice that, in the above definition, we can assume, w.l.o.g., that fv(C;)N
E = (). Existential entailment is interesting because usually for a constrained type,
we are only interested in variables appearing in the type, and there are often many
“internal” variables in the constraints we may wish to eliminate. This notion of
entailment allows more powerful simplification and is likely to be more expensive.

As an example, consider the following simple constraint set:
C={a<BB<7}
If £ is an internal variable, then C' is equivalent to the following:
C'={a <}
which is justified by the fact that both of the following entailments hold:
C E3B.C" and C' = 38.C

However, although C' E C', but C' ¥ C. Thus, the equivalence of C' and C’ cannot
be established with entailment.

In Hindley/Milner style type systems, a let-bound expression can have different
types in different contexts. This type of parametric polymorphism is obtained through
polymorphic type schemes [Mil78]. In polymorphic subtype systems, there is the
similar notion of a constrained type, in which a type is restricted by a system of
subtyping constraints [AW93, TS96, AWP97]. An ML style polymorphic type can be
viewed as a degenerated constrained type, where there are no constraints to restrict

the type.

Definition 2.4.3 (Constrained types) A constrained type 7\C is a type T re-
stricted by a constraint set C. For a constrained type 7\C, let p be a satisfying

valuation for C, the ground type p(7) is an instance of 7\C.

For example,
a — f\{a <int — int, int — o < [}
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is a constrained type. By mapping « to int — int and § to int — (int — int), we

get an instance for this constrained type:
(int — int) — (int — (int — int))

In polymorphic subtype systems, we may need to determine whether one con-

strained type is a subtype of another constrained type [TS96].

Definition 2.4.4 (Subtyping constrained types) Let m\C; and 7\Cy be two
constrained types. We say that 71\C; < 7\Cj if for every instance 75 of 75\Co,

there exists an instance 71 of 77\C} such that 7] < 7.

We can assume, w.l.o.g., that C; and C5 do not have any variables in common.

In addition, we can restrict 71 and 75 to variables because

7'1\01 S ’7'2\02 iff Of\(Cl U {Of = ’7'1}) S B\(CQ U {ﬁ = ’TQ})

where « and [ are fresh variables not in C or Cs.

2.5 Previous results on entailment

In this section, we give an overview of prior results on subtyping entailment and
simplification.

Henglein and Rehof give the first systematic study of the complexity of subtyping
entailment [HR97, HR98, Reh98]. They completely characterize the complexity of

entailment for structural subtyping.

Theorem 2.5.1 (Henglein & Rehof [HR97]) Finite structural subtype entailment

is coNP-complete.

Theorem 2.5.2 (Henglein & Rehof [HR98]) Recursive structural subtype entail-
ment is PSPACE-complete.

For non-structural subtype entailment, while the decidability is still open, there
are lower bounds on the complexity of the problems given again by Henglein and
Rehof [HR98].
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Theorem 2.5.3 (Henglein & Rehof [HR98]) Finite non-structural subtype en-
tailment is PSPACE-hard.

Theorem 2.5.4 (Henglein & Rehof [HR98]) Recursive non-structural subtype en-
tailment is PSPACE-hard.

Niehren and Priesnitz consider the problem of non-structural subtype entailment

with the following type signature:

{J_’ T’ f}

with three elements, where f is a single non-constant type constructor. With this lim-
ited signature, the non-structural subtype entailment is already PSPACE-hard [HR98],
even without explicit reference to the constants 1 and T in the constraints. With a
reduction of the entailment problem to the universality problem of finite automata,
which is PSPACE-complete [HU79], it is shown that a restricted version of the en-
tailment on this simple signature is in fact PSPACE-complete [NP99].

Theorem 2.5.5 (Niehren & Priesnitz [NP99]) Under the signature {L, T, f},
non-structural subtype entailment (to decide C F o < (3) is PSPACE-complete if L

and T do not appear ezplicitly in the constraints.

If 1 and T appear in the constraints, then the decidability of subtype entailment is
still open, even for this restricted type signature. Niehren and Priesnitz recently give
an equivalent characterization of entailment under the signature {L, T, f} [NPO1].
This work extends the idea in [NP99] to reduce the entailment problem to an equiv-
alent problem on an extended form of word automata, the so-called P-automata.
However, the universality problem for P-automata appears to be an equally difficult

problem, whose decidability is also open.

Theorem 2.5.6 (Niehren & Priesnitz [NP01]) Non-structural subtype entailment
under the signature { L, T, f} is polynomially equivalent to the university problem of

restricted P-automata.
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Chapter 3

The First-order Theory

In this Chapter, we present the first decidability and undecidability results for
the first-order theory of subtyping. We begin with introducing and motivating the
study of the first-order theory of subtyping. The material in this chapter and the
next chapter (Chapter 4) is an extended version of [SANT02].

3.1 First-order theory of subtyping constraints

Earlier, we have mentioned that constraint simplification is an important problem
for designing scalable program analysis and type systems, and motivated the study
of the constraint entailment problems. Despite extensive effort over many years,
the exact complexity and even the decidability of entailment is open for some forms
of subtyping constraints [Reh98, HR97, HR98, FF97,NP99,NP01,TS96, AWP97, FA96,
Pot96, MW97,Pot01]. As we will see, the natural versions of entailment and subtyping
constrained types can be encoded easily in the first-order theory of subtyping, so to
gain insight into and take a step towards resolving these difficult problems, we study
the full first-order theory.

We consider the following type language:

T:::J_\T\a|7'1—>7'2|7'1><7'2

where | and T are the smallest and largest type respectively, « is chosen from a
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denumerable set of type variables V), — is the function type constructor, and X is the
product type constructor.
We first define the first-order theory of subtyping constraints. First-order formulae

w.r.t. to a subtype language are:

fu=strue |ty <to|f | fiAfo] Tx.f

where t; and ¢, are type expressions and z is a first-order variable ranging over types.
Notice that we do not need equality because < is anti-symmetric.

As usual, for convenience, we also allow disjunction V, implication — , and
universal quantification V. We write ¢; ,{_ ty for —(t; < t3). A formula is quantifier
free if it has no quantifiers. A formula is in prenex normal form if it is of the form
Q1 -..Q,.f where Q;’s are quantifiers and f is a quantifier free formula. We adopt
the usual notion of a free variable and a closed and open formula.

We next show how those entailment problems discussed in Chapters 1 and 2 fit in
the first-order theory of subtyping.

To avoid confusion, recall that 3F is used as a shorthand for 3z, ..., dz,, where

E={x1,...,2,}.

3.1.1 Entailment is in the V-fragment

The universal fragment consists of all the closed formulae V. f, where V consists of
a set of universal quantifiers, and f is a quantifier free formula.

The entailment problem C F z < y is in the universal fragment. Notice that C' is
a conjunction of basic constraints and the entailment C' F z < y holds iff the universal
formula Vzq,...,2,.(C — (z <y)) is valid, where the z;’s are the variables free in

CU{z <y}

3.1.2 Existential entailment is in the V3-fragment

The V3-fragment consists of all the closed formulae V3.f, where f is a quantifier

free formula.
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Existential entailment C; F 3F.Cs is expressed by the following formula:
Val, cee, a/n.(Cl — ElECQ)

where the a;’s are the variables in fv(C;) U (fv(Cy) \ E). Because we assume fv(C;) N

E = (), there is an equivalent formula in the V3-fragment:

VO{l, .. .,an.EIE.(C'l — 02)

3.1.3 Subtyping constrained types is in the V3-fragment
Let o\C; and 8\ C; be constrained types. We express a\C; < S\C5 as the formula:
V,Bh cey /Bn(CQ — Elal, cey ij.(Cl Na< B))

where the «;’s and ;’s are the variables free in C}; and C, respectively. Because
C; and Cy have disjoint sets of variables (see the definition of constrained types in

Section 2.4), this is equivalent to:
vﬁl: R aﬂn-zlala B aam'(CQ - (Cl Ao S B))
In fact, we can show the following:

Proposition 3.1.1 Subtyping constrained types is polynomially reducible to exis-

tential entailment.

Proof. We have the following equivalences:

a\Cy < B\Cy
< { by defn. of a\C; < B\C, }
S(C) sy € S(a<BACH |5
& { by defn. of existential entailment with E = fv(Cy) }

CoE3IE(a<BACY)
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3.2 Undecidability of the first-order theory

In this section, we show that the first-order theory of non-structural subtyping is
undecidable for any type language with a binary type constructor and the bottom
element L (or dually, the top element T). The formula we exhibit is in the IVIVIV-
fragment.

The proof is via a reduction from the Post’s Correspondence Problem (PCP) [Pos46]
to a first-order formula of non-structural subtyping. Since PCP is undecidable [Pos46],
the first-order theory of non-structural subtyping is undecidable as well. The proof
follows the framework of Treinen [Tre92] and is inspired by the proof of undecidability
of the first-order theory of ordering constraints over feature trees [MNTO1].

Recall that an instance of PCP is a finite set of pairs of words (l;, r;) for 1 < i < n.
The words are drawn from the alphabet {1,2}. The problem is to decide whether there
is a non-empty finite sequence of indices s; ...s,, (where 1 < s; < n for 1 <i < m)

such that the sequence constitutes a pair of matched words:

Ly, -l =g - Ty,

where words are concatenated.

For non-structural subtyping, we consider both finite types and recursive types.
We first describe the subtype logic that we use. We consider any subtype language
with at least a bottom element | and a binary type constructor. We show that
for any such language, the first-order theory of non-structural subtype entailment is
undecidable.

For the rest of this chapter, we consider the simple expression language:
Tu=1 | f(r,7)

where f is covariant in both of its arguments. It is straightforward to modify our
construction to allow type constructors with contravariant field(s) and with arity

greater than two.
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3.2.1 Representing words as trees

PCP is a word problem but types are trees. As a first step, we describe how to
encode words in {1, 2} using types.
Words as f-spines

We first describe how to represent words over {1,2} as trees over a binary con-
structor f and the constant L. We use f-spines to represent words. Intuitively, an

f-spine is simply a tree with a spine of f’s and all other positions labeled L.

Definition 3.2.1 (f-spine) A finite tree ¢ (in f and 1) is an f-spine if there is
exactly one mazimal path with labels f. On this maximal path, a left child represents

1 and a right child represents 2.

Example 2 (The word ¢) The empty word ¢ is represented by the term f(L, L).
See Figure 3.1a.

Example 3 (The word 1) The word 1 is represented by the term f(f(L,L),L).
See Figure 3.1b.

Example 4 (The word 21221) The word 21221 is represented by the term:

S PO FL FF(L, L), 1)), 1)

See Figure 3.1c.

Enforcing a word tree

We want to enforce with a first-order formula of subtyping constraints that a tree ¢

is an f-spine, i.e., that it represents a word w. Any f-spine ¢ satisfies three properties:

1. Only f and L appear in ¢ (Lemma 3.2.2).
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(a) The word €. (b) The word 1. (c) The word 21221.

Figure 3.1: Some example representations of words.

2. There is exactly one maximal path of f’s (Lemma 3.2.3).

3. tis not L (because L does not represent a word).
Lemma 3.2.2 A tree t contains only f and | iff
3z.((@ < fz,2)) A (t<12))

Proof. Suppose t contains only f and L. Let A be the height of ¢, which is the
length of the longest branch of . The full binary tree s of height h where all the
leaves are labeled 1| and all the internal nodes are labeled f satisfies s < f(s,s) and
t <s.

On the other hand, suppose for some s with s < f(s, s), we have ¢ < s. It suffices
to show that s contains only f and L. For the sake of argument, assume on some
shortest path 7 from the root, s is labeled with g, i.e., every path strictly shorter
than 7 is labeled either f or L. Now consider the path 7 in f(s,s). If 7 exists in
f(s,s), then it must be labeled either f or L in f(s,s). If 7 does not exist in f(s, s),
then a prefix of 7 exists in f(s,s) and must be labeled with L. In both cases, a

contradiction is reached since s < f(s, s). O
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Lemma 3.2.3 For any non-1 tree ¢ with f and 1, there is exactly one maximal

path of f’s iff the subtypes of ¢ form a chain w.r.t. <.

Proof. 1If t has exactly one maximal path of f’s, then clearly all the subtypes of ¢
form a chain. On the other hand, if ¢ has at least two maximal paths of f’s. The two
subtypes of ¢ where we replace f by L at the respective paths are incomparable. O

Thus we can enforce a tree to represent a word. We use the shorthand word(t) for
such a formula, which is constructed as follows:

dom-closure(t) dlef dz.((z < f(z,z) AN t<=z

chain(t)
word () def dom-closure(t) A chain(t) A (t# 1)

Prepending trees

In the following discussion, we use words and trees that represent words inter-
changeably, since the context should make the distinction clear.

To construct a solution to a PCP instance, we need to concatenate words. Thus
we want to express with constraints that a word w; is obtained from wy by prepending
w. We express this with a family of predicates prepend,,, one for each constant word
w. The predicate prepend,, (t1,t2) is true if the word represented by ¢; is obtained by
prepending w to the word for ¢5. Note that this is sufficient, because in PCP, the
words are given as part of the problem. We define the predicate recursively:

prepend. (t1, t2) dlef (t1 = t9)

def 3.((tr = f(#, 1)) A
prepend,, (', 12))
def 3H.((t = F(L ) A
prepend,, (', 22))

prepend,,, (t1, 2)

prepend,,, (t1,ts)

Example 5 (Prepending example) We prepend the word 21 onto the word 12
(Figure 3.2a) to get the word 2112 (Figure 3.2b).
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(a) The word 12. (b) The word 2112 = 21 - 12.

Figure 3.2: Tree prepending example.

3.2.2 Reducing PCP to FOT of subtyping

In this section, we describe how to reduce an instance of PCP to a first-order

formula of subtyping constraints.

Outline of the reduction

We construct a formula that accepts the representations of all the solutions of a
PCP instance.

We first describe a solution to a PCP instance as a tree. Recall that a PCP
instance P consists of n pairs of words (l1,71), ..., {l,, ), where l;,7; € {1,2}*. A
solution s = s;---s, to P is a non-empty finite sequence of indices 1 through n,
i.e., s € {1,--- ,n}t, such that ls, ---l5, =rs ---75,. One can represent a solution

Sm

s as the tree ¢t shown in Figure 3.3. In the tree ¢, the values of ¢, Il5,, 75, ...,
l

is constructed as follows. We start with the empty word pair (e, €). At each step,

«o+lg,, and 7y, ---74 are represented by their corresponding word trees. The tree

Sm

we prepend a particular pair from the PCP instance ([, 75,) to the previous pair of

words. At the end, I, ---ls,, =15, ---Ts,,, i.€., we have found a solution to P. Notice

Sm

that the solutions are constructed in the reverse order because we use prepend instead
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Figure 3.3: A PCP solution viewed as a tree.

of append. !
With this representation of PCP solutions as trees, we can reduce an instance of
PCP to the validity of a first-order formula of subtyping constraints by expressing

that there exists a tree ¢ such that:

1. The tree t is of the particular form in Figure 3.3. (Section 3.2.2)

Our construction does not require the left branches f(w;, w}) of the solution tree

to be in the order shown in Figure 3.3. Any order is fine.

2. We have a valid PCP construction sequence. (Section 3.2.2)

Each left branch f(w;, w}) is either the pair of empty words or there exists
another left branch f(w;,w}) such that prepend, (w;,w;) and prepend,, (w;, wj)
for some k. In addition, one of the left branches is of the form f(w,w) with w

non-empty.?2 This ensures that we have a non-empty sequence.

We next express these requirements with first-order formulae of subtyping con-

straints.

1'We use prepend because append is just not as convenient to express.
2We assume for any PCP instance, I; # r; for any i. Otherwise, the instance is trivially solvable.



34

f f
/N /N
/N 7\
1 f 1 /
/N / N\
f : il :
/N /N / "\
w;  w; | 1 1 1

(a) A left branch. (b) The main spine.

Figure 3.4: The left branch of a solution tree.

Correct form of the tree

To ensure the correct form of the tree ¢, we require that each left branch represents
two words conjoined with the root labeled with f, i.e., we have f(w,w') for some trees
representing words w and w'. In order to achieve this, we construct trees of the form
shown in Figure 3.4a, which is a branch of the tree representing a PCP solution shown
in Figure 3.3.

Let ¢ be the tree representing a PCP solution. We cannot extract a left branch
directly from ¢ because subtyping constraints cannot express removing something
from a tree. However, we observe that a left branch is a supertype of the main spine
shown in Figure 3.4b with some additional properties, which we enforce separately.

We first express the main spine s of t. Two properties are needed for s:

1. The main spine s is of the form shown in Figure 3.4b.

We simply require s < f(L, s).

2. The tree s is a subtype of t and among all possible spines, it is the largest such

tree.

This is easily expressed as

(s <t) ANVz.(((z < f(L,z) A (z<t) = (z<53))
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We introduce the shorthand that s is the main spine of ¢ by:

spine(s. 1) def (s < f(L,5)) A (s <) A
’ (Vz.(((z < f(L,2) A (z <t) = (2<5)))

We observe that a left branch b of ¢ is a subtype of ¢ and a proper supertype of

the main spine s with two additional properties:
1. Ezactly one left branch of the main spine is of the form f(w;, w}).
2. All the other left branches of the main spine are labeled with 1.

We can express that b is a proper supertype of the main spine s by

s<b ¥ (s<p) A (s2b)
We express (1) and (2) by observing that b is a mazimal tree such that the set of
all the subtypes of b that are proper supertypes of the main spine s have a unique
minimal element, i.e., the set {z | s <z < b} has a unique minimal element. We use

is-min(u, v, w) to express that v is a minimal element of the subtypes of v that are

proper supertypes of w, that is

def (u<w (w < u) A

is-min(u, v,w) = "
T Vz.((z <v) A (w<z) = (u<a))

In addition, unig-min(u, w) expresses that all the subtypes of u that are proper su-

pertypes w have a unique minimal element, that is

o def Fz.(is-min(z, u, w) A
unig-min(u, w) =
vy'(is_min(ya u, ’LU) - (.’E = y)))
With that, we can express the requirements on b by the following formula
(b<t)A
branch(b, t) def Js.(spine(s,t) A (s <b) A unig-min(b, s)
AVz.((b <z <t) — —unig-min(z, s)))

We establish the correctness of branch(b,¢) in Lemma 3.2.4.
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(a) A left branch. (b) An expanded left branch.

Figure 3.5: Extracting words from a left branch.

Lemma 3.2.4 A tree b is a branch of ¢ as shown in Figure 3.4a iff branch(b, t).

Proof. 1t is straightforward to verify that if b is a branch of ¢ then branch(b, ?).
For the other direction, assume branch(b,?). Then we know that b is a subtype of ¢
and a proper supertype of the main spine s. Since unig-min(b, s), i.e., all the subtypes
of b strictly larger than s have a unique minimum, b cannot have two left sub-branches
labeled with f. Thus b must be a subtype of a branch. However, since b is the largest

tree such that unig-min(b, s), it must be a branch. a

Correct construction of the tree

The previous section describes how to extract a left branch of the tree t. However,
that is not sufficient, since we ultimately need the two words w;, w; associated with
a left branch.

We must ensure that for each left branch the two words w; and w; are empty or
are constructed from the words of another left branch w; and w;- by prepending I
and r; respectively, for some k.

For a branch b, we need to extract the two words w; and w;. The trick is to
duplicate the non-_L left child of b to all the left children of b preceding this non-L
child. In particular, this would have the effect of duplicating the two words at the
first child of the branch.
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We give an example. Consider the left branch b shown in Figure 3.5a. We would
like to build from b the expanded tree & shown in Figure 3.5b. If we can construct
such a tree O, then it is easy to extract the two words w; and w] simply by the
constraint Ju. f(f(w;, w)),u) = V.

We now show how to construct &’ from b. Observe that the right child of ¥ is a
subtype of ¥/ itself, i.e., if we let ' = f(u,v), then v < ¥'. In addition, observe that of
all supertypes of b, b’ is the smallest tree with this property. We write the shorthand

recurse(t1, o) for the formula

def (t1 <ta) A
dzq, 29.(t2 = f(21,22)) A (22 < to)

which says that t; is a subtype of t5 and the right child of ¢; is a subtype of %5 itself.

recurse(t1, to)

Now we can express the duplication of b to get b’ through the following formula

b,t') A
dup-branch(b, b') def recurse(b, )
Vt.(recurse(b,t) — (b’ <t))

We establish the correctness of dup-branch(b, b’) in Lemma 3.2.5.

Lemma 3.2.5 Let b be a branch of ¢. A tree b’ duplicates the non-_1 sub-branch of
b (as shown in Figure 3.5) iff dup-branch(b, ).

Proof. It is straightforward to verify that if o' duplicates the non-L sub-branch
of b, then dup-branch(b, d’). For the other direction, assume dup-branch(b, b”). Since b’
(shown in Figure 3.5b) meets the condition recurse(b, b'), by definition of dup-branch
we have b’ < b'. We also have b < b because recurse(b, ) holds. With a simple
induction on the height of the left spine of f’s of b, we can show that 4" must be the
same as b’. Thus, b” duplicates the non-_L sub-branch of b. O

We introduce a few shorthands next. The formula wordpair(w, wo, b, t) expresses
that for a branch b of a solution tree ¢, w; and wy are the pair of words associated
with that branch.

word(wy) A word(ws) A
wordpair(wy, we, b, t) def 3'.(dup-branch(b, d') A
Fu.(f (f (wr, wa), u) = V"))
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The formula onestep(w;, w;, w;, w;) expresses a step in the PCP construction, i.e.,
the concatenation of a pair of words onto the current pair. It says that the words
w; and w; are obtained from the words w; and w} by respectively prepending some

words [, and 7 of the PCP instance.

def Vi<k<n(Prepend; (w;, w;)

onestep(w;, w;, w;, w)
v A prepend, (wj,w}))

J

We can now express that the tree ¢ represents a solution of a PCP instance. Recall
that we must express that for each w; and w;, either w; and w; are the empty words,
or there exist w; and w} such that prepend, (w;, w;) and prepend,, (w;, w’). Consider
the PCP instance P in which we have (l1,71),...,(l,, r,), where [; and r; are words in
{1,2}. We construct a first-order formula solvable(P) which is valid iff P is solvable.
The formula expresses the existence of a tree representing a solution to P.

We introduce a few more shorthands. The formula empty(w) tests whether a word
w is €. The formula construct(w, ws, b',t) ensures that w; and wy are obtained from
some branch b of ¢ by a one step construction. We use valid-branch(b, t) for saying
that the words w; and w, are either € or are obtained by a construction step of PCP
from another branch &'. Finally, we use the formula accept-branch(b, ) to say that for
some branch, the two words associated with that branch are the same and not the

empty words e.

d:ef

empty(w) w= f(L, L)

branch(,t) A
f .
construct(wy, wo, b', t) de Jw?, wh.(wordpair(w}, wh, V', t)

A onestep (w1, wa, Wi, w}))

(Fwy, we.wordpair(w,, wsy, b, )
valid-branch(b, t) def A ((empty(wy) A empty(ws))
V3 .construct(wy, we, ¥/, t)))
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branch(b, t) A
accept-branch(b, t) dlef Jw.(wordpair(w, w, b, t) A
—empty(w))

The formula solvable(P) now can be given as

def Jt.(Vb.(branch(b,t) — valid-branch(b, ))

solvable(P
(7) A 3b.accept-branch(b, 1))

The correctness of the reduction from PCP to the first-order theory of subtyping

constraints is established in Theorem 3.2.6.

Theorem 3.2.6 (Soundness and completeness) A PCP instance P has a solu-

tion iff the formula solvable(P) is valid.

Proof. Tt is easy to verify that if P has a solution, then any representation of the

solution sequence in terms of a tree ¢ shown in Figure 3.3 meets the requirement
Vb.(branch(b,t) — valid-branch(b,t)) A Jb.accept-branch(b,t)

On the other hand, suppose we have such a ¢, then it is also easy to extract a solution
sequence from ¢. Start with the branch b,, such that the two words associated with
b,, are the same. Since b,, is a branch and the two words are not ¢, there must be
another branch b,,_; such that we have a PCP construction step. This process must
terminate, since t is a finite tree. This reasoning can be easily formalized with an

induction on the number of branches of ¢ (or equivalently the size of t). O

3.2.3 Recursive types

In this section, we show that the construction can be adapted to recursive types.
Recall that in recursive types, types are interpreted as regular trees over f and L.
To adapt our construction, notice that it is sufficient to restrict all the types (trees)

to be finite trees. That is, we need only express that a tree t is finite.
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(a) Failed attempt one. (b) Failed attempt two.

Figure 3.6: Failed attempts for recursive types.

It turns out that only the words we get from a left branch of ¢ must be finite. The
other trees in the construction can be infinite. For words, if we do not restrict them to
be finite, the existence of such a tree ¢ as in Figure 3.3 may not correspond to a solution
to the PCP problem. To see this, consider the PCP instance {(11,1)}. Clearly, it has
no solution. However, consider the tree (f(f(w,w), L) shown in Figure 3.6a, where
w is the infinite regular tree such that w = f(w, L), i.e., the infinite word 1%.

One may wonder whether we can instead require that a construction step must
use two different branches, and that the words for the two branches are not the same
at the respective positions. This does not work either. Consider the PCP instance
{{e, 1), {¢,2) }, which has no solution. Now consider the tree f(f (w1, ws), f(f(w1,w1), L))
shown in Figure 3.6b, where w; = f(wy, L) A we = f(L,w ), i.e., wy is the infinite
word (12)“ and ws is the infinite word (21)“.

We take the approach of restricting the words extracted from a left branch to be
finite. This can be achieved by simply requiring that the set of proper subtypes of w

has a largest element, i.e.,
def o ,
has-max(w) = Ft.(t<w A VH.(t' <w — t' <)
Lemma 3.2.7 A tree ¢ representing a word is finite iff has-max(¢).

Proof. Let t be a word tree. If t is finite, then the set of proper subtypes of ¢
forms a chain. The set is finite, and thus has a largest element. On the other hand, if

the tree is infinite, then all its proper subtypes are finite trees truncated from ¢, i.e.,
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the set of trees representing the finite prefixes of word denoted by ¢ (except L). This
set forms an infinite ascending chain, and thus it does not have a largest element. O
We can now directly use the construction in Section 3.2, except we require in the

formula wordpair(wy, we, b, t) that w; and w, are finite:

word(w1) A word(ws) A
. def has-max(w;) A has-max(wsy) A
wordpair(wy, we, b,t) =
3b'.(dup-branch(b, b') A
Fu.(f (f (w1, w2),u) =1b'))

Thus, we have shown that the first-order theory of non-structural subtyping con-

straints over recursive types (and infinite trees) is undecidable.

Theorem 3.2.8 The first-order theory of non-structural subtyping constraints over
recursive types (and infinite trees) is undecidable for any type language with a binary

type symbol and L.

Proof. Follows from Lemma 3.2.7 and Theorem 3.2.6. O

3.3 Structural subtyping: a comparison

We now show that the first-order theory of structural subtyping constraints over
the type language over f and 1 is decidable. This result provides a clear contrast
between the expressiveness of structural and non-structural subtyping. In addition,
it provides another, and in some sense more apparent, distinction between these two
alternative interpretations of subtyping. In fact, we show that the first-order theory

of structural subtyping constraints with a signature containing one constant symbol
is decidable.

Theorem 3.3.1 The first-order theory of structural subtyping constraints with a
single constant symbol is decidable for both simple and recursive types (and infinite

trees).
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Proof. This can be easily shown by noticing that in a type language with only one
constant (i.e., 1), the subtype relation is the same as equality. Thus we can simply
turn any constraint t; < ¢y into ¢; = ty. Since the first-order theory of equality is
decidable both for finite and regular trees (and infinite trees) [Mah88], the theorem
follows immediately. O

It is open whether the first-order theory of structural subtyping constraints is
decidable in general, where arbitrary base lattices are allowed. We suspect a quantifier
elimination procedure similar to that of [Mah88] for the first-order theory of equality
can be constructed, which we leave as interesting future research. If the first-order
theory of structural subtyping constraints turns out to be decidable, then we have

obtained another level of separation of structural and non-structural subtyping.
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Chapter 4
Tree Automata and Entailment

In the last chapter (Chapter 3), we have presented some negative results on con-
straint simplification and entailment. In this chapter and Chapter 5, we present
positive results for some special cases. In particular, in this chapter, we introduce an
approach based on tree automata for subtype entailment, and we show how to apply
this technique to prove that the monadic fragment of the first-order theory of subtyp-
ing is decidable. We begin this chapter by introducing some necessary background
on tree automata [CDG199, GS84].

4.1 Background on tree automata

We recall some definitions and results on tree automata [CDG99, GS84].

Tree automata generalize word automata by accepting trees instead of words. Let
Y. be a ranked alphabet, and let ¥,, denote the set of symbols of arity n. We recall
the definition of trees from Chapter 2.

Definition 4.1.1 (Finite tree) A finite tree t over a ranked alphabet ¥ is a map-
ping from a prefix-closed set pos(¢) C N* into 3. The set of positions pos of ¢ satisfies:

e pos(t) is nonempty and prefix-closed.

e For each 7 € pos(t), if t(7) € ¥, then 73 € pos(t) for 1 < i < n.
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Definition 4.1.2 (Finite tree automata (NFTA)) A finite tree automaton (NFTA)

over Y is a tuple
A = (QaE,QF’,A)
where () is a finite set of states, X is a finite set of ranked alphabet, Qr C (@ is a set

of final states, and A is a set of transition rules of the form

f(QIaaqn)—)q

where n >0, f € X, ¢,q1,--.,q, € Q.

The above defines a bottom-up tree automaton, since an automaton starts at the
leaves and works up the tree inductively. The move relation of a tree automaton

A= (Q,%,Qr,A) can be defined as tree rewriting rules ¢ 7 t'. We say that

t 7 t" if ¢ can be obtained from ¢ by replacing f(qi,...,q,) with ¢ for some
fla1,---,qn) — g € A. We denote the reflexive and transitive closure of 7 by
.

A

A term (or a tree) is accepted by a NFTA A = (Q, %, QF,A) if t %) g for some
final state ¢ in Qp.

Definition 4.1.3 (Run) A run R of an automaton A = (Q,%, Qr,A) on a term ¢
is a labeling of pos(t) with states @ of A such that for every position 7 € pos(t), if
t(r) = f € F,, R(m) = q, and R(7i) = ¢; for each 1 < i < n, then f(q1, -+ ,¢n) —
g € A. A run is successful if R(¢) € Q.

Example 6 (tree automaton) Consider the automaton where

Q = {aq4}
Y = {a,d,f()}
Qr = {gr}
a — q
A = b — g5

fle,91) — a
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The automaton accepts the smallest tree language L satisfying (1) b € L, and (2)
if t € L then f(a,t) € L. For example, it accepts the term f(a,b) since

= f - f — 45

/ N\ / N\ / N\
a b a b q q

Our goal is to use tree automata to encode the solutions of subtyping constraints.
The solutions of a constraint system form an n-ary relation, associating with each
type variable a component in the relation. Thus, the solutions of a constraint system
of m variables can be represented as a set of m-tuples of trees. For example, the tuple
(f(f(T,T), L), f(T, f(L,T))) is a solution to the constraint z < y.

We use a standard encoding to represent tuples [CDG99]. We first give an exam-
ple to illustrate how the encoding works. Consider tuples of words over the alphabet
{0,1}. We can construct an automaton to accept the (encoding of a) language L of
pairs (w,w’) such that ||w| = ||w'|| (where |w|| denotes the length of the word w)
and w; # w, for 1 < i < ||lw||, i-e., we flip 0’s and 1’s in w and w’. One possible

encoding is to “stack” the two words, i.e., put one on top of the other, and we con-

0011
sider the product alphabet {0, o 1}. With this encoding, we can easily construct

an automaton that accepts L, for example, the automaton with one state ¢ and ¢ is
. . .. 0 1
both initial and final, having transitions (g, 1) — ¢ and (g, 0) —q.

This idea can be extended to tree automata on tuples with “overlapping” of the
terms. For any finite ranked alphabet 3, we define ¥" = (X U {t#})", where { is a new
symbol of arity 0. We consider only binary terms, since general n-ary symbols can
be simulated with a linear number of binary symbols in the arity of the symbol. We
define the arity of the symbols as the maximum of the arities of the components, i.e.,
arity(f1,. .., fn) = max{arity(f1),...,arity(f,)}. Since f is of arity 0, the symbol
(%,...,4) is of arity 0, i.e., a constant. We denote by X" the set of symbols in X" of
arity m.

For example, consider ¥ = {a, f(-,-)}, where a is a constant and f is a binary
symbol. Then Y2 is the set of symbols {aa,af,at, fa, ff, i, fa, 8f, 11} and 32 is
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{af, fa, ff, f4,4f}.

Example 7 (tuple encoding) This example shows how to encode the tuple (¢, t5):

f f ff
/NN T
f LT f T Lf
/N 7\ /N VRN
T T 1 T Tt Tt g1 £
(a) t (b) to (c) encoding of (t1,1)

Definition 4.1.4 (Tree automata on tuples) Let ¥ be a ranked alphabet. A fi-
nite tree automaton on n-tuples over ¥ is a tree automaton A = (Q, X", Qp, A) over
" (defined above), where @) is a finite set of states, Qr C @ is a set of final states,

and A is a set of transition rules of the form

f(QIaaQTn)—)q

where n >0, f € X, ¢, ¢1,...,qm € Q.

Example 8 (automaton on tuples) Consider the automaton where

Q@ = {qr}
¥ = {a, f(")}
Qr = {(If}

A = { aa — qf}
fflar,qr) — a5

One can verify that this automaton accepts the tree language {(¢,t) | t € T'(X)}.

Let t = (f1,---, fis--- fn). Define t* = f; (the i-th component of t) and t~* =
(fi,---s fiz1, fix1y---, fn) (the i-th projection of t).

We now define two important operations on relations, projection and cylindrifica-

tion.
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Definition 4.1.5 (Projection and cylindrification) If R C T'(X)" (n > 1) and
1 < i < n, then the i-th projection of R is the relation R C T(X)™ ! defined by

Ri(ty,...,th—1) & HeT(X).R(tr,.. ., tic1,ttiy. .. ta 1)

FRCT(E)" (n>0)and 1 <i<n+1, then the i-th cylindrification of R is the
relation R C T'(X)"*! defined by

Ri(ty, ... ti_t, ttiy oy ty) € Rty ... tiin,tiy ... t)

We summarize here results on tree automata that we use. More details can be
found in [GS84,CDG™99].

Definition 4.1.6 (Tree automata emptiness) The tree automata emptiness prob-

lem s that given any tree automata to decide whether it accepts any trees.

Theorem 4.1.7 (Decidable emptiness) The emptiness problem for tree automata

is decidable. In fact, it can be decided in linear time in the size of the automaton.

Theorem 4.1.8 (Closure properties) Tree automata are closed under intersec-

tion, union, complementation, cylindrification, and projection.

One can view intersection as the equivalent of Boolean “and” A, union as the
Boolean “or” V, complementation as the Boolean negation —, projection as existential
quantification 4. Cylindrification is used to ensure that two automata represent

solutions over a common set of variables, so that their intersection can be taken.

4.2 Decidability of the monadic fragment

In this section, we show that the monadic fragment of the first-order theory (i.e.,
the fragment with only unary function symbols and constants) is decidable. This
result shows that the difficulty in the whole first-order theory and in various entail-

ment problems lies in binary type constructors. The idea of the proof is to reduce
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the problem to the tree automata emptiness problem, or equivalently, to WS1S or
S1S [Tho96, Tho90].

Note that word automata would suffice for encoding the case with unary func-
tion symbols. However, because our approach is extensible to type languages over
arbitrary signatures for the existential or universal fragments (see Section 4.3), we
present our results in terms of tree automata.

Recall that we consider a monadic signature in this section. We reduce the validity
of a formula ¢ to the emptiness decision of a tree automaton. We proceed by structural
induction on the formula ¢. We assume the formula is normalized so that it uses only
the connectives A, —, and 3. In addition, w.l.o.g., we assume the literals of the
formula are of the form x <y, x = L, x = T, and = f(y), which can be obtained
by the following standard flattening procedure. There is a related definition of one-
level systems in solving set constraints [AW92]. We show that a constraint can be
translated to flat constraints in linear time and generate flat constraints linear in size
in the size of the original constraint. The procedure is easily extended to work on
quantified formulas by introducing appropriate quantifiers for the temporary variables

created. We present the procedure in terms of a binary type constructor x.

Definition 4.2.1 (Flat constraints) A constraint is flat if it is of one of the fol-

lowing forms

e a<f
o o= 1;
o a=T;
e a=[0FXxrvy

where «, 3, and ~ are variables.

Proposition 4.2.2 For any constraint ¢ = 71 < 7y, there exist equivalent flat con-
straints C', and the flat constraints C' can be generated in linear time and are of linear

size 1n c.
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Proof. Perform the following transformation FLATTEN on types

e FLATTEN(L) = (o, {o = L}), where « is fresh;

e FLATTEN(T) = (o, {a = T}), where « is fresh;

e FLATTEN(«a) = (o, {});

® FLATTEN(7y XTy) = (o, {& = oy X ap }UC1UCy), where (o, Cy) = FLATTEN(7y)
and (a9, Cy) = FLATTEN(7), and « is a fresh variable.

For a constraint 7, < 79, let (1, C;) = FLATTEN(77) and (g, Cs) = FLATTEN(73),
we construct the flat constraint system C; U Cy U {ag < a}. O
We now give our construction, which proceeds according to the structure of the

given formula.

e dx.¢

Let A; be the automaton for ¢. We construct an automaton A for dx.¢ by

taking the projection of A; w.r.t. the  component of the tuple.!

[ ] —|¢
Let A; be the automaton for ¢. We construct an automaton A for —¢ by

complementing A;.

® 01N\ o
Let A; and Ay be the automata for ¢; and ¢o. We construct A; and A} for
¢1 and ¢, by cylindrifying A; and A, so that A} and A, agree on all the
components. Then construct A for ¢; A ¢, by intersecting A} and Aj.

The following are for the base predicates.
o r =1
We construct the automaton

A= ({Qf}’zla {Qf}ﬂ {J— — C]f})

INotice that only trees that are encodings of tuples of trees are considered during an automata
projection.
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e r =1

We construct the automaton

A= ({qf}azl’ {qf}> {T — qf})

o z= f(y)

We illustrate the construction for the case where there is one other unary func-

tion symbol ¢ in addition to f. The constants are | and T.

We construct the following automaton

A = ({qf’ 499,491,4T, qﬁ}a 22’ {qf}7 A)

to accept all the pairs of (z,y) where z = f(y).

We give a recursive construction of the transitions. We use ¢, as the state in

which we are expecting a s for the z-component (the first component).

Here are the cases where we expect a f for the x component and in which we

accept.
fLlq) — g
fT(gr) — g
ffla) — «
folay) — q

9L(qr) — g
97(gr) — g
9f(ar) — 44
99(q)) — gy
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Here are the base cases.

1 — qu

T8 — g7

One can easily show with an induction that the constructed automaton accepts
the language {(z,y) | = = f(y)}.
r<y

We illustrate the construction for f. We assume f is covariant in its argument.
The construction is easily extensible to the case with more function symbols,
with function symbols of binary or greater arities, and with function symbols

with contravariant arguments.

For a < 3 to hold, we have the following cases
— ais L;
— Bis T;
— a = f(a) and B = f(B1), where a; < fi.

We construct the automaton

A= {a, 9% 2% {ar}, D)
The transition relation A is constructed in pieces.
We have the atomic cases where oo and 3 are either 1 or T
11l — gy
1T — g
TT — g

Then we have the cases where a« = | and = f(8;) or =T and a = f(ay).

Lfl@) — g
fT(qr) — qr
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The state ¢; is used to signify that the left component can only be f, i.e., the
component isn’t there. We still need to complete the right component. For ¢,

we have the rules

L — q
T — g

ifl@) — @

The case for ¢, is symmetric, and we have the rules

J—ﬂ_>%'
Tﬂ_>%'

file) — &

Finally we have the case where @ = f(«;) and § = f(f:1). In this case, we

require the subterms to be related. Thus we have the rule
fflgr) — g

One can easily verify that the automaton indeed recognizes the solutions of

a < pf.

Thus the first-order theory of non-structural subtyping restricted to unary function
symbols is decidable. In addition, note that for structural subtyping, the only changes
are in the case z < y, and can be easily expressed with a tree automaton. By using an
acceptor model for infinite trees and using top-down automata, we can easily adapt

this construction for infinite words.

Theorem 4.2.3 The first-order theory of non-structural subtyping with unary func-
tion symbols is decidable. This holds both for the finite and infinite words and for

structural subtyping as well.

Proof.  Follows immediately from the above construction and the properties of

tree automata. O
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4.3 Extending to arbitrary signatures

We now discuss the issues with extending the described approach to arbitrary
signatures. There are two related difficulties in extending our approach to the full
first-order theory over arbitrary signatures. First, although we can easily express the
solutions to x < y with standard tree automata, we cannot express the solutions to
x = f(y,z) with standard tree automata for any binary symbol f, because the set
{(t1,1t2,t3) | t1 = f(t2,13)} is not a regular set [CDGT99]. An extended form of tree
automata on tuples is required, tree automata on tuples with component-wise tests
(TACT); such automata allow machines to test relationships between tuple compo-
nents [Tre00]. Because this class of tree automata is not closed under projection, an
operation needed for existential quantifier elimination, it does not extend to the full
first-order theory. However, this class of automata is still interesting because it can
encode the existential or equivalently the universal fragments of the first-order theory.
Therefore, we can reduce non-structural subtype entailment to the emptiness problem
on a restricted class of TACT. We believe this reduction is a promising direction in

resolving the decidability of non-structural subtype entailment.

4.3.1 Expressing z < y in general

We first show how to encode = < y in the general case (with a binary constructor

f). For x <y to hold, we have the following cases:
e ris 1;
o yis T;
¢ T= f(331,=’132) and y = f(y1,y2), where z; < y; and x5 < y,.

We construct the automaton

.A = ({Qh qr, Qf}a 22’ {Qf}7 A)

We construct the transition relation A in pieces.
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We have the atomic cases where x and y are either 1 or T:

11l — qf
11T — qf
TT —> qf

Then we have the cases where x = | and y is a product type, or y = T and x is

a product type

Lf(@,q) — g
[T a) — a
The state ¢; is used to signify that the left component can only be §, i.e., the compo-

nent isn’t there. We still need to complete the right component. For ¢;, we have the

rules
L — q
T — g

iflg,a) —

The case for ¢, is symmetric, and we have the rules
J—ﬁ — O

Tﬁ — O

fﬂ(qra QT) — g

Finally we have the case where both x and y are product types. In this case, we

require the subterms to be related. Thus we have the rule

fflarar) — a5

One can easily verify that the automaton indeed recognizes the solutions of x < y.
For an additional example of a direct construction, we give the construction for

z £ vy, although it can also be obtained by complementing the automaton constructed
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for x < y. The construction of this automaton is similar to the one for x < y. The
reader is invited to verify the construction.

We construct the automaton

A = ({qa q1, 4r, qf}’ 225 {qf}’ A)

where A is given by

TL — g
Tfla.a) — g
[, a) — 4
[ — g
fHaq4) — g

L — q

T — q
tfla, @) —

1t — ¢

T — g
8¢ ¢r) — @
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11

=

1T

Lf(q, @)
ff(g,9)
fL(gr, )
fT(gr,q)
T1

Tf(a, @)
TT

L

The meaning of states ¢; and ¢, are the same as in the case x < y. The state ¢
is used to recognize all the possible pairs of terms. The constructions above can also

be easily extended to handle type constructors with contravariant fields.

4.3.2 Constrained automata for z = f(y, 2)

The only literals that cannot be expressed with a standard tree automaton are of
the form x = f(y,2). The idea is to separate the regular part of constraints (those
that can be expressed with tree automata) and the non-regular part (which are not
expressible as tree automata).

We first introduce a notion of a constrained tree automaton, which is a special
case of tree automata with component-wise tests [Tre00], such that the tests are only
performed at the root of the tree being accepted. Interested readers are referred
to [Tre00, CDG*99] for more details on tree automata with tests.

Consider a tree automaton A on n-tuples over the ranked alphabet Y. We name
its n components zq,...,z,. We are interested in the following decision problem:
Given A and C, where C'is a set of equations in terms of 1, ..., x, and the alphabet

Y (these are unification constraints), we want to decide whether there exist trees
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t1,...,t, such that:
1. (t1,...,t,) is accepted by A.
2. The valuation h with h(x;) = t; satisfies C.

We call such an automaton with equations a constrained automaton. and denote

it by (A, C). Here is an example.

Example 9 (constrained automata) Consider the automaton A where

Q@ = {qr}
¥ = {a, f(")}
Qr = {Qf}

A = { aa — qf}
fflar,q5) — a5

and the equations C = {z; = f(z2,22)}-
The automaton (A, C) does not accept any finite trees. It accepts some infinite
trees, however. For example, take both z; and x5 to be the complete infinite tree,

i.e., ¥1 = Ty =t where ¢ is the unique solution to t = f(¢,t).

4.3.3 Expressing subtype entailment

We now show subtype entailment (structural or non-structural, finite or recursive)
can be reduced to the emptiness problem for constrained automata that we have just
introduced.

Consider the entailment problem C'E x < y. It is easy to see that the entailment
holds if and only if the constraint C' = C Az £ y does not have a solution. Each
solution to C’ corresponds to a witness to the non-entailment of C' E x < y. The
idea is to use a constrained automaton to express all the solutions to the constraint
CAz %y Let C ={n <7,....,7n» <7.}. Then C is equivalent to the single
constraint

r<7
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where 7 = f(m, f(12, f(...,7))) and 7" = f(7{, f(73, f(...,7}))). For example, let C

be the following set of constraints:

{xl S f(yb f(Zb J—)): f(Tayl) S y2af(J—: Zl) S yl}

It is equivalent to the constraint:

flan, FUCT ), f(L 21))) < F(f(y, f 21, L)), fy2, 1))

We next introduce two fresh type variables 2’ and 3/'. Let A be the tree automaton
constructed for the constraints 2’ < y’ and = £ y. Now, consider the constrained
automaton

(AA{a" =7y =1"})
It is obvious that (A, {z' = 7,9’ = 7'}) is empty if and only if C F z < y.

This is a very simple and straightforward reduction. There are some special prop-
erties about the constructed automaton for entailment. The tree automata part
consists of an automaton with a bounded number of states. Next, we show that
general constrained automata emptiness is undecidable. The proof crucially relies on
that the associated tree automaton has unbounded number of states. Therefore, it
is open whether constrained automata emptiness is decidable if the associated tree

automaton has a bounded number of states.

4.3.4 Constrained automata emptiness is undecidable

The problem of deciding whether a constrained automaton accepts the empty
language is undecidable. This holds for the smallest signature f(,) and L. This is
the smallest because we can show that if we only have unary function symbols and
constants, emptiness is decidable (the proof is similar to the proof for the monadic
fragment). The proof of undecidability is through a reduction from PCP to the
emptiness problem of constrained automata.

Let (p;, ;) for 1 < i < n be a PCP instance with p; and ¢; words over 0 and 1.
The problem is to decide whether there exists a non-empty sequence si, ..., s, with

s; € [1,n] such that pg, ...ps,, = qsy - - s,,-
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We adopt and simplify a proof of Treinen [Tre01] for constrained automata. We

first recall the encoding of words over 0 and 1 with trees over f(,) and L:

o c(e) = f(L,L1);
e c(0w) = f(c(w),L);

e c(lw) = f(L,c(w)).

We construct an automaton A to accept all the encodings of the pairs of the words

(w,w', wp;, w'q;) for some p; and g;, i.e.,
L(A) = {{w,w',v,v") | Fiv = wp; Av' = w'q;}

This automaton expresses a single step in the PCP construction. For a particular i,
we construct an automaton to accept all the tuples (w,wv) (where v = v;...v,) and
then use the fact that tree automata are closed under cylindrification and union to
construct A for the above defined tree language.

We have the following set of rules:

ffapa)) — g (4.1)
fflac,a) — g (4.2)
filg,q) — g ifor=0 (4.3)
fflgn,q) — q ifv,=1 (4.4)
Lf(g,q) — g1 ifv;=0 (4.5)
Lflgg,q) — g1 ifv;=1 (4.6)
1l — a (4.7)

L — qu (4.8)

L — o (4.9)

For n = 0, we simply have

fflagq) — g (4.10)
fflase) — @ (4.11)

11l — g (4.12)
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With the above construction, we build an automaton for each word v (either p;
or ¢;) in the PCP instance such that the automaton accepts the language (w,wv).
With these automata as sub-automata, we can construct an automaton A to accept
the language that represents a PCP step, i.e., (w,w', wp;, w'q;) for some i.

Next, we construct an automaton to accept all the tuples (w1, ws, w, w), with the
same third and fourth components. We first construct the following automaton to

accept all the pairs of equal words (w, w):
11 — ¢ (4.13)

ffag.qr) — as (4.14)

By applying cylindrification twice on this automaton, we get an automaton that
accepts the language (wy, we, w, w).

Taking the intersection of this automaton with the previously constructed automa-
ton A, we get A’. We cylindrify both automata A and A’ to add a fifth component.
For simplicity, we reuse A and A’ for the resulting automata. Notice that both A
and A’ have only a single accepting state, denoted by p; and ¢ respectively.

We construct the final automaton with the automata A and A’ as its sub-automata.

Here are the rules:

1111l — po (4.15)
LLffpi,p) — po (4.16)
frff-(po,ps) — o (4.17)
frff-(po,qr) — p (4.18)

where p is the only accepting state.

We denote the constructed automaton as Ap, and name the five components of
Ap with the variables z,y,u,v, and w. The associated constraints are u = f(z, w) and
v = f(y,w). This completes our reduction from PCP to the constrained automata

emptiness problem.

Theorem 4.3.1 (Soundness and completeness) The PCP instance P is solvable
iff there is a tuple of trees (x,y,u,v,w) € L(Ap) and satisfies the unification con-

straints v = f(z,w) and v = f(y, w).
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4.4 An example

We give an example in this section to demonstrate the automata construction
of Section 4.2. Consider the alphabet ¥ = {L,T,g(-)}. We want to decide the
entailment {z < ¢(y),9(z) <y} Fz <y.

This entailment holds. We reason with a proof by contradiction. Suppose the
entailment does not hold. Then there exist two trees ¢; and t, such that (1) t; < g(¢2)
and g(t;) < to; and (2) ¢; £ to. Choose t; and t, to be trees such that |[t1]| + ||t2]|
is minimized. Notice that ¢; = ¢g(¢}) and t; = g(t}) for some t| and t},, otherwise, t;
and t, cannot witness the non-entailment. However, then we have g(t}) < g(g(t})),
i.e., th < g(th) and g(g(t})) < g(th), i-e., g(t) < t5. Furthermore, ¢ £ t} since ¢; =
g(t)) £ g(ty) = to. Thus, t] and t} also witness the non-entailment, a contradiction.

We demonstrate that the entailment holds with the technique presented in this

chapter. After flattening the constraints, we consider the equivalent entailment

{z' =g(z),y =9(y),z <y 2’ <ylFz<y

The above entailment is equivalent to deciding whether the constraints {z' = g(z),y' =

9(y),z < y',2' <y,x £y} are unsatisfiable.

We construct an automaton for each of the five constraints.

Consider the automaton where

Q = {q¢, % 9}
L o= {L,T,90)}
Qr = {qs}
( L — ‘
Lgl@) — qr
A = T — g
Tg(e2) — qr
| 99(ey) — a5 |




The first component is for z, and the second component is for z’.
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This is the same automaton as for 2’ = g(z), with the first component for y

and the second component for y'.

oz <y

Consider the automaton where

Q = {qlaQQan}

2 o= {L,T,90)}
Qr = {‘Jf}

The first component is for z, and the second component is for ¥’

e ' <y

\

11
1T
TT
§1
8T
t9(q1)
Lg(q)
L
Tt
94(g0)
97 (g2)
99(qy)

Lol be el

qr
4
qr
Al
0
Al
qr
q2
q2
q2
qr
4

7

This is the same automaton as for z < ¢, with the first component for z’ and

the second component for y.
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ez Ly

Consider the automaton where

QR = {CI1,C]2,(Zf}
2 o= {LT,90)}
Qr = {q}
([ TL — g )
L — @
T — @
t9(@1) — @
A= Tgl@) — ar >
i — ¢
T — ¢
98(@2) — @
9L(e) — ¢
( 99(ar) — a5

The first component is for z, and the second component is for y.

Now we apply cylindrification to the automata above.? We use the following

shorthand for transition rules:

Hilfa | fs)(q) — ¢

is a shorthand for the two rules

fifo(g) — ¢

and

fifs(q) — ¢

2Before applying cylindrification, we need to make these automata complete. Because of the
tediousness of the construction, we simply use the original automata to illustrate how cylindrification
works. The basic construction is the same regardless whether the automata are complete or not.




For 2’ = g(z), consider the automaton where

Q
)

QRr

{Q1,Q2,(Zf}
{L,T,9()}*
{ar}

[ /* derived from §1 —» ¢ */
¢ LI T)LE] LI T)
gL LT | 9)(a)
fg L8] L1 T [9)(g2)
fg L1 L1 T [9)(ar)
gL T)Lg(ar)
gL T)Lg(g)
gL T)Lglgr)

/* derived from Lg(¢1) — ¢ */

Lg(q)
L@EILIT gl LT g)(a)

§ /* derived from T — ¢o */
gL TTEIL]T)
ggTEI LT[ 9)a)
ggTEI LT[ 9)(g)
ggT LT [9)ay)
gL T)Tg(q)
8@ 1L T)Talge)
g L[ T)Talar)

/* derived from Tg(g2) — q5 */
TEILIT logl ] L1T 19)(g)

/* derived from gg(qr) — q; */
L gL T gg | LI1T][9)(ar)

Lol L Lol

l

l

0O
q
0O
q
0O
q
0

qf
af

q2
q2
q2
q2
q2
q2
q2

qr

qr

64
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This automaton is obtained from the automaton for ' = g(x) above by apply-
ing cylindrification twice. The tuples are ordered by z, y, ', and ¥, i.e., the first
component corresponds to z, the second component corresponds to y, and so on.

The other four cases are treated in exactly the same manner.

Then we can construct the intersection of the five automata obtained through
cylindrification and verify that the language accepted by the intersection is empty.
With that, we conclude that the entailment does indeed hold. The rest of the con-

struction is left to the reader.
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Chapter 5
Conditional Equality Constraints

In this chapter, we consider the entailment problem for conditional equality con-
straints, a special form of non-structural subtyping constraints. The material in this
chapter is an extended version of [SA(1].

Conditional equality constraints extend the usual equality constraints with an
additional form o« = 7, which holds if « = 1 or @« = 7. Conditional equality
constraints have been used in a number of analyses, such as the tagging analysis of
Henglein [Hen92], and the pointer analysis proposed by Steensgaard [Ste96], and a
form of equality-based flow systems for higher order functional languages [Pal98].

Besides conditional equality constraints, we also consider entailment for a natural
extension of conditional constraints (Section 5.5). In particular, we show there are
polynomial time algorithms for equality and conditional equality constraints for both
versions of entailment. We believe these algorithms may be of practical interest.
In addition, we consider simple entailment and restricted entailment for a simple
and natural extension of conditional equality constraints. We show that although
simple entailment for the extension admits polynomial time algorithms, restricted
entailment for this extension turns out to be coNP-complete. The coNP-completeness
result is interesting because it provides one natural boundary between tractable and

intractable constraint languages. The results are summarized in Table 5.1.
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Complexity
Constraints Simple Entailment | Restricted Entailment
Conditional Equality P-complete P-complete
Extended Conditional Equality P-complete coNP-complete

Table 5.1: Summary of results.

5.1 The problem setting

In this section, we recall some definitions from Chapter 2, specialized now to
conditional equality constraints. We work with simple types. The algorithms we
present apply to type languages with other base types and type constructors. Our
type language is:

To=1|T|n—>nla

This simple language has two constants 1 and T, a binary constructor —, and vari-
ables « ranging over a denumerable set V of type variables. 7 and 7g are the set of
types and the set of ground types respectively. An equality constraint is 7, = 7o and
a conditional equality constraintis o = 7. A constraint system is a finite conjunction
of equality and conditional equality constraints. An equality constraint system has
only equality constraints.

A valuation p satisfies constraint 7 = 7o, written p £ 71 = 7o, if p(11) = p(72),
and it satisfies a constraint o = 7, written p F a = 7, if p(a) = L or p(a) = p(7).

We write p E C if p satisfies every constraint in C'.

Definition 5.1.1 (Terms) Let C' be a set of constraints. Term(C) is the set of
terms appearing in C: Term(C) = {r,» | (m=7n) € CV (n = n) € C}.

The satisfiability of equality constraints can be decided in almost linear time in
the size of the original constraints using a union-find data structure [Tar75]. With
a simple modification to the algorithm for equality constraints, we can decide the
satisfiability of a system of conditional equality constraints in almost linear time (see

Proposition 5.1.2 below).
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Example 10 Here are example conditional constraints:

o o= 1;

Solution: o must be L

o a=T;

Solution: « is either L or T.

e o= [ —v
Solution: « is either | or a function type 8 — 7, where 5 and 7 can be any

type.

Proposition 5.1.2 Let C' be any system of constraints with equality constraints and
conditional equality constraints. We can decide whether there is a satisfying valuation

for C in almost linear time.

Proof. The basic idea of the algorithm is to solve the equality constraints and
to maintain along with each variable a list of constraints conditionally depending on
that variable. Once a variable « is unified with a non-_ value, any constraints o = 7
on the list are no longer conditional and are added as equality constraints o = 7.
The time complexity is still almost linear since each constraint is processed at most
twice. See, for example, [Ste96] for more information. O

We refer to this algorithm as CONDRESOLVE. The result of running the algorithm
on C' is denoted by CONDRESOLVE(C).

In this chapter, we consider the usual two forms of entailment for conditional

equality constraints: !
e simple entailment: C' F ¢, and

o restricted entailment: C; Eg Cy

1 To follow the convention used in the literature in program analysis, we use restricted entailment
in stead of existential entailment in this section, although they are equivalent.
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where C, ', and C, are systems of constraints, and c is a single constraint, and F
is a set of interface variables.

For the use of restricted entailment, consider the following situation. In a poly-
morphic analysis, a function (or a module) is analyzed to generate a system of con-
straints [FFA00, FF97]. Only a few of the constraint variables are visible outside the
function, call them the interface variables. We would like to simplify the constraints
with respect to the set of interface variables. This can give us better simplification
because we only need to preserve the solutions of a smaller set of variables. Thus, in
practice, restricted entailment is more commonly encountered than simple entailment.

For a simpler presentation of the algorithms and a closer match with the program
analysis literature, we define the two entailment problems slightly differently from

the ones given in Chapter 2.

Definition 5.1.3 (Simple entailment) Let C be a system of constraints and ¢ a

constraint. We say that C' F c if for every valuation p with p F C, we have p F ¢ also.

Definition 5.1.4 (Restricted entailment) Let C; and Cy be two constraint sys-
tems, and let E be the set of variables fv(C;) N fv(Cy). We say that C; Fg Cy if for
every valuation p; with p; F C; there exists p, with ps E Cy and p;(a) = po(a) for
all € E.

Definition 5.1.5 (Interface and internal variables) In C; Fg Cy, variables in E

are interface variables. Variables in (fv(C)) U fv(Cy)) \ E, are internal variables.

We adopt the following notational convention in this chapter:
e 7 and 7; denote type expressions.

e «, 3, v, o, B;, and ~; denote interface variables.

® i, v, 0, U, V;, and o; denote internal variables.

e « denotes a generic variable, in places where we do not distinguish interface

and internal variables.
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For simple entailment C' F ¢, it suffices to consider only the case where ¢ is a
constraint between variables, i.e., ¢ is of the form o« = § or « = (. For simple
entailment, C' E ;. = 75 if and only if C U{a = 1,8 = »} F a = 3, where o and 3
do not appear in C' and c¢. The same also holds for when c is of the form o = 7.

Simple entailment also enjoys a distributive property, that is C; F Cs if and only if
C1 E cfor each ¢ € (5. Thus it suffices to study only C' F ¢. This distributive property
does not hold for restricted entailment. Consider § F, 31 {ao = 0,8 = o}, where o is
a variable different from « and . This entailment does not hold (consider p;(a) = T
and pi(6) = L — L), but the entailment § Fy, 5 {a = o} and 0 F, 5 {8 = o}
both hold.

Terms can be represented as directed trees with nodes labeled with constructors
and variables. Term graphs (or term DAGs) are a more compact representation to

allow sharing of common sub-terms.

Definition 5.1.6 (Term DAG) In a term DAG, a variable is represented as a node
with out-degree 0. A function type is represented as a node — with out-degree 2, one
for the domain and one for the range. No two different nodes in a term DAG may

represent the same term (sharing must be maximal).

We also represent conditional constraints in the term graph. We represent oo = 7
as a directed edge from the node representing o to the node representing 7. We call
such an edge a conditional edge, in contrast to the two outgoing edges from a — node,

which are called structural edges.

5.2 Entailment of equality constraints

In this section we consider the entailment problems for equality constraints. These
results are useful in later sections. Algorithms for entailment over equality constraints
are known [JM94,5T94, Col82, Col84]. We include them for completeness since these
results are used heavily in later sections for studying entailment over conditional

equality constraints.
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{n=mn=m}CS = {n=n}CS
{fn=n=r1-1}CS = {n=1,n="n}CS

{L=T}CS = not satisfiable

{L=mn —>7n} CS = not satisfiable

{T=mn—->mn}CS = not satisfiable

Figure 5.1: Closure rules for equality constraints.

{T1:T2,T2:T3}QS = {leTg}gS

{n=m,n=n}CS = {non=1->mn}CS

Figure 5.2: Congruence closure for equality constraints.

5.2.1 Simple entailment

We first consider the simple entailment problem for equality constraints. For C' F ¢
to hold, the constraint ¢ cannot put extra restrictions (beyond those in C) on the
variables in C'. We use this idea to get an efficient algorithm for deciding whether
C E ¢ for equality constraints.

Recall that the basic algorithm for checking the satisfiability of an equality con-
straint system is to put the constraint system into some closed form according to the
rules in Figure 5.1 (Robinson’s algorithm) [Rob71].

An efficient implementation of Robinson’s algorithm is based on the union-find
data structure. The algorithm operates on a graph representation of the constraints
and closes the graphs according to structural decomposition. A union-find data struc-
ture maintains equivalence classes, with a designated representative for each equiva-
lence class. For any term 7, we denote the equivalence class to which 7 belongs by its

representative ECR(7). If the algorithm succeeds, the resulting DAG forest represents
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1. Compute m.g.u. of C. If fail, output YES; else continue.

2. Compute the congruence closure on the m.g.u. of C. If &« = 3 is in the

closure, output YES; else output NO.

Figure 5.3: Simple entailment C'F a = 8 over equality constraints.

the most general unifier (m.g.u.) of the original constraint system. The algorithm
fails if it discovers a constructor mismatch (the last three rules in Figure 5.1).

The standard unification algorithm is not sufficient for deciding entailment because
structural equivalence is not explicit in the resulting DAG representation. That is,
constraints of the form 7, — 7 = 7{ — 7} are decomposed into 7; = 7{ and 75 = 7,
but the equivalence of 77 — 75 and 7{ — 7 is not represented explicitly. Moreover,
besides constraint decomposition, there are situations in which 7 = 7{ and 7, = 79,
but the equivalence 7y — 7 = 7{ — 7 is not explicitly represented. For entailment,
we would like equivalence classes to mean both that all members of a class X are
equal in all solutions, but also that every other equivalence class Y is different from
X in at least one solution. Thus, equivalence classes should be as large as possible
(maximal). This property is guaranteed by congruence closure.

For C F a = [ to hold, it suffices to check whether a = § is implied by C
with respect to the congruence closure rules in Figure 5.2, i.e., whether o = [ is a
constraint in the congruence closure of C'. Congruence closure can be computed in
O(nlogn) [NO80]. Figure 5.3 gives an algorithm for simple entailment over equality

constraints 2.

Lemma 5.2.1 Let C be a constraint system. C and Cong(C), the congruence closure

of C', have the same solutions.

Proof. The rules in Figure 5.2 preserve solutions. O

2The congruence closure computation is unnecessary. We could simply add the constraint o =
to the m.g.u. of C; and continue with unification to check if any two distinct equivalence classes
are merged. This results in an almost linear time algorithm for a single query. Congruence closure
gives a simpler explanation, and also gives an algorithm that answers queries in constant time.
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The algorithm clearly runs in O(nlogn), where n = |C/.
Theorem 5.2.2 (Correctness) The algorithm in Figure 5.3 is correct.

Proof. 1f the algorithm outputs YES, the constraint o = [ is contained in the
congruence closure of the m.g.u. of C. By Lemma 5.2.1, we know that C' and the
congruence closure of C’s m.g.u. have the same solutions. Thus C' F o = §.

If the algorithm outputs NO, then the constraint @ = [ is not in the congruence
closure of the m.g.u. of C'. One can show with an induction on the structure of the
equivalence class representatives of v and 3, i.e., ECR(«) and ECR(f), that any two
non-congruent classes admit a valuation p F C' which maps the two non-congruent

classes to different ground types. Thus, C' ¥ o = §. O

5.2.2 Restricted entailment

In this subsection, we consider restricted entailment for equality constraints. This
relation is more involved, since for polymorphic analyses, there are some interface
variables we are interested in, and the other internal variables may be eliminated,
which can result in a smaller constraint system.

Flanagan and Felleisen [FF97] consider this form of entailment for a class of set
constraints and show that the problem to be PSPACE-hard. However the problem
has not been considered for other forms of constraints, including equality constraints.

The goal is to decide C, Fr Cs for two constraint systems C; and Cy and F =
fv(Cy) Utv(Cy). Recall that Cy Eg Cy if and only if for every valuation p; E C; there
exists a valuation p, F Cs such that p;(a) = py(«) for all « € E.

We first consider an example to illustrate the issues. Consider the two constraint
systems C} = {& = 0 — o} and Cy = {a = 01 — 02} with the interface variables
E = {a}. For any valuation p F C, we know p(a)) = 7 — 7 for some 7. Consider the
valuation p’ of Cy with p'(a) = p(a) and p/(01) = p/(02) = p(o). It is easy to see that
p' E Cy, and thus the relation C; Fr Cy holds. The algorithm for simple entailment

given in Figure 5.3 does not apply since for this example, it would give the answer
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1. Compute m.g.u. of (. If fail, output YES; else continue.

2. Add each term of C5 to the m.g.u. of C if the term is not already

present.
3. Compute the congruence closure on the term graph obtained in Step 2.

4. Unify the constraints of C'y in the result obtained in Step 3, and perform
the following check. For any two non-congruent classes that are unified,

we require at least one of the representatives to be a variable in fv(Cs)\

E. If this requirement is not met, output NO; else output YES.

Figure 5.4: Restricted entailment C Fg Cs over equality constraints.

NO. Note that if C; F Cy (holds iff for all ¢ € Cy we have C; F ¢) then C; Eg C, for
any E. The converse, however, is not true, as shown by the example.

We modify the simple entailment algorithm over equality constraints to get an
algorithm for restricted entailment over equality constraints. The intuition behind the
algorithm is that we can relax the requirement of simple entailment to allow internal
variables of Cs to be added to equivalence classes of the term DAG representation of
the m.g.u. of C}, as long as no equivalence classes of C'; are merged. The algorithm
is given in Figure 5.4 3.

In Figure 5.4, the choice of representatives for equivalence classes is important. We
pick representatives in the following order, which guarantees that if the representative
is in fv(Cy) \ E, then there is no variable in fv(C}) or a constructor in the equivalence

class:
1. 1, T, and — nodes;
2. variables in fv(C});

3. variables in fv(Cy) \ E.

3The step of congruence closure is again not necessary here.
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pla) = p1(«) if a € fv(C)
[ pi(EcR(2))  ifECR(Q) € fV(Cy) |
< 1 if ECR(a) € fv(Cy) \ £
pla)=4¢ L if ECR(a) = L » ifaefv(Cy) \ E
T if ECR(a) = T
\ p(11) = p(r2) if ECR(a) =71 = 7

Figure 5.5: Constructed valuation p.

Let n = |Cy] and m = |Cy|. It is easy to see that the algorithm takes time
O((m + n) log(m + n)).

Theorem 5.2.3 (Correctness) The algorithm in Figure 5.4 is correct.

Proof. Suppose the algorithm outputs YES. If (] is not satisfiable then clearly
C, Fg Cy. Let p; be a satisfying valuation of ;. Consider the valuation p given in
Figure 5.5.

The valuation p is clearly well-defined. Let ps denote the valuation obtained by
restricting p to fv(Cy), i.e., the variables in Cy. We want to show that ps F Cy. Since
the algorithm outputs YES, when adding the constraints in Cs, the only change to the
graph is adding variables in fv(Cy) \ E to some existing equivalence classes. By the
construction of p, one can see that p satisfies all the induced constraints in the term
graph at step 4 of the algorithm. Thus, we have p E C; U Cy, and therefore p, F Cs.
Hence, we have C Fp Cs.

Conversely, suppose the algorithm outputs NO. Then there exist two equivalence
classes to be unified neither of whose ECR is a variable in fv(C5) \ E. There are two

cases.

e In the first case, one ECR is a variable in fv(C1), say «. If the other representative
is L, then any valuation p; F C; with p;(«) = T gives a witness for C; Ep Cs.

The case where the other representative is T or a — node is similar. If the other



76

Let C' be a system of constraints. The following algorithm outputs a term

graph representing the solutions of C.

1. Let G be the term graph CONDRESOLVE(C).

2. For each variable « in fv(C'), check whether it must be L: If neither
GU{a =T} nor GU{a =0, — 0y} is satisfiable, add a = L to G.

Figure 5.6: Modified conditional unification algorithm.

representative is a variable 5 € fv(C}), any valuation p; F C; with p;(a) = T
and p1(8) = L is a witness for C; Fp Cs.

e In the second case, both ECRs are constructors. If there is a constructor mis-
match, then C; U Cs is not satisfiable. Since C) is satisfiable, then C; Fr Cy
(Since if Cy Eg Cs, any satisfying valuation for C; can be extended to a satis-

fying valuation for C5.)

Note that if there is no constructor mismatch (where both representatives are
— nodes), the error is detected when trying to unify the terms represented by

these two nodes. Thus it falls into one of the above cases.

Thus it follows that C; Bg C,.

5.3 Conditional equality constraints

In this section, we consider the two entailment problems for constraint systems

with conditional equality constraints. Recall for o = 7 to be satisfied by a valuation

p, either p(a) = L or p(a) = p(7).

Lemma 5.3.1 (Transitivity of =) Any valuation p satisfying o = § and § = 7,

also satisfies o = 7.
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1. (a)

(b)

()

Run the conditional unification algorithm in Figure 5.6 on C'U

{a = T}. If not satisfiable, then SUCCESS; else continue.

Compute strongly connected components (SCC) on the condi-
tional edges and merge the nodes in every SCC. This step yields
a modified term graph.

Compute congruence closure on the term graph obtained in
Step 1b. We do not consider the conditional edges for computing

congruence closure.

If 8 =T is in the closure, SUCCESS; else FAIL.

Run the conditional unification algorithm in Figure 5.6 on C'U
{a = 01 — 03}, where 07 and oy are two fresh variables not in

fv(C) U {a, B}. If not satisfiable, then SUCCESS; else continue.

Compute strongly connected components (SCC) on the condi-
tional edges and merge the nodes in every SCC. This step yields
a modified term graph.

Compute congruence closure on the term graph obtained in
Step 2b. Again, we do not consider the conditional edges for

computing congruence closure.

If 8 = 01 — 09 is in the closure, SUCCESS; else FAIL.

3. If both cases return SUCCESS, output YES; else output NO.

Figure 5.7: Simple entailment C' F o« = 3 over conditional equality constraints.

Consider the constraints {a = T, = L — L1}. The only solution is o = L.

The fact that o must be L is not explicit. For entailment, we want to make the fact

that o must be L explicit.

Assume that we have run CONDRESOLVE on the constraints to get a term graph

G. For each variable o, we check whether it must be L. If both adding o = T to
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G and a = 01 — 0y to G (for fresh variables o1 and o39) fail, @ must be L, in which
case, we add o = L to G. We repeat this process for each variable. Notice that this
step can be done in polynomial time. We present this modification to the conditional

unification algorithm in Figure 5.6.

5.3.1 Simple entailment

In this subsection, we present an algorithm for decidingC Fa=fand C F a =
where C and C5 are constraint systems with conditional equality constraints. Note
C Fa=pfholdsif and only if C F @« = f and C'F 8 = « both hold. We give the
algorithm in Figure 5.7. The basic idea is that to check C' F o = [ holds we have two
cases: when « is T and when « is a function type. In both cases, we require 5 = «.
The problem then basically reduces to simple entailment over equality constraints. As
for entailment for equality constraints, congruence closure is required to make explicit
the implied equalities between terms involving —. Computing strong components is
used to make explicit, for example, o = [ if both @« =  and § = «. It is easy to see

that the algorithm runs in worst case polynomial time in the size of C.
Theorem 5.3.2 The simple entailment algorithm in Figure 5.7 is correct.

Proof. Suppose that the algorithm outputs YES. Let p be a satisfying valuation

for C. We have three cases.
o If p() =L, then pF a = f.

e If p(a) =T, then pF CU {a= T}. Thus C U{a = T} is satisfiable. We then
have 8 = T is in the closure of C' U {az = T}. Hence, pF 8 = T, which implies
that p F a = 8.

e If p(a) = 7 — 7, where 7y and 7, are ground types, we have CU{a = 0, — 02}
is satisfiable. We thus have 8 = 07 — 05 is in the closure of CU{«a = 01 — 03}.

Hence p F 8 = 01 — 09, and which implies that p F o = £.

Combining the three cases, we conclude that C' F o = £.
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Suppose the algorithm outputs NO. Then at least one of the two cases returns
FAIL. Assume that the case with « = T returns FAIL. Then # = T is not in the
congruence closure of C' U {a = T}. By assigning all the remaining conditional
variables to L (variables appearing as the antecedent of the conditional constraints)
in the graph, we can exhibit a witness valuation p that satisfies C' but does not satisfy
a = [ (same as the case for simple entailment over equality constraints). The other

case where o = 01 — 09 is similar. Hence C' ¥ o = §.

5.3.2 Restricted entailment over atomic constraints

Before considering the problem C' Fg C5 over conditional equality constraints, we
look at a simpler case, in which all the constraints are between variables. With minor
modifications, the presented algorithm can handle constraints over atoms (variables,
L and T).

We first characterize the solutions of a constraint system with respect to a set of
variables. Let C be a constraint system and E C fv(C'). Recall that a conditional
constraint o = [ is represented as a directed edge from the node representing « to
the node representing 3. We compute the strongly connected components (SCC) of
the term graph representation of the conditional constraints. We now perform the

following transformations:

e If a variable @ ¢ E appears in a strong component with variables in E, then

remove « and its incident edges from the component.

e Remove any conditional edge if the antecedent component consists only of vari-
ables in fv(C) \ E.

e Remove any isolated component consisting only of variables in fv(C) \ E.

Compute the transitive closure relation on the resulting dag. The resulting graph is

the normal form NF(CE) of C with respect to E.
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Example 11 Consider the constraints
{7’0 = 0,0 = 7'1,5 = To,Tp = 73,73 = 5,7'3 = 7'1}
The graph representation of the constraints is:

T0 —>T9

NN

o T3

NS

T1

The graph Nr(C{*8}) is
a\ I}
T

The solutions w.r.t. {a, 3} are the same, either ais L, or fis L, or a = .
For a constraint system C, we denote by S(C) |z the set of satisfying valuations

restricted to E, i.e.
S(C) [e={p | pF C and p' = p|r},

where p |g denotes the valuation of p restricted to the variables E.
Lemma 5.3.3 S(C) |g= S(NF(CF)) |-

Proof. By transitivity of = and the fact that we only add transitive con-
straints and remove other constraints from C to get NF(C¥), it is clear that S(C) |xC
S(NE(CT)) 5.

For the other direction, we need to show that each valuation in S(NF(C¥)) |g is
also in S(C) |g. Let p be a valuation in S(NF(C®)) |g. It is extensible to a valuation
¢ of NF(C*). We want to show that p’ can be extended to a valuation p” that satisfies
C. We define p" as follows

p'(a) = p(a) if a € fv(NF(CF))
p"(a) = p'(B) if ECR(a) = ECR(B) and 8 € E
p'a) =1 otherwise
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RN
T1 T2 T3 T
(a) Term graph for C;. (b) Term graph for Cs.

Figure 5.8: Example.

where ECR(«) = ECR() means that « and § are in the same strong component.

One can verify that p” F C by observing that the only constraints that are removed
from C' are of the forms 7 = «, 7 = ™, or 7 = [ where 7, 71, and 7, are variables
not in £ and « and (8 are in E. These constraints are satisfied by our construction
of p".

O

After this transformation only interface variables in E can appear as the left-side
of conditional constraints.

We now consider the decision problem C) Fgr C,. Before giving the algorithm, let

us look at another example. Consider the constraints
Cir={a=>7n,=n,0a=>"7,7=>7n,0=>1,7= T}

and

Cy={a=10=>1y=>"1}

We want to determine that C; =g Cy where E = {a, 3,7}. The term graph repre-
sentations for C; and C5 are given in Figure 5.8. These are also their normal forms.
Notice that the constraints a = 7 and § = 71 force @« = f when o # 1L and § # L.

Thus we can easily characterize C’s solutions restricted to F as
e All of o, 5, and ~y are L;
e One of them is not L and can be any (non-_L1) value;
e Two of them are not L and have the same (non-_1) value ;

e All three have the same (non-L1) value.
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1. Compute NF(CY) and NF(CY);
2. Perform the following checks (where o € E and 5 € F, and 7 ¢ E and
T ¢ E)
(a) if (a = B) € NF(C¥), check (o = ) € NF(CF);
(b) if (a« = B) € NF(C¥), check (o = B) € NF(CY) or (a = ) €
NF(CP);
(c) if {a = 7,8 = 7} C NF(CE), check (« = B) € NF(CE) or
{a=7,8= 7"} CNF(CF);

3. if any of these tests fail, output NO; else output YES.

Figure 5.9: Algorithm for restricted entailment over atomic constraints.

Similarly, we get the same characterization for Cs, thus C; =g Cs.

We now give our algorithm for deciding C Fg C5. The algorithm is in Figure 5.9.
Case 2c handles the tricky case illustrated by Figure 5.8.

We first analyze the running time of the algorithm. The time to compute NF(C¥)
and NF(C¥) is O(m? + n?) where m = |Cy| and n = |Cy|. The time to perform
the checks can be done in time O(mn). Thus the running time of the algorithm is

O(m? + n* + mn).
Theorem 5.3.4 The algorithm in Figure 5.9 is correct.

Proof.  Let pre®(c) be {8 | B = o} in constraints C. Define Ty (o) = L if
the valuation p maps all variables in pre©(a) to L, otherwise, T{' (a) = p(8) for any
B € pre®(a) with p(8) # L.

Assume the algorithm outputs YES. We show that for each valuation p F NF(CF),
the valuation p |g can be extended to a valuation p’ that satisfies NF(CF). We define

o as follows

NF(CE)

{ p'(a) = p(a) ifael
Pa) =T, () if a € tv(NF(CE))\ E
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We first show that p' is well-defined. We argue that all variables in preNF(C7 ) ()
must be mapped to the same value. Let oy and as be in preNF(C) (o) and p(oy) # L
and p(ap) # L. Since a; = a and ay = « are constraints in NF(CY), we have
either (o = ay) € NF(CF) or {oy = o/, = o'} C NF(CF). Then we have
plar) = p(ag). Thus p' is well-defined. To see that o' & NF(CY), notice that p'
satisfies each constraint in NF(CF), ie., p Fa=8,p Fa= B,and p F a = 7.
Thus S(NF(CP)) |EC S(NF(CE)) |g. By Lemma 5.3.3, we have C; Fp Co.

If the algorithm outputs NO, at least one of the checks fails in step 2 of the
algorithm. We consider the three cases separately.

Case 1. Suppose a = 3 € NF(CF) but a = 8 ¢ NF(CE). Either {a+— T,8+ L}
or {a — 1,8+ T} can be extended to a valuation p F NF(CF). However, clearly
p |E cannot be extended to a p' & NF(CF). Thus C} Fg Cy does not hold.

Case 2. Suppose a = 8 € NF(C¥), and a = 8 ¢ NF(CF) and a = 3 ¢ NF(CE).
One can show that {a — T,8 — L} can be extended to a valuation p F NF(CF).
Thus, C; Fg Cy does not hold.

Case 3. Suppose {a = 7,8 = 7} C NF(C¥), and (a = ) ¢ NF(CF) and {a =
,8 = 7'} € NF(CF) for any 7' ¢ E. The partial valuation {a +— T,8+— L — 1}

can be extended to a valuation p that satisfies C';. In particular, we construct p as

follows
([ pla)=T
p(B)=L—1
p(y) = pla)  if ECR(y) = ECR(a)
5 p(y) = pla) if ECR(a)) = ECR( )
p(y) =p(B)  if ECR(B) = ECR(y)
p(y) =p(B)  if ECR(S) = ECR(y)
L p(y) =1L otherwise

where ECR is defined as the representative of a SCC. In choosing a ECR for a SCC,
the variables in E have precedence over the internal variables.
One can show that the constructed valuation p satisfies C;. However {a — T, —

1 — 1} cannot be extended to a valuation that satisfies Cy since this would require
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S({Ch = J_,Olg = 0'1}

S({Odz = 01,00 = 0'2}

n

{Ckg = 02,03 = T}
S
S

{a1 = J_,O!Q = 0'1}

{a1 = J_, Qg = 0'2}

(
(
(
SH{ar = L, a3 = oo}

SHor = L,az3 = T}

S({al = 01,00 = 02}

n

{1 = 01,03 = 03}
SH{ay = 01,03 = T}
SH{ay = 01,3 = 09}
SHay = 01,03 = T}
S{ay = 09,3 = 09}

)
)
)
)
)
)
)
S{or = 01,0 = 01})
)
)
)
)
)
)
)

S({CMQ = 09,03 = T}

{a;— 1} (5.1)
S* (5.2)
{ag— L}U{az— T} (5.3)
{a1 — L1} (5.4)
{a;— 1} (5.5)
{a; — 1} (5.6)
{ar— Liag— L} U{ay — Liazg— T(H.7)
{or = L} U{ae = LU S({ar = a2})(5.8)
S* (5.9)
S* (5.10)
{ag = L}U{az— T} (5.11)
S (5.12)
{az— L} U{az— T} (5.13)
{ag — L} U{az— L} US({az = a3}]5.14)
{ag— L}U{az— T} (5.15)

Figure 5.10: Solutions for all subsets of two constraints.

unifying T with L — 1.

5.4 Restricted entailment over conditional equal-

ity constraints

In this section, we give a polynomial time algorithm for restricted entailment over

conditional constraints. For simplicity, we consider the language without T. The
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modified language is given by the following grammar
Ti=1l|n—-onla

With some extra checks, the presented algorithm can be adapted to include T in the
language.

Consider the following example.

Example 12

(%) a3

VANWANVAN
1 01 02 T

Notice that the solutions of the constraints in Example 12 with respect to {a1, as, a3}

are

{a1|—>J_,a3|—>J_} U
{OZ1|—>J_,012|—)J_,CV3|—>T} U

{OZ1|—>J_,012|—)T,CV3|—>T}

Now suppose we do the following: we take pairs of constraints, find their solutions
with respect to {ay, ag, as}, and take the intersection of the solutions. Let S* denote
the set of all valuations. Figure 5.10 shows the solutions for all the subsets of two
constraints with respect to {aq, as, a3}. One can show that the intersection of these
solutions is the same as the solution for all the constraints. Intuitively, the solutions
of a system of conditional constraints can be characterized by considering all pairs
of constraints independently. We can make this intuition formal by putting some
additional requirements on the constraints.

Here is the route we take to develop a polynomial time algorithm for restricted

entailment over conditional constraints.

Section 5.4.1
We introduce a notion of a closed system and show that closed systems have
the property that it is sufficient to consider pairs of conditional constraints in
determining the solutions of the complete system with respect to the interface

variables.
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Section 5.4.2
We show that restricted entailment with a pair of conditional constraints can
be decided in polynomial time, i.e., C Fgp C_ U {c1,c3} can be decided in
polynomial time, where C_ consists of equality constraints, and ¢; and ¢, are

conditional constraints.

Section 5.4.3
We show how to reduce restricted entailment to restricted entailment in terms
of closed systems. In particular, we show how to reduce Cy Fg Cs to Cf Fp C}

where (7} is closed.

Combining the results, we arrive at a polynomial time algorithm for restricted

entailment over conditional constraints.

5.4.1 Closed systems

We define the notion of a closed system and show the essential properties of closed
systems for entailment. Before presenting the definitions, we first demonstrate the
idea with the example in Figure 5.11. Let C denote the constraints in this example,
with a and § the interface variables, and o, o1, and oo the internal variables. The
intersection of the solutions of all the pairs of constraints is: « is either 1 or 7 — L
and f is either | or 7/ — L for some 7 and 7’. However, the solutions of C' require
that if « =7 — L and § = 7 — 1, and both 7 and 7" are non- 1, then 7 = 7/,
i.e., o = (. Thus the intersection of solutions of pairs of constraints contains more
valuations than the solution set of the entire system. The reason is that when we
consider the set {07 = 0,09 = o}, the solutions w.r.t. {a, 5} are all valuations. We
lose the information that o and 3 need to be the same in their domain.

We would like to consider o; and o9 as interface variables if o1 # L # 05. We
introduce some constraints and new interface variables into the system to closeit. The
modified constraint system is shown in Figure 5.11b. To make explicit the relationship
between « and £, two variables oy and f; (interface variables corresponding to oy

and o9, respectively) are created with the constraints ay = ¢ and §; = o. With this
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o' B o B
A A L [
/ N\ / \ / N\ / N\ /" N\ VERN

01\J1 /02 1L o 03 01 1L o2 1 B 04
(a) Example system. (b) Example system closed.

Figure 5.11: An example constraint system and its closed system.

modification, the intersection of solutions of pairs of constraints w.r.t. {«, 5, a1, 51}
is the same as the solution of the modified system. Restricting this intersection w.r.t.
{a, B} we get the solution of the original constraint system. We next show how to

systematically close a constraint system.

Definition 5.4.1 (TR) Consider a constraint o = 7 with the variable o a proper

subexpression of 7. We define a transformation TR on oo = 7 over the structure of 7
e TR(o,a=0—7)={a= a; = o1 };
e TR(o,a= 7" —0) ={a= 0y = as};

e TR(O,a =T = Tp) =
{a = a; = 01} UTR(0, 01 = 71) if 0 € fv(7y)
{ {a = 09 > ap} UTR(0, 9 = 7) otherwise
Note if ¢ appears in both 7y and 75, TR is applied only to the occurrence of o

in T1-
e TR(0,a =T) = TR(0, 0 = 7).

The newly created «;’s are called auxiliary variables. The variables «; in the first
two cases are called the matching variable for o. The variable « is called the root of
«;, and is denoted by ROOT(¢y).

For each auxiliary variable a;, we denote by Crr(;) the TR constraints accumu-

lated till «; is created.
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Putting this definition to use on the constraint system in Figure 5.11a, TR(o7, @ =
01) yields the constraint o = «; — o3 (shown in Figure 5.11b).

To understand the definition of Crg(c), consider TR(o, ¢ = ((0 — L) — 1)) =
{a = a1 = 01,01 = ay — 03}, where a7 and «, are the auxiliary variables. We
have

CTR(al) = {a = 0 — 0'1}

and

CTR(O!Q) = {O! = 01 — 01,01 = Qg — 0'2}.

Definition 5.4.2 (Closed systems) A system of conditional constraints C'is closed

w.r.t. a set of variables E in C' after the following steps:
1. Let C' = CONDRESOLVE(C).
2. Set W to E.

3. For each variable « € W, if @ = 7 is in (', where ¢ € fv(7), and 0 = 7’ € (',
add TR(o,@ = 7) to C'. Let o be the matching variable for o and add o/ = 7'
to C'.

4. Set W to the set of auxiliary variables created in Step 3 and repeat Step 3 until
W is empty.

Step 3 of this definition warrants explanation. In the example TR(07, @ = 01) we
add the constraint o« = a; — o3 with a; as the matching variable for o;. We want to
ensure that a; and oy are actually the same, so we add the constraint ; = . This
process must be repeated to expose all such internal variables (such as o1 and oy).

Next we give the definition of a forced variable. Given a valuation p for the
interface variables, if an internal variable ¢ is determined already by p, then o is
forced by p. For example, in Figure 5.11, if « is non-_L, then the value of o, is forced

by .

Definition 5.4.3 (Forced variables) We say that an internal variable o is forced

by a valuation p if any one of the following holds (A is the set of auxiliary variables)
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ECR(0) = L;

ECR(0) = «, where oo € E'U A;

ECR(0) =1 — To;

p(a) # L and o = 7 is a constraint where o € fv(7) and o € E'U A;

e ¢’ is forced by p to a non-L value and ¢’ = 7 is a constraint where o € fv(7).

Theorem 5.4.4 Let C' be a closed system of constraints w.r.t. a set of interface
variables F, and let A be the set of auxiliary variables of C'. Let C_- and C., be the

systems of equality constraints and conditional constraints respectively. Then

S(C) lpua= (] S(C-U{cic;}) |pua-
¢i,c;€C
In other words, it suffices to consider pairs of conditional constraints in determining

the solutions of a closed constraint system.

Proof. Since C contains all the constraints in C— U {¢;, ¢;} for all i and j, thus
it follows that
S(O) lsua €[] S(C=U{ci}) [pua-

ci,¢;€C=

It remains to show

S(O) lpua2 [] S(C-U{cig}) [pua-

¢i,c;€C=

Let p be a valuation in ) S(C-U{ci,¢j}) |mua- It suffices to show that p

Cinc;€C
can be extended to a satisfying ifaluation p' for C. To show this, it suffices to find an
extension p' of p for C such that p' F C_ U {¢;, ¢;} for all 7 and j.

Consider the valuation p' obtained from p by mapping all the internal variables
not forced by p (in C) to L. The valuation p’ can be uniquely extended to satisfy C
if for any ¢; and ¢;, ¢; and ¢}, if o is forced by p in both C_U{¢;, ¢;} and C-U{c}, cj},
then it is forced to the same value in both systems. The value that o is forced to by

p is denoted by p'(0).
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We prove by cases (cf. Definition 5.4.3) that if o is forced by p, it is forced to

the same value in pairs of constraints. Let C;; denote C— U {¢;,c;} and Cy j» denote

C-uU{c}, c}.

If EcR(0) = L, then o is forced to the same value, i.e., 1, because o0 = 1 € C_.

If ECR(0) = «, with a € E U A, then o is forced to p(a) in both systems,

because 0 = o € C—.

If ECR(0) = 71 — To, one can show that p forces o to the same value with an

induction over the structure of ECR(o) (with the two cases above as base cases).

Assume ¢ is forced in C; ; because a = 7 € C;; with p(a) # L and forced in
Ci ;o because B = 1, € Cy i with p(8) # L. For each extension p; of p with

p1 F Cj, and for each extension p; of p with py F Cy j, we have

pla) = pi(a) = pi(71)
p(B) = paB) = par)

Consider the constraint system C_ U{«a = 71, 8 = 7»}. The valuation p can be
extended to p3 with p3 F C_ U {a = 71,8 = 7}. Thus we have

pla) = p3(a) = p3(m)
p(B) = p(B) = p3(m)

Therefore, pi(11) = p3(71) and p2(72) = ps(72). Hence, pi(0) = p3(o) and
p2(0) = p3(o), which imply p;(0) = pa(0). Thus o is forced to the same value.

Assume o is forced in Cj ; because oy is forced to a non-_L value and 01 = 71 €
C;,; and is forced in Cy j» because o9 is forced to a non-_L value and oy = 7 €
Cy . Because C' is a closed system, we must have two interface variables or
auxiliary variables o and 8 with both o = 7 and 8 = 7, appearing in C. Since
o1 and oy are forced, then we must have p(a) = p'(01) and p(8) = p'(02), thus

o must be forced to the same value by the previous case.
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e Assume o is forced in C;; because p(a) # L and o = 7, € C;; and forced in
Cy j» because o, is forced to a non-L value and o9 = 7 € Cy 5. This case is

similar to the previous case.

e The remaining case, where o is forced in C;; because o; is forced to a non-
1 value and 0y = 7 € C;; and is forced in Cy j because p(e) # L and

a = 1y € Cy jr, is symmetric to the above case.

5.4.2 Entailment of pair constraints

In the previous subsection, we saw that a closed system can be decomposed into
pairs of conditional constraints. In this section, we show how to efficiently determine

entailment if the right-hand side consists of a pair of conditional constraints.

Lemma 5.4.5 Let '} be a system of conditional constraints and C5 be a system of
equality constraints with £ = fv(Cy) N fv(Cy). The decision problem C; Fg Cj is

solvable in polynomial time.

Proof. Consider the following algorithm. We first solve C; using CONDRESOLVE,
and add the terms appearing in Cy to the resulting term graph for C;. Then for
any two terms appearing in the term graph, we decide, using the simple entailment
algorithm in Figure 5.7, whether the two terms are the same. For terms which are
equivalent we merge their equivalence classes. Next, for each of the constraints in
Cs, we merge the left and right sides. For any two non-congruent classes that are
unified, we require at least one of the representatives be a variable in fv(Cs) \ E. If
this requirement is not met, the entailment does not hold. Otherwise, the entailment
holds.

If the requirement is met, then it is routine to verify that the entailment holds.
Suppose the requirement is not met, i.e., there exist two non-congruent classes which
are unified and none of whose ECRs is a variable in fv(C5) \ E. Since the two classes

are non-congruent, we can choose a satisfying valuation for C'; which maps the two
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classes to different values. This must be possible because, otherwise, we would have
proven that they are the same with the simple entailment algorithm for conditional
constraints. The valuation p |g cannot be extended to a satisfying valuation for Cy
because, otherwise, this contradicts the fact that C; U Cs entails the equivalence of
the two non-congruent terms.

O

Theorem 5.4.6 Let C; be a system of conditional constraints. Let C_ be a sys-
tem of equality constraints. The following three decision problems can be solved in

polynomial time:
1. CiEg C_U{a = 1,8 = n}, where o, 5 € E.
2. Ci1Eg C_U{a= 1,4 = 7}, where « € F and p ¢ E.
3. C1Ep C_U{p = 71, o = 7o}, where py, us ¢ E.
Proof.

1. For the case C; Fg C- U{a = 7,8 = 72}, notice that C; Fr C_ U {a =
71, B = T} iff the following entailments hold
e C1U{a=1,=1}FgC_
L] 01U{O!:J_,ﬁ:V1—)VQ}':EC:U{ﬁzTQ}
L] 01U{()1:O'1—)OQ,HZJ_}IZEC:U{GZ’H}

° C’lu{azal—>02,B=V1—>V2}|:EC:U{04=7'1,ﬁ:7'2}

where 01, 09, 11, and vy are fresh variables not in fv(C;) U fv(Cs).

Notice that each of the above entailments reduces to entailment of equality

constraints, which can be decided in polynomial time by Lemma 5.4.5.
2. For the case C; Fg C_ U{a = 1, = 72}, we consider two cases:

e CiU{a=1}Fr CoU{u= n};

e C1U{a=0, - o}FgC_U{a=1,u=n}
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where oy and oy are fresh variables not in fv(C;) U fv(Cy).

We have a few cases:

Notice that the only interesting case is the last case (ECR(u) ¢ E) when there is
a constraint § = 7 in C_ and p appears in 7. For this case, we consider all the
O(n) resulting entailments by setting 5 to some appropriate value according to
the structure of 7, i.e., we consider all the possible values for 3. For example,

if 7 = (p — L) — u, we consider the following cases:

o =1,
o =1 — v
o = (L — ) —u;

o ,6:((1/3-)1/4)—)1/2)—)1/1

where vq,15,13, and v, are fresh variables.

Each of the entailments will have only equality constraints on the right-hand
side. Thus, these can all be decided in polynomial time. Together, the entail-

ments can be decided in polynomial time.

. For the case Cy Fp C_ U {1 = 71, o = 72}, we again apply the idea from the
second case. The sub-case which is slightly different is, for example, when pus
appears in 7y only. In this case, for some 8 and 7, we have 8 = 7 is in C_ where
p1 occurs in 7. Let 7/ = 71 /1], where 7[71 /1] denotes the type obtained from
T by replacing each occurrence of y; by 7. Again, by assigning 3 appropriate
values according to the structure of 7/, we can consider OQ(n) entailments whose
right-sides are equality constraint systems. Thus this form of entailment can

also be decided in polynomial time.
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Figure 5.12: Example entailment.

5.4.3 Reduction of entailment to closed systems

We now reduce an entailment C; Fg Cs to entailment of closed systems, thus
completing the construction of a polynomial time algorithm for restricted entailment
over conditional constraints.

Unfortunately we cannot directly use the closed systems for C; and C; as demon-
strated by the example in Figure 5.12. Figures 5.12a and 5.12c show two constraint
systems C; and Cy. Suppose we want to decide Cy Fyy gy Co. One can verify that the
entailment does hold. Figures 5.12b and 5.12d show the closed systems for C; and
C5, which we name C] and C. Note that we include the TR constraints of Cy in Cj.
One can verify that the entailment C] Fi4 g,a,,8,3 C3 does not hold (take o = 3 = L,
ap =1L — 1, and f; = L — T, for example). The reason is that there is some
information about «; and (; missing from C]. In particular, when both a; and S,
are forced, we should have oy = ¢’ and 31 = ¢’ (actually in this case they satisfy

the stronger relation that oy = ;). By replacing @« = a; — o3 and 8 = [, — o4
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with @« = a1 — 03 and § = 8; — o4 (because that is when both are forced), we can
decide that a; = ;. The following definition of a completion does exactly what we

have described.

Definition 5.4.7 (Completion) Let C be a closed constraint system of Cy w.r.t.
E. Let A be the set of auxiliary variables. For each pair of variables o; and 3; in A, let
C(ou, B;) = Ctr(0y) UCTR(B)) (see Definition 5.4.1) and C=(ay, B;) be the equality
constraints by replacing = with = in C'(a, ;). Decide whether CUC= (v, B;) Fia, .5}
{a; = 0,6; = o} (cf. Theorem 5.4.6). If the entailment holds, add the constraints
Qi = O(a;,5;,) and B; = 0(q, ;) to C, where o(q, ;) is a fresh variable unique for o;

and ;. The resulting constraint system is called the completion of C'.

Theorem 5.4.8 Let C; and C5 be two conditional constraint systems. Let C be the
closed system of Cy w.r.t. to E = fv(C})Nfv(Cy) with A the set of auxiliary variables.
Construct the closed system for C; w.r.t. E with A’ the auxiliary variables, and add
the TR constraints of closing Cy to C; after closing C;. Let C] be the completion of
modified Cy. We have C; Fg Cs iff C] Eguauar C5.

Proof.

(<): Assume C| Eguaua Ch. Let p E C;. We can extend p to p' which satisfies
C}. Since C] Fguaua C), then there exists p” such that p" F C} with p' |puava=
P" |Euauar. Since p" E C4, we have p" E Cy. Also p |g= p' |g= p" |- Therefore,
Cy Fg Cy.

(=): Assume C; Fgr Cy. Let p E C]. Then p E Cy. Thus there exists p' £ Cy with
ple=p |g. We extend p' | to p” with p"(a) = p/(a) if @ € E and p"(a) = p(«) if
a € (AUA’). It suffices to show that p” can be extended with mappings for variables
in fv(C)\ (EUAUA") =1v(C) \ (EUA), because p" |puava= p |Euava-

Notice that all the TR constraints in C are satisfied by some extension of p”,
because they also appear in C}. Also the constraints C; are satisfied by some extension
of p". It remains to show that the internal variables of C} are forced by p” to the
same value if they are forced by p” in either the TR constraints or Cy. Suppose there

is an internal variable o forced to different values by p”. We can assume that o is
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forced by p” because p"(c;) # L and o; = o and forced because p”(5;) # L and
B; = o for some interface or auxiliary variables o; and ;. Consider the interface
variables ROOT(c;) and ROOT(f;) (see Definition 5.4.1). Since the completion of C;
does not include constraints {«; = o’, 5; = o'}, thus we can assign ROOT(w;) and
ROOT(/3;) appropriate values to force o; and f; to different non-_L values. However,
(s requires o; and f3; to have the same non-1 value. Thus, if there is an internal
variable o forced to different values by p”, we can construct a valuation which satisfies
C1, but the valuation restricted to E cannot be extended to a satisfying valuation for
C5. This contradicts the assumption that C; Fg Cs. To finish the construction of a
desired extension of p" that satisfies Cf, we set the variables which are not forced to
1.
One can easily verify that this valuation must satisfy C),. Hence C] Fgyauar C5.

O

5.4.4 Putting everything together

Theorem 5.4.9 Restricted entailment for conditional constraints can be decided in

polynomial time.

Proof.  Consider the problem C) Fg C3. By Theorem 5.4.8, it is equivalent

to testing C| Fruauar Ch (see Theorem 5.4.8 for the appropriate definitions of C7,
%, A, and A’). Notice that C] and C} are constructed in polynomial time in the
sizes of C; and C,. Now by Theorem 5.4.4, this is equivalent to checking O(n?)
entailment problems of the form C] Fguauar Co U {c;, c;}, where Cy  denote the
equality constraints of C% and ¢; and ¢; are two conditional constraints of C). And
by Theorem 5.4.6, we can decide each of these entailments in polynomial time. Put
everything together, we have a polynomial time algorithm for restricted entailment

over conditional constraints.
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5.5 Extended conditional constraints

In this section, we consider a natural extension of the standard conditional con-
straint language. This section is helpful for a comparison between this constraint
language with the standard conditional constraint language, which we consider in
Section 5.3. The results in this section provide a clear boundary between tractable
and intractable constraint languages in terms of entailment.

We extend the language with the following construct extending the conditional

constraints used in previous sections. The new construct is
o = (T1 = ’7'2),

which holds iff either o« = 1L or 71 = 5. We call this form of constraints extended
conditional equality constraints.
To see that this construct indeed extends o = 7, notice that @ = 7 can be

encoded in the new constraint language as
a= (a=7).

This extension is interesting because many equality based program analyses can
be naturally expressed with this form of constraints. An example analysis that uses
this form of constraints is the equality based flow analysis for higher order functional
languages [Pal98|. Additionally it can be used as a boundary for separating tractable
and intractable constraint languages.

Note that satisfiability for this extension can still be decided in almost linear time
with basically the same algorithm outlined for conditional equality constraints. We

consider both simple entailment and restricted entailment for this extended language.

5.5.1 Simple entailment

Let C be a constraint system with o = (8 = 7) a particular constraint c. We
want to decide whether C' & ¢. Notice that C F ciff CU{a = T} E 8 = v and
CU{a=a; - ay} E f =, where a; and ay are fresh variables not appearing in

C. Thus it suffices to consider entailment C'F o = .
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Theorem 5.5.1 Let C be a extended constraint system, we can decide whether

C F a = B in polynomial time.

The algorithm is given in Figure 5.13. We give the basic idea of the algorithm.

We consider the following cases:

ea=1,8=T,

e a=1,8=p b
ea=T,08=1;

o a=T,B=p b

e =01 > ay, B =01 = Po.

For the first four cases, if adding any of the corresponding constraints to C' makes the
constraint system satisfiable, then C' ¥ o = 3. For the last case where a = a; = «a»
and 8; — [, if the constraints make C unsatisfiable, then C F o = . If the
constraints make C' satisfiable, then we recurse with C U {a = a; — s, = 1 —
Bo} Eap =P and CU{a =01 — ag, =1 — B2} F s = Bo. This naive algorithm
may run in exponential time, we show, in the algorithm, how to use precomputed
information to reduce the algorithm to polynomial time. The detailed algorithm is
given in Figure 5.13. Step 8 of the algorithm is the key to reduce the running time
from exponential to polynomial. The idea is if in Step 7, we know that a; = 31, then
this information can be used in showing that as = fs.

Proof.

The algorithm is obviously correct. We need to verify that the algorithm runs
in polynomial time in the size of C'. First notice that the depth that the algorithm
recurses is at most O(|C|) times. Since each time two conditional constraints are
changed to equality constraints and there are at most O(|C|) number of conditional
constraints, the total number of recursive calls may be exponential. However, the
second argument of each recursive call are two terms from the original term graph

for C' (except maybe the last call in which case the algorithm outputs NO). There



99

SE(C,a=0)=YEsiff CFa=_.
1. Solve C. If ECR(«) = ECR(f), return YES, else continue.
2. f CU{a= 1,0 = T} is satisfiable, return NO, else continue.
3. f CU{a=_L1,8=p — By} is satisfiable, return NO, else continue.
4. f CU{a =T, = L} is satisfiable, return NO, else continue.
5. f CU{a=T,p = p — B2} is satisfiable, return NO, else continue.

6. f CU{a =01 = g, 8 =1 — P2} is unsatisfiable, return YES, else

continue.

7. HsE(CU{a =a; = as,8 = f1 = Pao},a1 = 1) returns NO, then

return NO, else continue.

8. If sE(CU{a=a; = ag,8 =1 = Bo,a1 = 1}, 0 = fo) returns NO,

then return NO, else return YES.

Figure 5.13: Algorithm for simple entailment over extended conditional equality
constraints.

are O(|C|?) such term pairs. Consider the call SE(C U {a = a1 — 9,8 = 1 —
Bo}, 1 = f1), where ECR(ay) and ECR(f;) are two terms from C. If it returns
YES, then SE(C U{a = a1 = as,8 = f1 — P, 00 = P1}, a9 = [33) can return YES
immediately without repeating the computation if ECR(c2) = ECR(1) and ECR(fs) =
ECR(f;). With this observation, we conclude that the running time of the algorithm

is polynomial in |C/. O

5.5.2 Restricted entailment

In this subsection, we consider the restricted entailment for extended conditional

constraints. We show that the decision problem C; Fgr Cs for extended conditional
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constraints is coNP-complete.

We define the decision problem NENT as the problem of deciding whether C Fg
Cs, where C; and (5 are systems of extended conditional equality constraints and
E =1{tv(Cy) Nfv(Cy).

Theorem 5.5.2 The decision problem NENT for extended conditional constraints
is in NP.

Proof.

Let C; and Cy be two extended constraint systems. Let E = fv(Cy) N fv(Cy).

For each variable « in fv(C), we guess whether o is L, T, or a; — a9 for
some fresh variables a; and as. We add these constraints to C; to obtain C]. For
each o in F, we add to Cs the constraints @ = 1, a = T, or @« = a1 — a»
depending on what we guessed for C;. Notice now that C] is a system of equality
constraints. CY, however, may still have some conditional constraints. This means
that our guess for the variables E needs to be refined to get rid of these conditional
constraints in C4. In C}, for each conditional constraint with a fresh variable «; (the
generated variables) as antecedent, we guess the value of ; and add the corresponding
constraints to both C] and C). This process is repeated until there are no more
conditional constraints in C} with any fresh variables as antecedents. Since there
are at most O(|Cs|) number of conditional constraints in Cy, thus we make at most
O(|Cs|) number of guesses. Finally, conditional constraints with variables in fv(Cy)\ E
as antecedents are discarded since these constraints do not affect the solutions of the
constraints w.r.t. E.

Let C! and CY be the resulting constraint systems. Notice they are equality
constraints. Thus at the end, we turn the problem into entailment over equality
constraints, which we can decide in polynomial time. The guessing step takes time
polynomial in |C}| and |Cy|. Thus NENT is in NP.

O

Next we show that the problem NENT is hard for NP, thus an efficient algorithm
is unlikely to exist for the problem. The reduction actually shows that with extended

conditional constraints the atomic restricted entailment is coNP-hard.
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Theorem 5.5.3 The decision problem NENT is NP-hard.

Proof.

We reduce 3-CNFSAT to NENT. As mentioned, the reduction shows that even
the atomic restricted entailment over extended conditional constraints is coNP-complete,
contrary to the case over conditional equality constraints, for which we give a poly-
nomial time algorithm.

Let 1) be a boolean formula in 3-CNF form and let {z1, xo, ..., 2, } and {¢1,¢o, ..., cm}
be the boolean variables and clauses in 1) respectively. For each boolean variable z;
in 1, we create two term variables a,; and az;, which we use to decide the truth
value of x;. The value L is treated as the boolean value false and any non-_L value is
treated as the boolean value true.

Note, in a graph, a constraint of the form oo = (7, = 73) is represented by

]
T/\T

First we need to ensure that a boolean variable takes on at most one truth value.

We associate with each z; constraints C;,, graphically represented as

where 7., is some internal variable. These constraints guarantee that at least one of
o, and az- is L. These constraints still allow both oy, and oz to be L, which we
deal with below.

In the following, let az = . For each clause ¢; = ¢} V ¢Z V ¢} of ¥, we create
constraints C,, that ensure every clause is satisfied by a truth assignment. A clause

is satisfied if at least one of the literals is true, which is the same as saying that the
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Figure 5.14: Constructed constraint system Cj.

negations of the literals cannot all be true simultaneously. The constraints are

0%y s a3
= G 2

| | |
/NN N
Y - S
where p7* and pg' are internal variables associated with c;.

As an example consider ¢; = T3 V x4 V 7. The constraints C,, are

(07 (0% Gy,

| | |
/SN N N
I ) T
We let C) be the union of all the constraints Cy, and C,; for 1 < ¢ < n and
1 <7< m, ie.,
n m
a=(JeulJes)
i=1 j=1
There is one additional requirement that we want to enforce: not both o, and
az; are L. This cannot be enforced directly in C;. We construct constraints for Cy
to enforce this requirement. The idea is that if for any z;, the term variables o, and
az; are both L, then the entailment holds.
We now proceed to construct C5. The constraints Cy represented graphically are
shown in Figure 5.14. In the constraints, all the variables except oy, and oz are

internal variables. These constraints can be used to enforce the requirement that
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for all z; at least one of o, and og; is non-L. The intuition is that if o, and og;
are both L, the internal variable v; can be L, which breaks the chain of conditional
dependencies along the bottom of Figure 5.14, allowing p1,..., u; 1 to be set to L
and f;, ..., p—1 to be set to T.

We let the set of interface variables E = {ay;, a7 | 1 < i < n}. We claim that ¢
is satisfiable iff C; g C,.

Claim 5.5.4 v is satisfiable iff C; Fg (..

Proof.

Assume that 1) is satisfiable. Let f : {z; | 1 < i < n} — {0,1} be a satisfying
assignment for 1. We construct from f a valuation p for the variables F such that
p can be extended to a satisfying valuation for C; while it cannot be extended to a
satisfying valuation for C'5. The existence of such a p is sufficient to conclude that

C, Fg Cy. We construct p as follows

{ plag,) =L A plag;) =T if f(x;) =0
plaw) =T A plom) = L if flz) =1

The valuation p can be extended to a satisfying valuation p; for C. For each
boolean variable z;, there is a unique way to extend p to satisfy the constraints in
Cy,, namely pi(7,,) = L if p(ay,) = T and pi(7,,) = T otherwise. For each clause
ci = ¢t V 2V cl, at least one of f(c}), f(c?), and f(c?) is 1. Thus, at least one of
p(ozg), p(ag), and p(ag) is L. Assume p(ozg) is L for some j with 1 < j < 3. We
map p'(p;’) = L forall 1 < k < jand p'(pif) = T for all j < k < 3. The extension
clearly satisfies the constraints C,,; for all ¢;. Thus p can be extended to a satisfying
valuation for C}.

As for Cy, p cannot be extended to a satisfying assignment. Notice that it requires
v; to be mapped to T for all ¢. This would require mapping p; to L and p, 1 to T
and mapping p; = p; for all 1 < 4,7 <n—1, which is impossible. Thus all extensions
of p do not satisfy Cs. And therefore, we have C; ¥ g Cs.

For the other direction, assume that C) g Cs. Then there exists a p; F C; and

there does not exist a po F Cy with p; () = po(«) for all @ € E. Since C is satisfiable,
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this is equivalent to saying that there exists a p on the variables E such that p can
be extended to a satisfying valuation for C; and no extension of p satisfies Cs.

We construct from p a satisfying assignment for the boolean formula . First
notice that for each boolean variable x;, p must map exactly one of the two type
variables «;, and az; to L and exactly one to a non-_L value. To see this notice p(a,)
and p(az;) cannot both be non-_L, or the constraints C,, would then require L and T
to be unified. If p(a,,) and p(az;) are both L, then p can be extended to a satisfying
valuation for Cy. In particular, p'(1;) = L if both p(a,,) and p(az;) are L. For the
wi’s, we let p'(p;) = L if j < i and p(p;) = T if j > 4. It is easy to see that p' F Cs.
Thus we have shown for each variable z; exactly one of p(ay,) and p(ag;) is L and
exactly one is a non-_L value.

Now we can show how to construct from p a satisfying assignment f of 1. We let

Fa) =0 A F@) =1 if plag) =L
f(zi) =1 A f(z;) =0 otherwise

We show that f satisfies each clause of 1. Let ¢; = ¢} V &2 V ¢} be a clause of
1. Consider the constraints C¢,. At least one of p(a.r), p(a;), and p(a ) must be
1. W.L.O.G., assume that p(a) is L. Then p(ac;) is non-L. Thus, lf(c}) is 1.
Therefore, f satisfies the clause cif Hence, f satisfies every clause of ¢, and f satisfies
1 itself.
O
To prove the NP-hardness result, observe that the described reduction is a polynomial-
time reduction. Thus, the decision problem NENT is NP-hard.
O
We thus have shown that the entailment problem over extended conditional con-
straints is coNP-complete. The result holds even if all the constraints are restricted

to be atomic.

Theorem 5.5.5 The decision problem C; Fr C5 over extended conditional con-

straints is coNP-complete.
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5.6 Related issues

We have given a complete characterization of the complexities of deciding entail-
ment for conditional equality constraints and extended conditional constraints. There

are a few related problems to be considered:
e What happens if we allow recursive types?
e What is the relationship with strict constructors (i.e., if ¢(L) = L1)?

e What is the relationship with a type system equivalent to the equality-based
flow systems [Pal98]? In this type system, the only subtype relation is given by

1 <ty — ty < T, and there is no non-trivial subtyping between function types.

We believe the same or similar techniques can be used to address the above mentioned
problems, and many of the results should carry over to these problem domains. These

problems are left for future research.
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Chapter 6

Related Work

The inspiration for this thesis is the need for scalable and expressive program
analysis and type systems. In earlier work, we investigated heuristic methods for
simplifying constraints. From this initial work, following the need of more powerful
simplification techniques and enabling expressive analysis techniques, it became in-
teresting to systematically understand the precise complexity and related problems
of constraint simplification, and thus entailment. In the discussion of related work,
we attempt to separate results as either focusing primarily on complexity analysis or

practical heuristics.

6.1 Theoretical development

6.1.1 Work on type simplification

A few researchers consider the semantic notions for subtyping constraint simpli-
fication. The most powerful one is the notion of observational equivalence defined
in [TS96]: two sets of constraints are observationally equivalent if replacing one with
the other does not affect the results of an analysis. This corresponds to the notion
of existential entailment and subtyping constrained types. A similar notion is used
in [Pot96] for simplifying subtyping constraints.

Aiken, Wimmers, and Palsberg [AWP97] consider the problem of representing
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polymorphic types. They identify a simple algorithm and show it sound and complete
for a few simple type languages. The optimal type of a polymorphic type is defined
as a type which is equivalent and contains least number of type variables. The goal
of this work, as put by the authors, is to understand why it seems difficult to get
a practical system combining polymorphism and subtyping. They leave open the

problem of optimal representation for polymorphically constrained types.

6.1.2 Work on entailment

Henglein and Rehof consider the problem of subtyping constraint entailment of
the form C' F o < 8 [HR97,HR98]. The types are constructed from a finite lattice of
base elements with the function (—) and product (x) constructors. They consider

four cases for this problem.

e structural subtyping over finite (simple) types

The entailment, problem C' F a < 3 is shown to be coNP-complete [HR97].

o structural subtyping over recursive types
The problem is shown to be PSPACE-complete [HR98].

e non-structural subtyping over finite (simple) types

The problem is shown to be PSPACE-hard [HR98].

e non-structural subtyping over recursive types
The problem is shown to be PSPACE-hard [HR98].

Niehren and Priesnitz also consider the problem of non-structural subtype en-
tailment. They show that a natural subproblem is PSPACE-complete [NP99| and
characterize non-structural subtype entailment over the signature {f(,), L, T} with
so-called P-automata [NP01]. They leave open the decidability of non-structural sub-
type entailment for this particular signature. In addition, it is not known whether

this approach can be extended to work on arbitrary signatures.
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6.1.3 Work on entailment in related domains

Niehren et al. consider the entailment problem of atomic set constraints, a re-
stricted class of set constraints without union and intersections and interpreted over
the Herbrand universe. They show entailment of the form C' F o C 3 is PSPACE-
complete for atomic set constraints [NMT99].

Flanagan and Felleisen [FF97] consider the problem of simplifying a restricted class
of set constraints. They study the problem in the context of the program analysis
tool for Scheme MrSpidy, a tool for inferring runtime values of variables for static de-
bugging. They study the problem of existential entailment and show that existential
entailment problem is decidable (in exponential time and space) by reducing the prob-
lem to an extended version of regular tree grammar containment [CDG99, GS84].
They show the problem is PSPACE-hard by a polynomial time reduction from non-
deterministic finite state automata containment (which is PSPACE-complete) to the
set constraint entailment problem. An exact characterization of the complexity of
the problem remains open. The precise relationship of their entailment problems to
those of atomic set constraints and subtyping constraints is not clear.

There is also related work in term rewriting and constraint solving over trees
in general [CT94, Com90]. Part of the work in this thesis is inspired by work in
this area. Maher shows the first-order theory of finite trees, infinite trees, and ra-
tional trees is decidable by giving a complete axiomatization [Mah88]. Many re-
searchers consider various order relations among trees, similar to the subtype orders.
Venkataraman studies the first-order theory of sub-term ordering over finite trees.
The existential fragment is shown to be NP-complete and the dV-fragment to be un-
decidable [Ven87]. Miiller et al. study the first order theory of feature trees and show
it undecidable [MNTO01]. Comon and Treinen show the first-order theory of lexico-
graphic path ordering is undecidable [CT97]. Automata-theoretic constructions are
used to obtain decidability results for many theories. Biichi uses finite word automata
to show the decidability of WS1S and S1S [Biic60]. Finite automata are also used to
construct alternative proofs of decidability of Presburger arithmetic [WB95, BC96],
and Rabin’s decidability proofs of WS2S and S2S are based on tree automata [Rab69].
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6.1.4 Scalable type-based program analysis

Motivated by understanding the principles for building scalable program analysis,
this thesis is related to the large body of work in this area [Das00,FRD00,Ste96, RF01,
SFA00,FFSA98, AFFS98, HM97a, EST95, TS96, Pot01, Pot96, MW97, FA96, FFK 196,
FF97, Rep00, MR97, HM97b, Hei92, Hei94]. From a theoretical point of view, two
pieces of work stand out, which we mention in detail. Recent work by Rehof and
Féahndrich [RF01] extends the idea of Reps and Horowitz on interprocedural dataflow
analysis [RHS95] to polymorphic label-flow in type-based program analysis [Mos96].
It explores the idea of instantiating the constraints implicitly through so-called in-
stantiation constraints, rather than duplicating the complete constraint set as done
in [Mos96] and most other cases. This technique crucially relies upon on a fixed
type structure (pre-computed or provided to the analysis), and it is orthogonal to the
problems studied in this thesis.

The other work is by Reps [Rep00] on the decidability of context-sensitive value
flow analysis, which encompasses many common flow analysis such as set-based anal-
ysis [Hei92] and pointer analysis [And94]. It is shown that the general problem is
undecidable by a reduction from a variant of PCP [Pos46].

6.2 Practical heuristics

There is also much research on practical heuristics for constraint simplification.

6.2.1 Type and constraint simplification

Fahndrich and Aiken identify a few simple techniques for simplifying polymorphi-
cally constrained types and demonstrate better scalability [FA96]. Pottier provides
a sound but incomplete algorithm for simplifying polymorphically constrained types
and shows some improvement [Pot96]. Marlow and Wadler designed and implemented
a subtyping system for Erlang [MW97]. They give a sound approximate algorithm
for deciding entailment and claim the algorithm to be complete. They have imple-

mented a prototype system which shows some promise of being practical. Flanagan
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and Felleisen identify a few practical techniques for simplifying a form of set con-
straints [FF97]. They show promising reduction in both constraint size and analysis

time.

6.2.2 Scalable constraint resolution techniques

Efficient constraint resolution algorithms and implementations can also be viewed
as simplification techniques because we are able to handle larger sets of constraints.
Therefore, we also look at some work on efficient constraint resolution.

Much progress has been made in recent years on solving inclusion constraints,
including subtyping constraints and set constraints. In [FFSA98], Fahndrich et al.
introduce the technique of online cycle elimination, which provides promising perfor-
mance improvement. It is a simple yet effective technique for eliminating constraint
cycles (chains of inclusion X C Y C Z--- C X). The technique is validated using
a cubic time pointer analysis for C [And94]|. In a following paper, Su et al. sug-
gest projection merging, another technique to use in combination with online cycle
elimination. The idea is to merge many upper bounds on a variable into a single
upper bound. Using cycle elimination and projection merging together results in an
analysis that can perform pointer analysis on C programs with half million source
lines [SFA00].! Experiments have also shown that cycle elimination and projection
merging help dramatically with the scaling of a version of polymorphic pointer anal-
ysis based on inclusion constraints [FFA00].

In a recent work [HTO01], Heintze also considers the problem of solving inclusion
constraints efficiently. In particular, it provides a new algorithm for implementing
dynamic transitive closure, which is at the core of solving inclusion constraints. The
idea is not to maintain the graph transitively closed. When information about a
node is requested, a reachability step is used to obtain the result.? With further

implementation techniques, this reachability computation can be done efficiently. As

'In [SFA00], we report an analysis time of approximately half an hour. Our original analysis was
implemented in SML/NJ [MTH90], and with a port of the system to C, the analysis time drops to
about two minutes.

2This is done similarly in [FFSA98,SFAQ0], a further reachability step is required at the end to
compute the analysis information.
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reported in [HTO01], the analysis time for the same half million line C program as

in [SFA0Q0] is about 20 seconds.
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Chapter 7
Conclusion and Future Work

In this chapter, we give a summary of the thesis, then discuss some open problems

and issues, and possible directions for solving these problems.

7.1 Thesis summary

In this thesis, we have studied and addressed issues in scalable constraint and type-
based program analysis. In particular, we have shown that the first-order theory of
subtyping constraints is undecidable. The result may indicate that many of the open
problems on entailment over non-structural subtyping might in fact be undecidable.
The result is robust in the sense that it holds for any type language with a bottom
element (or a top element) and at least one binary type constructor.

We have also shown that the monadic fragment of the first-order theory is decid-
able via an automata-theoretic reduction. By introducing constrained tree automata,
we have shown a reduction of subtyping entailment over an arbitrary type signature
to the emptiness problem for constrained tree automata. This automata-theoretic ap-
proach may provide a new attack on these difficult problems. Finally, we have shown
polynomial-time algorithms for entailment and existential entailment over the domain
of conditional equality constraints, which provides a weak form of non-structural sub-
typing. This work deepens our understanding of the power and complexity of subtyp-

ing as a means of expressing a type system or a program analysis. The conclusion we
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draw from the results is that even the simplest type structure {_L, f} has entailment

problems that are quite subtle.

7.2 Open problems

There are many outstanding open problems in this area. We discuss the most im-
portant ones and provide a personal view on how these problems can be attacked. The
most important and obvious open problems are the decidability and exact complexity

of these entailment problems. We discuss them separately in detail.

7.2.1 Non-structural subtype entailment

Our personal view is that this problem is decidable and can be decided in PSPACE.
There are two promising approaches to solving this problem. For the restricted sig-
nature { L, T, f} considered by Niehren and Priesnitz [NP99,NP01], the reduction to
the universality problem over extended word automata seems promising.

For general signatures, there are two existing approaches. One is attempting to
extend the approach of Niehren and Priesnitz to work on arbitrary signatures. The
other is the approach outlined in this thesis, by considering the emptiness problem
of constrained tree automata. Techniques and intuitions gained in solving the single

non-trivial constructor case should be helpful in solving the general case.

7.2.2 Existential entailment and subtyping constrained types

For existential entailment and subtyping constrained types, virtually nothing is
known at this point, except the lower bounds carried over from entailment. In par-
ticular, existential entailment in the case of finite structural subtyping is coNP-hard,
and in all the other cases PSPACE-hard.

For structural subtyping, existential entailment seems relatively easy, and likely to
be decidable. The procedure for deciding entailment might be extended to work for
existential entailment as well, through some form of quantifier elimination [Mah88].

For non-structural subtyping, the problem seems much more subtle and difficult.
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In fact, there is evidence in the study of the first-order theory of non-structural
subtyping that this problem may in fact be undecidable. For example, we can adapt
the undecidability proof for the emptiness problem of constrained automata to get
an alternative proof of the undecidability of the first-order theory of non-structural
subtyping. In this alternative proof, it appears that we construct a formula with only
a single quantifier alternation, thus in the same fragment as the one that contains

both existential entailment and subtyping constrained types.

7.2.3 The first-order theory of structural subtyping

We have shown that the first-order theory of non-structural subtyping is undecid-
able. However, the proof is not readily extended to the first-order theory of structural
subtyping, which we leave as an interesting open problem. Because of the fundamen-
tal difference between structural and non-structural subtyping, and closer relationship
between structural types and equality-based tree theories, it is reasonable to conjec-
ture that the first-order theory of structural subtyping is decidable. We suspect the
idea of quantifier elimination used in [Mah88] to prove that the first-order theory
of trees is decidable can be extended to handle the first-order theory of structural

subtyping.
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