
Type-based Inference of Size Relationships for
XML Transformations

Zhendong Su and Gary Wassermann

Department of Computer Science, University of California, Davis, CA 95616
{su,wassermg}@cs.ucdavis.edu

Abstract. XML transformation languages (e.g., XSLT) take an XML
document as input and produce another XML document as output. It
is useful to know statically that such transformations always produce
valid documents, for static debugging of the transformation program or
for eliminating dynamic checks on the output documents. This gives rise
to the XML type checking problem. Type- and automata-theoretic tech-
niques have been proposed to address this type checking problem, ex-
ploiting XML’s tree structure. However, existing approaches are not ca-
pable of reasoning about size information of produced XML documents,
such as that two locations in the output documents always have the same
number of elements. This paper presents a type-based inference system
to discover size relationships in output documents from XML transfor-
mation programs through refined type checking. For example, our system
can identify program fragments producing the same number of elements
for all input documents. The novel aspects of our system are techniques
to deal with the rich tree structure of XML types (i.e., schemas), whereas
array analyses (e.g., bounds checking) for languages such as C deal with
flat arrays. In this paper, we present our type system and give a sketch
of its soundness.

1 Introduction

Since XML [9] became a W3C recommendation in 1998, XML has been increas-
ingly accepted as the standard format for electronic data exchange. Two parties
who wish to exchange data generally organize their data differently. Thus, one
or both of the parties must transform their data so that it is suitable for the
other to use. In the context of XML, “schemas” (e.g., XML Schema) [20] are
used to specify data organization. When data is exchanged using XML, the re-
cipient specifies a schema to which all received XML documents must conform.
The sender must write a transformation program to convert data from his own
schema to the recipient’s schema. If the sender can determine that his program
performs the transformation correctly, no runtime checks are necessary.

This gives rise to the XML type checking problem. Let T be the set of all
XML documents (T is a mnemonic for “trees”; all XML documents have a tree
structure). An XML type is a subset of all documents: τ ⊆ T , often called a
schema. The XML type checking problem asks, for source and target types τs

and τt respectively, and transformation program P , is it true that ∀x ∈ τs.P (x) ∈
τt [24]? One common approach to answer this question is based on type inference:
an output type τ ′ is conservatively inferred based on the program and the source
type: P (τs) ⊆ τ ′. If the inferred type is a subtype of the target type, τ ′ ⊆ τt,
then the program successfully type checks.

We introduce the notion of sizes in XML documents and types: a size denotes
the number of XML elements and/or scalars in a consecutive sequence under a
common parent. For a particular XML document, sizes are always known con-
stants. However, sizes may not remain constant across all documents conforming
to a single type. In this case, the sizes of the type are represented by variables,
which may be constrained to allow only values valid for some document within
the type. When some sizes of a type are constrained in terms of other sizes (cur-
rently not supported in XML Schema), we call those size relations. Because of
the common use of Kleene stars in types, it is generally impossible to discover
the values of sizes. Rather, we aim at discovering relationships among sizes in
output documents.

Some practical settings require size information. For example, in a document
with parallel lists of movie titles and the years those movies were made, the
length of those lists can vary provided that they are equal to each other. Alter-
natively, consider a specification manual that must include the same information
in multiple languages. The number of headings in one linguistic section can vary
provided that it equals the number of headings in every other linguistic section.
Size relationships arise in settings that include parallel or repeated data. The
ability to infer size relationships may find application in ensuring the correct
composition of Web services [7].

No previous technique for XML type checking can accurately type check a
program when the target type has size relations and the program output is not
confined to a regular subtype of the output type. The decidability of XML type
checking has been established using k-pebble tree transducers when no size re-
lations are present [19]. It is unclear how well these automata-based techniques
would work in practice because of their high computational complexity, and
more fundamentally, how to incorporate size information into these formalisms
to retain decidability of type checking. Existing type-based approaches [8] may
provide more practical, if less precise, solutions. However, currently these ap-
proaches are unable to infer types with size relations. The main contribution of
our paper is a type-based inference system to discover size relations for XML
transformation programs. To the best of our knowledge, ours is the first system
capable of reasoning about size relations for XML transformations.

Several languages have been proposed for XML transformations, including
XSLT [6], XQuery [8], XDuce [14], CDuce [2], HaXml [26], and Relaxer [11].
The XML transformation language in this paper used to explain our technique
has much of the expressive power of these languages. It includes iterations over
subtrees, pattern matching based on tag or type, conditional expressions, etc.
Our language is introduced in Sect. 2.

2

τt = doc
JJJrrr

titles isbns

title*n isbn*n

τ ′ = doc
GGGuuu

titles isbns

title* isbn*

τ ′ * τt!

Fig. 1. A target type with size relations. Conservatively inferred types using existing
techniques cause correct programs to fail to type check.

For illustration purposes, we consider first the following XQuery program:
<doc>

<titles> for $a in document("cat.xml")//catalog/book/title
return $a </titles>

<isbns> for $b in document("cat.xml")//catalog/book/isbn
return $b </isbns>

</doc>
The program takes an XML catalog of books and creates an output document
with lists of titles and ISBNs, perhaps for easy ISBN lookup by title in a printed
listing. Because each book has exactly one title and ISBN, the lists rooted at
titles and isbns must have the same number of elements—that is, they must
have the same size. The programmer would like to confirm that this size rela-
tionship holds.

Fig. 1 gives the output type τt (omitting the scalar children of title and
isbn) as the programmer intends it. We portray types as trees to provide a
conceptual view of the tree structure of XML types. Using existing type in-
ference methods, the type τ ′ would be inferred. Because τ ′ * τt, this correct
program fails to type check. Given the current practice in data transformation,
this situation is relatively common.

1.1 Difficulties with Inference of Size Relations

At first consideration, it may seem as though the use of integer constraints,
which enable array analyses in languages such as C, would be sufficient for
inferring size relationships. Surprisingly, it is not that simple. The main problem
is that because XML transformations operate on trees, a very rich data structure,
size relationship inference must interrelate tree sub-structures. Standard array
analyses, however, need only reason about how size information for arrays, a flat
data structure, flows in C-like programs.

Consider the source type τs and program shown in Fig. 2. Lines 1–3 and
4–6 of the program in Fig. 2 have the same semantics as /root/~/~ (where ~ is
a wildcard that matches any tag), except line 3 substitutes an S for whatever
the output would have been, and equivalently with T on line 6. In general, the
semantics of paths can be achieved through nested for and case expressions. For
example, in Fig. 10a, lines 1–10 match the semantics of /catalog/book/title.

Clearly this program produces the same number of S’s as T’s. However, stan-
dard type systems perform a modular analysis, using only the types of subex-

3

τs = root

lev1∗

lev2∗

1 for w in children(root) do

2 for x in children(w) do

3 S ,

4 for y in children(root) do

5 for z in children(y) do

6 T

(a) (b)

Fig. 2. A source type with nested repetitions.

root

lev1*

lev2*

root1

lev1*m

lev2*ni , i ∈ [1..m]

root1

lev1*m

lev2*n

(a) (b) (c)

Fig. 3. Two ways to annotate a source type τs.

pressions and some global type environments for type checking and inference.
Therefore, in discovering a relation, such as size equality between two expres-
sions, the type system is restricted to using information it has available at the
time of typing both expressions: the input type. It must discover relations be-
tween the expressions and the input type to relate the expressions. Suppose that
in hoping to discover the size relationships precisely, we annotate τs as in Fig. 3b,
where 1, m, and ni are size annotations for the corresponding types.

We argue that the precision aimed at cannot be achieved. The for expression
has the form (for x in e1 do e2). The expression e1 evaluates to a list, and
for each element a in that list, x gets bound to a and e2 gets executed. There
are two approaches to typing the for expression. We first look at the approach
used in XQuery’s type system [8]: first, x is bound to the union of the unit types
in e1’s type, τ1, and e2 is typed once with x having that binding. Then type
constructors are added to the inferred type based on their occurrences in τ1.

In inferring a type for the program in Fig. 2b, if τs is annotated as shown in
Fig. 3b, the type of expression children(root) on line 1 is τ1, as shown in Fig. 4.
Fig. 4 also shows the rest of the types we refer to in this paragraph. Suppose
we find the type we will assign to w within the body of the for expression by
taking the union of the unit types in τ1, as done in XQuery’s type system. This
yields τu. The type of children(w) on line 2 is then τ1b, however, it is not clear
what this size annotation means. To add clarity, we rewrite it as shown in Fig. 4.
We can now find the unit type to which x gets assigned as τub, and so the body
of the inner for expression on line 3 is typed as τ2b. We then go back up and
compose the type τ2b with *r. When going up again to find the type of the for
expression on line 1, we compose the type of the nested for expression with *m.
The result is τ ′ (for clarity, r has been simplified out of the constraints).

4

τ1 = lev1*m

lev2*ni , i ∈ [1..m]

......

τu = lev11

lev2*n1| . . . |nm

. .

τ1b = lev2*n1| . . . |nm ⇒ τ1b = lev2*r, {min(ni) ≤ r ≤ max(ni)}
. .

τub = lev21
... τ2b = S1

. .
τ ′ = S*p, {min(m×ni) ≤ p ≤ max(m×ni)}

Fig. 4. Some inferred types in our first attempt to infer all size relationships precisely.

τu1 = lev11

lev2*n1

τu2 = lev11

lev2*n2

τu3 = lev11

lev2*n3
· · ·

Fig. 5. Some inferred types in our next attempt to infer all size relationships precisely.

Unfortunately, all we know about p’s value is that it is confined to a given
range. When the for expression on line 4 is typed, the result will also be a starred
type whose size is confined to the same range. Knowing that two numbers are in
the same range is usually not sufficient to relate the two numbers concretely (e.g.,
describing one as a function of the other). Thus, this approach is not suitable
for discovering interesting size relations.

The second approach to typing the for expression is the one taken by Fer-
nandez et al. [10]: find a type for the body of a for expression for every named
unit type in τ1 and combine them based on the type structure of τ1. Given the
annotation for τs in Fig. 3b, the type of children(root) is again τ1, as shown
in Fig. 4. Because the number of children (ni) may be different for each of the
m lev1’s, the first unique unit type here is τu1 , as shown in Fig. 5. The second is
τu2 , the third is τu3 , and so on. Trying to infer a type for the for expression by
inferring a type for e2 based on τu1 , τu2 , τu3 , . . . , is cumbersome and requires
complicated symbolic reasoning about summations such as

∑m
i=1 ni.

Why cannot we get precise size information through precise source type an-
notations? When a type element in a tree type has a Kleene star (e.g., lev1* in
Fig. 2), its children in the type tree (e.g., lev2*) represent uniformly all lists of
child elements of the starred element in an actual document. Adding precise size
annotations to Kleene starred elements (e.g., lev2*ni) of the input type distin-
guishes within the type tree the concrete lists that the Kleene starred element
represents. After distinctions have been added to the input type, either the type
system “factors out” the distinctions, resulting in a loss of precision (as shown
in Fig. 4), or in addressing the distinctions directly, the type system faces in-
creased complexity (as shown in Fig. 5). In this paper, we present an approach
to overcome these problems. Next we briefly discuss our approach.

5

1.2 Our Approach

The key insight of our approach is that the elements of a list are usually treated
uniformly, both in the type and in the program, so the only information we need
is the total number of elements in a concrete tree represented by an element (or
more precisely, by a path) in the type tree. In some XML transformation lan-
guages, there is no mechanism to access the elements in a list non-uniformly. For
example, it is impossible to remove the first element from a given list. In other
languages (e.g., CDuce), constructs that handle list-elements non-uniformly can
be typed conservatively. We take advantage of this in our analysis. We anno-
tate the source type as shown in Fig. 3c. The annotation n on lev2 in Fig. 3c
denotes the total number of lev2 elements in the input document that have as
parent a lev1 element and as grandparent a root element. Note the difference
between this annotation and a size: the elements may not all have a common
parent. For an alternating sequence of for and case expressions that match the
semantics of /root/lev1/lev2, the body of the innermost case will be executed
n times. Consequently our type system multiplies the size of the innermost case
expression by n to find the size of the outermost for expression.

Because our annotations do not introduce distinctions into τs, we avoid the
trouble shown in Fig. 5. We therefore leverage the more powerful second approach
to typing the for expression. The union operation used in the first approach
loses information whenever an element type has more than one child type and
so cannot achieve the precision necessary to infer size relationships.

Conditional expressions are often used to select certain elements of a list and
pass over others, so they, too, influence the sizes of output types. A solution that
leads to sizes confined to ranges has the same problems as discussed in Sect. 1.1,
but unless all parts of the boolean expression are static, we cannot determine
statically which branch of the conditional will be executed. To address this we
use pair types. Like conditional types [1], pair types preserve the relationship
between the types of the branches of conditional expressions and true and false
evaluations of the boolean expression. We relate the size of a pair type to the
sizes of the conditional expression’s true and false branches as well as to the
identity of the boolean condition. If, in a post-processing phase, two boolean
conditions can be found to be equivalent, then it becomes possible to relate the
sizes of the corresponding conditional expressions.

2 The Source Language

Fig. 6 gives the syntax of our XML transformation language. Most of the con-
structs are standard. The expression a[e] constructs XML elements. Paths can
be expressed through for and case expressions. We omit the expression to se-
lect the parent of an element, which can be typed conservatively, as is done in
other XML transformation languages with type systems, such as XQuery. Be-
yond that, our language does not include, for example, sorting, explicit type
casts, functions, and modules. We do not expect much difficulty in extending
our technique to cover these language constructs.

6

tag a
variable x
constant n ::= cint | cstr | cbool

operator op ::= + | - | and | or | = | <

expression e ::= n | x | a[e] | e , e | () | e op e
| let x = e do e | for x in e do e | children(e)
| case e of x:p => e | x => e end | if e then e else e

pattern p ::= a | ~ | s
data d ::= n | a[d] | d , d | ()

Fig. 6. XML transformation language.

tag a
size type r ::= c | n

scalar type s ::= String | Boolean | Integer

unit type u ::= a[τ] | ~[τ] | s
type z ::= τ , τ | τ | τ | <τ , τ> | τ∗ | () | ∅
annotated type τ ::= u1 | zr

Fig. 7. Type language.

Note that the case expression matches a value against a p, defined by the
“pattern” derivation (which parallels the “unit type” derivation in Fig. 7). Also,
as shown by the “data” derivation, we denote XML elements as tag[. . .] rather
than <tag>. . . </tag> to simplify notation. The dynamic semantics for this lan-
guage is standard, but a complete presentation is given in the companion tech-
nical report [23].

3 Type Language for Size Inference

Fig. 7 gives our type language. The “size type” shows that either a constant
or a variable can be used as a size annotation to a type. The size annotation
denotes the number of unit values that may be matched to the annotated type.
The wildcard unit type, ~[τ], is defined such that a[τ] is a subtype of ~[τ] for
all tags a, following Fernandez et al. [10].

Among the types z, “τ , τ” is the type of two values in sequence. The union
type is “τ | τ”; a value whose type is either of the choices matches it. We
introduce the pair type, “<τ , τ>,” for typing conditional expressions. Like the
choice type, a value of either of the two types may match it. Unlike the choice
type, the order of the two types is preserved, i.e., (τ1 | τ2) = (τ2 | τ1), but
<τ1,τ2> 6= <τ2,τ1>, when τ1 6= τ2. Because the order is preserved, it is possible
to reason about the types of different conditional expressions in relation to each
other.

We also have a constraint language to capture size relations. Fig. 8 shows our
constraint language. There are two kinds of constraints. The first kind consists

7

expression e ::= c | n | (Γπ(π)) | (e) | e + e | e× e | e / e
path π ::= π/a | ε
constraint C ::= C ∪ {n = e} | C ∪ {π} | ∅

Fig. 8. Constraint language.

of equality constraints between a size variable and an arithmetic expression.
Unique to these expressions is the mapping using the path environment Γπ. A
valid path is a path where the first tag matches some root-level tag(s) in τs

by being identical to it (them) or is ~, in which case it matches all root-level
tags, and each successive tag matches in the same way some element(s) in τs

which are children of elements matched by the tag’s predecessor. For example,
/root/lev1/lev2 and /root/~/lev2 are both valid paths for τs as given in Fig. 3.
However, if lev1 in τs were replaced with ~, then /root/lev1/lev2 would not be a
valid path even though in a valid input tree such a sequence may occur. The path
is invalid because our annotations of τs tell us nothing about how many lev2’s
in a /root/lev1/lev2 path there are. If the path π being mapped by Γπ is a valid
path in the source type τs, Γπ(π) returns a sum of constants and variables from
the annotated τs representing the number of unit values this path includes. If π
is not a valid path in τs, Γπ(π) returns a fresh variable, which will not appear
in any other constraints. This is equivalent to returning “unknown.”

Constraints may also include a path, π, which is not explicitly related to
anything else in the constraints or types. Such a path remains in the constraint
set while the nested for and case expressions that match the semantics of the
path as an expression are being typed. In the last phase of typing that sequence
of expressions, the path will be extracted from the constraint set and mapped
with the Γπ environment. The way that the path and Γπ get connected in our
type inference algorithm is explained through an example in Sect. 4.3.

4 Type Rules

We use a constraint-based formulation of our type system. The type judgment
Γ ` e : τ, C is read: in environment Γ , expression e has type τ, where the size
variables in Γ and τ are subject to the constraints C. Type environments are
defined by the following grammar:

Γ ::= ∅ | Γ] {x : τ} | Γ] {for x : τ}

where {for x : τ} is used in typing the for expression. A type environment, Γ ,
maps variables and “for” variables to types according to the following rules:

Γ] {x : τ} (x′) = τ if x = x′

= Γ (x′) otherwise
Γ] {for x : τ} (x′) = τ if x = x′

= Γ (x′) otherwise

8

Due to space constraints, we explain here the typing of the three most in-
teresting expressions to size types in increasing order of difficulty. The complete
list of type rules can be found in [23]. In the type rules that we discuss next, z,
u, and τ are as in Fig. 7: z is a type without a size annotation, u is a unit type
without an annotation, and τ is a type with an annotation.

In Sect. 4.1, we explain the type rule for sequence expressions, in which two
subexpressions are put in sequence. In Sect. 4.2, we explain the type rule plus
pre- and post-processing for conditionals. In Sect. 4.3, we explain the typing of
the for expression, which is the most involved because it is the main language
construct used to produce subtrees of unknown size.

4.1 Sequence Expressions

The type rule for sequence expressions is as follows:

τ1 = zm11 τ2 = zm22

Γ ` e1 : τ1, C1 Γ ` e2 : τ2, C2 n is fresh
Γ ` e1,e2 : (τ1, τ2)n, C1 ∪ C2 ∪ {n = m1 + m2}

This rule is straightforward: the number of XML elements produced by the
sequence expression as a whole is the sum of the numbers of XML elements pro-
duced by its subexpressions. The rule adds the constraint that n, the size of the
sequence expression, equals m1 + m2, the sum of the sizes of the subexpressions.

4.2 Conditional Expressions

Our type system allows the true and false branches of a conditional expression
to have different types. The type of the conditional expression in most type
systems is a choice type composed of the types of the branches: (τ1|τ2). The
loss of precision from this approach poses a problem: we can determine that the
value of the size variable for the conditional expression is within the range of the
sizes of its branches, but we can no longer conclude that two sizes are equal. We
address this problem by means of a pair type, introduced in Sect. 3, plus some
post-processing to relate pair types.

Our type rule for conditional expressions is as follows:

Γ ` eb : Boolean1, Cb Γ ` e1 : τ1, C1 Γ ` e2 : τ2, C2

n is fresh if.label = b τ1= z1
n1 τ2= z2

n2

Γ ` if eb then e1 else e2 : <τ1, τ2>n,
Cb ∪ C1 ∪ C2 ∪ {n = b× n1 + notb× n2}

A pre-processing phase labels each conditional expression with a unique label.
The hypothesis “if.label = b” extracts that label for use in the constraints. The
variables b and notb in the conclusion cannot simply be fresh variables because
in the post-processing it is necessary to relate the variables to the conditional
expression that produces them.

9

τs = Book = book[author[Str]+,

title[Str],

subtitle[Str]?,

isbn[Int]]

τ ′ =()+, title[Str], ()?, ()

= title[Str]

let book0 : Book

1 for x in children(book0) do

2 case x of

3 x1:title => x1

4 x2 => ()

5 end

Fig. 9. An example for the for expression.

This rule adds a constraint which equates n, the size of the pair type, to an
expression which includes b and notb. Intuitively these can be thought of as
representing the number of times eb is true and the number of times it is false
across all executions of the conditional expression in one run of the program.
During type inference, these are considered unbound variables.

The variables b and notb become useful when constraints are added dur-
ing the post-processing phase that declares them to be equal to another pair of
variables, b′ and notb′, respectively. The post-processing adds these constraints
as it puts the boolean expressions (eb), which these variables name, into equiv-
alence classes. The companion technical report ([23], Sect. 3.2.2) explains the
post-processing more completely and precisely, but intuitively, if two boolean
expressions are executed the same number of times in one run of the program
and are structurally equivalent (and thus are true/false the same number of
times), they are equivalent.

4.3 Repetition Expressions

The for expression is the principle mechanism for producing lists of unspecified
length, and is the most involved to handle in our type system.

Fernandez et al. describe a technique for typing the for expression, in which
a type for e2 is found once for each unique unit type in τ1 (e1’s type), and
those types are composed according to the type structure of τ1 [10]. We build
on that technique, so we review its main idea here. Consider the source type
and program in Fig. 9. The type Book has a root with tag book, which has
some children. Those children are one or more authors, a title, an optional
subtitle, and an isbn number. Each of those has a scalar child. The variable
book0 is an instance of Book. The program iterates over the children of book0,
and, in the case when the current child is a title, it outputs the child; otherwise
it outputs an empty sequence.

The expression children(book0) has four unique unit types, so we type the
case expression (e2) with each of the unit types bound to the variable x:

– when x has type author[Str], e2 has type ();
– when x has type title[Str], e2 has type title[Str];
– when x has type subtitle[Str], e2 has type ();
– when x has type isbn[Int], e2 has type ().

10

τs = Catalog = catalog[Book*]

let cat0 : Catalog

1 titles[for w in children(cat0) do

2 case w of

3 w1:book =>

4 for x in children(w1) do

5 case x of

6 x1:title => x1

7 x2 => ()

8 end

9 w2 => ()

10 end],

11 isbns[for y in children(cat0) do

12 case y of

13 y1:book =>

14 for z in children(y1) do

15 case z of

16 z1:isbn => z1

17 z2 => ()

18 end

19 y2 => ()

20 end]

τs = catalog

book*

OOOOnnnnggggggggg

author+ title subtitle? ISBN

Str Str Str Int

(b)

⇓

τs = catalog1

book*n

PPPPmmmmffffffffff

author+m titlen subtitle?r ISBNn

Strm Strn Strr Intn

(c)

(a)

Fig. 10. A program that makes a list of all titles followed by all ISBNs from a catalog.

When we replace each of these unit types in τ1 with the corresponding inferred
types for e2, we get τ ′, as shown in Fig. 9. After doing some simplification to
get rid of the empty sequence types, we get τ ′ = title[Str]. This inference is
accomplished by means of some auxiliary rules, similar to the auxiliary rules in
our type system (see Fig. 11).

Fig. 10a shows a program fragment that we will use as an example for ex-
plaining our treatment of the for expression. The type Book is as defined in
Fig. 9. The sequences of nested for and case expressions have the same seman-
tics as the paths in the example program in Sect. 1, so with the exception of the
missing outermost doc element, Fig. 10a has the same semantics as the example
program. Because each book has exactly one title and one isbn, we expect
titles and isbns to have the same number of children.

Source Type Annotation If two expressions must produce lists of the same
length, unless the output is constant and static, it is because the expressions are
related in the same way to the input type. More specifically, they both iterate
over input-tree-paths of equal size, and they both output the same number of
unit values per iteration. To capture this intuition, we annotate the source type
in a pre-processing phase. The annotations added denote the total number of
elements in a concrete input document represented by a path in the input type
tree. Two annotations will be algebraically related if the number of elements

11

they denote must be algebraically related. For example, in Fig. 10c, book has
exactly one child title, so title has the same annotation as book. The number
of author’s each book has is not specified, so author is annotated with m, a fresh
size variable, to denote unknown size.

These annotations are interpreted differently from the annotations appearing
on the output type and optionally appearing on the input type. These annota-
tions denote the total number of elements on a path; the annotations on input
or output types denote the number of elements under a single parent.

Program Annotation Next, a pre-processing phase on the program is ex-
ecuted. The purpose of this pre-processing is to find and annotate iteration
expressions that can be related directly back to τs. Our formulation of the pre-
processing finds structures of nested for and case expressions which have equiv-
alent semantics to path expressions. The companion technical report includes the
algorithm for this pre-processing (see [23] Sect. 3.2.3, Fig. 16). In Fig. 10a, such
structures appear twice: first in lines 1 through 10 and then again in lines 11
through 20. The first half corresponds to the path /books/book/title and the
second half corresponds to /books/book/isbn. For each path found, the for that
corresponds to the beginning of a path is labeled start, and the iteration variable
at the end is labeled with the path π. For the program in Fig. 10a, the for’s on
lines 1 and 11 are labeled start, x on line 4 is labeled /books/book/title, and
z on line 14 is labeled /books/book/isbn.

Typing Repetition Expressions Fig. 11 gives the full list of rules and aux-
iliary rules for typing the for expression. The rules [For] and [ForΠ] type
for expressions, and the rest are auxiliary rules. When one of the hypotheses
includes a type assignment of the form {for x:τ}, the auxiliary rules resolve the
type of the expression in that hypothesis. The hypothesis “for.label = . . .” in
the hypotheses of [For] and [ForΠ] refers to the result of program annotation
from last paragraph: if the for expression is the first expression in a sequence
that represents a path, it is labeled start; otherwise it has no label. Equivalently
with “x.label = . . .,” if the for expression is the last for expression in a sequence
that represents a path, the iteration variable is labeled with the path it repre-
sents; otherwise it has no label. In the rules [ForΠ1] through [ForΠ5], τ can
be instantiated to (τ1,τ2), (τ1|τ2), or <τ1,τ2>. The hypothesis ¬∃π. π ∈ C1,2

in [ForS] through [ForP] means that there exists no path constraints in the
constraint sets of the preceding hypotheses. Conversely, in [ForΠ1] through
[ForΠ5], ∃π. π ∈ C means there is a path constraint in the constraint set C.

We explain the intuition behind these rules using the example program in
Fig. 10a. The companion technical report illustrates more completely the use of
the auxiliary rules for typing the for expression through a full type derivation
tree for the for expression on lines 1–10 of Fig. 10a (see [23], Fig. 17).

The x on line 5 of Fig. 10a iterates over the values represented by the type
of the children of book. The part of the input type tree that represents these
values is shown as the third level on Fig. 10c. The type rule invoked on line 5 is
[For]. In its second hypothesis, the type environment includes {for x : τ1}.

12

Γ ` e1 : τ1, C1

Γ] {for x : τ1} ` e2 : τ2, C2

for.label = ∅
Γ ` for x in e1 do e2 : τ2,

C1 ∪ C2

[For]

Γ ` e1 : τ1, C1

Γ] {for x : τ1} ` e2 : (zm)*n, C2

for.label = start ∃π. π ∈ C2

Γ ` for x in e1 do e2 : (zm)*n,
C1 ∪ (C2 \ {π}) ∪ {n = m × Γπ(π)}

[ForΠ]

Γ] {x : u1} ` e2 : τ, C x.label = ∅
Γ] {for x : u1} ` e2 : τ, C

[ForU]

Γ] {x : u1} ` e2 : zm, C x.label = π

Γ] {for x : u1} ` e2 : (zm) ∗n′
, C ∪ {π}

[ForΠU]

Γ] {for x : ()0} ` e2 : ()0
[ForN]

Γ] {for x : ∅} ` e2 : ∅ [ForE]

Γ] {for x : τ1} ` e2 : τ ′, C

Γ] {for x : τ2} ` e2 : τ ′, C

∃π. π ∈ C

Γ] {for x : τ} ` e2 : τ ′, C
[ForΠ1]

Γ] {for x : τ1} ` e2 : τ ′
1, C1

Γ] {for x : τ2} ` e2 : τ ′
2, C2

τ ′
1 = zm11 τ ′

2 = zm22 ¬∃π. π ∈ C1,2

Γ] {for x : (τ1, τ2)
n} ` e2 : (τ ′

1,τ
′
2)

n′
,

C1 ∪ C2 ∪ {n′ = m1 + m2}

[ForS]

Γ] {for x : τ1} ` e2 : τ ′, C

Γ] {for x : τ2} ` e2 : ()0, C
′

∃π. π ∈ C τ ′ 6= ()0

Γ] {for x : τ} ` e2 : τ ′, C
[ForΠ2]

Γ] {for x : τ1} ` e2 : τ ′
1, C1

Γ] {for x : τ2} ` e2 : τ ′
2, C2

¬∃π. π ∈ C1,2

Γ] {for x : (τ1|τ2)
n} ` e2 : (τ ′

1|τ ′
2)

n′
,

C1 ∪ C2

[ForC]

Γ] {for x : τ1} ` e2 : ()0, C
′

Γ] {for x : τ2} ` e2 : τ ′, C

∃π. π ∈ C τ ′ 6= ()0

Γ] {for x : τ} ` e2 : τ ′, C
[ForΠ3]

Γ] {for x : τ1} ` e2 : τ ′
1, C1

Γ] {for x : τ2} ` e2 : τ ′
2, C2

τ ′
1 = zm11 τ ′

2 = zm22 ¬∃π. π ∈ C1,2

{n = b× r1 + notb× r2}

Γ] {for x : <τ1, τ2>
n} ` e2 : <τ ′

1, τ
′
2>

n′
,

C1 ∪ C2 ∪ {n = b× r1 + notb× r2}
∪ {n′ = b× m1 + notb× m2}

[ForP]

Γ] {for x : τ1} ` e2 : τ ′, C

Γ] {for x : τ2} ` e2 : ∅
∃π. π ∈ C τ ′ 6= ∅

Γ] {for x : τ} ` e2 : τ ′, C
[ForΠ4]

Γ] {for x : τ1} ` e2 : ∅
Γ] {for x : τ2} ` e2 : τ ′, C

∃π. π ∈ C τ ′ 6= ∅
Γ] {for x : τ} ` e2 : τ ′, C

[ForΠ5]

Γ] {for x : τ} ` e2 : τ ′, C

τ = zm τ ′ = zm
′

1 ¬∃π. π ∈ C

Γ] {for x : τ∗n} ` e2 : τ ′ ∗n
′
,

{n′ = (n/m)× m′} ∪ C

[ForR]

Γ] {for x : τ} ` e2 : τ ′,C

∃π. π ∈ C

Γ] {for x : (τ∗)n} ` e2 : τ ′, C
[ForΠR]

Fig. 11. Type rules for the for expression: n′ is fresh in all rules it appears in.

13

This must be resolved with the auxiliary rules. Because x is at the end of a path,
it was labeled in the preprocessing phase with the path /catalog/book/title.

The variable x was labeled with a path so that the number of values it iterates
over could be related directly back to the input type. On each iteration, the body
of the for expression (lines 5–8) produces some output of type τ. For all types τ,
τ is a subtype of τ*n (where n is unbound). As the final step of type inference for
the for expression, n can be bound to the product of two factors. The first is the
variable assigned to the path that labels x in the input type. The second is the
outermost size variable on τ. Note, then, that even though τ*n ≡ (τ*m)*n when
n and m are unbound, if the n’s on both sides are bound to the product of some
c and of the outermost size variable underneath them, the two types will not
be equivalent. Because m is unbound, we have no information about the number
of elements represented by the second type. Therefore, the auxiliary rules are
designed to propagate back to the [For] rule a type of the form τ*n, where n is
unbound and τ is the type of the body of the for expression.

When x has type title[Str1]1, the body of the for expression has type
title[Str1]1. The rule [ForΠU] infers the type (title[Str1]1)*r, where r is
a fresh variable, for the reason explained above. When x has any other type, the
body of the for expression is ()0. The starred type gets propagated back to the
[For] rule on line 5, and then it gets propagated further to the [ForΠ] rule
on line 1. The [ForΠ] then binds the size variable r to the product described
in the previous paragraph, namely r = 1 * n = n. By similar reasoning for the
expression on lines 11–20, we can infer that the expression produces n ISBNs,
the information that we desire.

4.4 Type Soundness

We now state some formal properties about our type system.

Theorem 1 (Subject Reduction) Given the predicates provided by the pre-
and post-processing, we have: If Γ ` e : τ, C and E ` e ⇓ v then Γ ` v : τ, C.

The full proof of this theorem is given in the companion technical report [23].
It follows the style of Wright and Felleisen [27]. This theorem relies on a few
lemmas. The first is a substitution lemma, which is needed for the expressions
that bind variables, namely for, case, and let:

Lemma 1 (Substitution). If Γ ` v : τ, C and Γ] {x : τ} ` e : τ ′, C′ then
Γ ` e [v/x] : τ ′, C ∪ C′ .

The case expression relies on a split function to mimic the case analysis on
types (see [23] for the definition of split). The second lemma therefore proves that
the split function conservatively matches the semantics of the case expression.

Lemma 2 (Case). Assume Γ ` v : τ, C and splitp(τ) = u′1|τ ′.
If v ∈ Dom(p) then Γ ` v : u′1, C , and if v /∈ Dom(p) then Γ ` v : τ ′, C.

14

5 Related Work

5.1 Automata-based Techniques

In [20], six ways of representing XML types (including XML Schema) are classi-
fied by expressiveness. The types we work with here are regular expression tree
types with size annotations, which are at least as expressive as the six surveyed.

One significant automata-based work on XML type checking uses a gener-
alization of traditional top-down regular tree transducers called k-pebble tree
transducers to demonstrate the decidability of type checking for the broad range
of queries that can be expressed by these automata [19]. This technique was ap-
plied to a subset of XSLT for backward type inference [25]. However, it is unclear
how to support size information in these formalisms. Adding sizes naively can
produce non-context-free languages and make type checking undecidable.

5.2 Type System-based Techniques

Instead of using automata-based approaches, many XML transformation lan-
guages use type systems to accomplish XML type checking. The aspects of
XQuery’s type system relevant to this work were explained in Sect. 1.1. Other
languages, such as XDuce, have similar type systems [8, 14]. Fernandez et al.’s
more precise type system was discussed in Sect 4.3 [10]. However, our type sys-
tem appears to be the first one to support size inference.

Other work on XML type checking is aimed at integrating XML into general-
purpose programming languages. One integrates XML into Java [17], and the
work relies on JWIG [4], an extension of Java. XOBE [16] is also an extension of
Java with a similar goal, but it differs in that XML trees in XOBE can only be
constructed bottom-up, as opposed to allowing named gaps that can be filled in
any order. Castor [13] and JAXB [18] use Java to generate an object model of
XML documents from XML Schema in order to gain a higher level of abstraction.

5.3 Size Analysis

We view size analysis as seeking to make claims about the sizes of data structure
and other closely-related aspects of programs. The study of size analysis started
with the inference of linear constraints for imperative languages [5]. This abstract
interpretation-based approach inferred linear relationships among variables au-
tomatically. This topic has significance to logic programming in the sense that
inferring bounds on argument sizes can ensure termination [22].

Type-based size analyses relate more closely to our work. One such analysis
uses dependent types [28, 29]. They use parameterized types to infer lengths of
lists. The parameters can be constrained with linear equalities and inequalities
to determine size relationships. Unlike our type system, theirs requires user an-
notations. Hughes, Pareto, and Sabry type check recursive data structures with
size information in the context of a lazy functional language [15]. Chin and Khoo
build on this approach by inferring sizes for recursive functions in the context of

15

strict functional languages [3]. They define the size of a function as both a rela-
tion between input and output parameters, and invariants of input parameters
across recursive calls. They infer sizes in terms of array lengths, tree heights, and
integer values. All of these previous approaches only infer flat sizes; even when
sizes for trees are inferred, they are in one-dimensional heights. We infer sizes
for the richer tree structure and take into account the levels of the subtrees.

6 Conclusions and Future Work

In this paper we have presented a type system for XML transformations to infer
size relationships within the output type. Our approach also allows size annota-
tions to be added to the input type that would then be propagated through to
the inferred output type. In addition to helping programmers confirm properties
of XML transformation programs, size relations may provide efficiency improve-
ments. Knowledge of concrete sizes can benefit query optimization and database
storage, so we expect size relations to yield similar benefits [12, 21].

Finally, our type system does not add significant complexity to either type in-
ference or document validation. Only simple, and usually small, linear arithmetic
equations, which can be solved efficiently, will be inferred in the constraints. XML
Schema is designed so that validation can be implemented by a top-down parser
with limited look ahead [20]. Adding size annotations requires only the addition
of counters to keep track the number of elements, which does not increase the
algorithmic complexity of performing document validation.

There are a few possible directions for future work. In this work we have not
considered functions or recursive types. However, we expect that our technique
could be extended to include these language constructs. In the case of functions,
for better precision, we may need to pursue a context-sensitive analysis. Precise
handling of recursive functions seems challenging, but ideas based on context-
free language reachability may be applied. The challenge with recursive types
lies in proper source type annotation. We believe this could be accomplished by
annotating the states of the term automata representation of recursive types.
In this paper, we have shown how to infer precise types with size information.
However, in order to perform XML type checking, we also need to investigate
techniques for subtyping. In general, it is undecidable to check inclusion of tree
automata enhanced with size information. However, it is interesting to study
conservative, but practical notions of subtyping. Finally, it would be interesting
to implement our inference procedure to gain some practical experiences.

References

1. A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional
types. In POPL, pages 163–173, 1994.

2. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose
language. In ICFP-03, volume 38, 9, pages 51–63, New York, August 25–29 2003.

3. W. Chin and S. Khoo. Calculating sized types. In PEPM, pages 62–72, 1999.

16

4. A. S. Christensen and A. Møller. JWIG user manual, June 2002. URL:
http://www.brics.dk/JWIG/manual/.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84–96, 1978.

6. J. Clark (eds.). XML transformations (XSLT) version 1.0. W3C, Nov. 1999. URL:
http://www.w3.org/TR/xslt.

7. Roberto Chinnici (eds.). Web services description language (WSDL) version 2.0.
W3C, March 2004. URL: http://www.w3.org/TR/wsdl20/.

8. Scott Boag (eds.). XQuery: the W3C query language for XML – W3C working
draft. W3C, November 2003. URL: http://www.w3.org/TR/xquery.

9. Tim Bray (eds.). Extensible markup language (XML) version 1.0. W3C, February
2004. URL: http://www.w3.org/TR/PR-xml-971208.ps.

10. M. Fernandez, J. Siméon, and P. Wadler. An algebra for XML Query. In FST
TCS, pages 11–45, December 2000.

11. M. Fitzgerald. Relaxer tutorial, 2003.
URL: http://www.relaxer.org/doc/tutorial/tutorial.html.

12. J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon. StatiX: making
XML count. In SIGMOD, pages 181–191, New York, NY 10036, USA, June 2002.

13. Exolab Group. Castor, 2002. URL: http://castor.exolab.org.
14. H. Hosoya and B. C. Pierce. “XDuce: A Typed XML Processing Language”. In

WebDB, Dallas, TX, 2000.
15. J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems

using sized types. In POPL, 1996.
16. M. Kempa and V. Linnemann. Type checking in XOBE. In BTW ’03, pages

227–246, February 2003.
17. C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis of xml trans-

formations in java. URL: http://citeseer.nj.nec.com/593778.html.
18. Sun Microsystems. JAXB, 2002. URL: http://java.sun.com/xml/jaxb.
19. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In PODS,

pages 11–22, 2000.
20. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using

formal language theory. In Extreme Markup Languages, Montreal, Canada, 2001.
21. Carlo Sartiani. A framework for estimating XML query cardinality. In WebDB,

San Diego, California, 2003.
22. D. De Schreye and S. Decorte. Termination of logic programs: The never-ending

story. Journal of Logic Programming, pages 199–260, 1994.
23. Z. Su and G. Wassermann. A type-based dimensional analysis for XQuery. Tech-

nical Report CSE-2004-8, University of California, Davis, April 2004. URL:
http://wwwcsif.cs.ucdavis.edu/~wassermg/research/SizeTechRpt.ps.

24. D. Suciu. The XML typechecking problem. SIGMOD Record, March 2002.
25. A. Tozawa. Towards static type checking for XSLT. In Document Eng, pages

18–27, 2001.
26. M. Wallace and C. Runciman. Haskell and XML: Generic combinators or type-

based translation? In ICFP, pages 148–159, 1999.
27. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf.

Comput., 115(1):38–94, 1994.
28. H. Xi and F. Pfenning. Eliminating array bound checking through dependent

types. In PLDI, pages 249–257, 1998.
29. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL,

pages 214–227, 1999.

17

